RU2610657C1 - Сплав на основе титана и изделие, выполненное из него - Google Patents
Сплав на основе титана и изделие, выполненное из него Download PDFInfo
- Publication number
- RU2610657C1 RU2610657C1 RU2015143327A RU2015143327A RU2610657C1 RU 2610657 C1 RU2610657 C1 RU 2610657C1 RU 2015143327 A RU2015143327 A RU 2015143327A RU 2015143327 A RU2015143327 A RU 2015143327A RU 2610657 C1 RU2610657 C1 RU 2610657C1
- Authority
- RU
- Russia
- Prior art keywords
- titanium
- alloy
- oxygen
- zirconium
- tin
- Prior art date
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 46
- 239000000956 alloy Substances 0.000 title claims abstract description 46
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 20
- 239000010936 titanium Substances 0.000 title claims abstract description 20
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 13
- 239000001301 oxygen Substances 0.000 claims abstract description 13
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 11
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052718 tin Inorganic materials 0.000 claims abstract description 10
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 9
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 9
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 9
- 229910052742 iron Inorganic materials 0.000 claims abstract description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 9
- 239000011733 molybdenum Substances 0.000 claims abstract description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 9
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 9
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 8
- 239000001257 hydrogen Substances 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- 239000010703 silicon Substances 0.000 claims abstract description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 6
- 239000011593 sulfur Substances 0.000 claims abstract description 6
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims abstract 3
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 239000011651 chromium Substances 0.000 claims description 8
- 229910052727 yttrium Inorganic materials 0.000 claims description 4
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 239000010955 niobium Substances 0.000 claims description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 3
- 239000011135 tin Substances 0.000 claims description 2
- 239000000126 substance Substances 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 229910001069 Ti alloy Inorganic materials 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 4
- 230000007774 longterm Effects 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 2
- 238000005272 metallurgy Methods 0.000 abstract 2
- 239000004411 aluminium Substances 0.000 abstract 1
- 238000005520 cutting process Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 230000032683 aging Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000011265 semifinished product Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 101100478237 Caenorhabditis elegans ost-1 gene Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 235000015842 Hesperis Nutrition 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 229910000796 S alloy Inorganic materials 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000009856 non-ferrous metallurgy Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000010313 vacuum arc remelting Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
Изобретение относится к области металлургии, а именно к титановым сплавам, предназначенным для использования в качестве высокопрочного конструкционного термически упрочняемого материала для изготовления деталей силовых конструкций авиационной и космической техники, энергетических установок, ракет, длительно работающих при температурах до 350°C. Сплав на основе титана содержит, мас. %: алюминий 1,0-6,0; молибден 5,0-10,0; ванадий 5,0-10,0; железо 0,3-3,5; хром 0,3-3,5; олово 0,1-2,0; цирконий 0,1-2,0; сера 0,0001-0,30; кислород 0,01-0,20; азот 0,005-0,050; водород 0,003-0,020; углерод 0,005-0,100; кремний 0,01-0,10; титан – остальное. Сплав характеризуется высокими характеристикам трещиностойкости и технологической пластичности. 2 н. и 3 з.п. ф-лы, 2 табл., 4 пр.
Description
Изобретение относится к области цветной металлургии, а именно к созданию титановых сплавов, предназначенных для использования в качестве высокопрочного конструкционного термически упрочняемого материала. Из сплава могут быть изготовлены деформированные полуфабрикаты (листы, лента, фольга, плиты, прутки, штамповки и др.), которые применяются для изготовления деталей силовых конструкций авиационной и космической техники, энергетических установок, ракет, длительно работающих при температурах до 350°C.
Известен сплав на основе титана, имеющий следующий химический состав, масс. % (GB 1479855, МПК С22С 14/00, опубл. 13.07.1977 г.):
алюминий | 1,0-6,0 |
ванадий | 0,1-10,0 |
молибден | 5,0-10,0 |
хром | 4,0-12,0 |
железо | 0,1-4,0 |
никель | 0,3-4,0 |
кислород | <0,2 |
азот | <0,1 |
водород | <0,03 |
углерод | <0,05 |
титан | остальное |
Недостаток сплава заключается в его низкой технологической пластичности, затрудняющей его обработку и изготовление полуфабрикатов.
Известен сплав на основе титана, имеющий следующий химический состав, масс. % (а.с. 443090, МПК С22С 15/00, опубл. 15.09.1974 г.):
алюминий | 2,0-7,0 |
молибден | 1,0-9,0 |
ванадий | 2,0-15,0 |
хром | 0,3-4,0 |
железо | 0,3-4,0 |
водород | 0,001-0,015 |
олово | 0,5-7,0 |
медь | 0,5-3,0 |
кислород | 0,04-0,20 |
титан | остальное |
Недостатком сплава является низкая технологическая пластичность, что ограничивает применение сплава лишь поковками и штамповками, изготавливаемыми деформацией при высоких температурах, а также то, что эффективное упрочнение этих сплавов достигается закалкой в воду и старением, т.е. при больших скоростях охлаждения, связанных с большими поводками и окислением при переносе в закалочную среду. Кроме того, применение указанного сплава в связи с его низкой трещиностойкостью возможно лишь для изделий кратковременного ресурса.
Наиболее близким аналогом, взятым за прототип, является сплав на основе титана (а.с. 1039245, МПК С22С 14/00, опубл. 10.10.2015 г.), имеющий следующий химический состав, масс. %:
алюминий | 1,0-6,0 |
молибден | 5,0-10,0 |
ванадий | 5,0-10,0 |
железо | 0,3-3,5 |
хром | 0,3-3,5 |
олово | 0,1-2,0 |
цирконий | 0,1-2,0 |
кислород | 0,01-0,20 |
азот | 0,005-0,050 |
водород | 0,003-0,020 |
углерод | 0,005-0,100 |
кремний | 0,01-0,10 |
титан | остальное |
Недостатком сплава-прототипа является низкая технологическая пластичность и недостаточно высокие характеристики трещиностойкости.
Техническим результатом заявленного изобретения является повышение трещиностойкости и технологической пластичности на 8-13 и 9-18% соответственно.
Для достижения поставленного технического результата предлагается сплав на основе титана, содержащий алюминий, молибден, ванадий, хром, железо, олово, цирконий, кислород, водород, азот, углерод, кремний, отличающийся тем, что дополнительно содержит серу, при следующем соотношении компонентов, масс. %:
алюминий | 1,0-6,0 |
молибден | 5,0-10,0 |
ванадий | 5,0-10,0 |
железо | 0,3-3,5 |
хром | 0,3-3,5 |
олово | 0,1-2,0 |
цирконий | 0,1-2,0 |
сера | 0,0001-0,30 |
кислород | 0,01-0,20 |
азот | 0,005-0,050 |
водород | 0,003-0,020 |
углерод | 0,005-0,100 |
кремний | 0,01-0,10 |
титан | остальное |
и изделие, выполненное из этого сплава.
Сплав дополнительно также может содержать иттрий в количестве от 0,01 до 0,15 масс. % или ниобий в количестве от 0,01 до 0,2 масс. %.
Взаимное соотношение алюминия и кислорода в сплаве может составлять от 42/1 до 19/1 (в масс. долях) при условии содержания алюминия в сплаве не более 2,5 масс. %. Вышеуказанное соотношение позволяет реализовать более высокий уровень технологической пластичности за счет снижения степени твердорастворного упрочнения сплава алюминием и кислородом, которые, как известно, являются одними из наиболее эффективных упрочняющих компонентов титановых сплавов.
Установлено, что легирование кислородом, азотом, углеродом и кремнием существенно повышает прочность сплава. Цирконий образует непрерывный ряд твердых растворов с обеими модификациями титана (α и β), и с увеличением содержания циркония в сплаве возрастает предел прочности, также его добавка существенно повышает длительную прочность и сопротивление ползучести сплава. Кроме того, цирконий в небольших количествах оказывает модифицирующее влияние на структуру сплава, изменяя характер внутризеренной структуры и уменьшая размер зерна. Легирование титана оловом в присутствии циркония значительно повышает механические свойства и особенно трещиностойкость при комнатной и повышенных температурах. Дополнительное легирование сплава оловом в концентрации 1-2 масс. % позволяет повысить пластичность и ускорить процессы распада β-твердого раствора при старении, что приводит к сокращению трудоемкости и энергозатрат при проведении его термической обработки. Еще более эффективное влияние олова на упрочнение титана проявляется при испытании на жаропрочность. Введение в сплав ниобия обеспечивает повышение уровня пластичности и вязкости разрушения на 3-8% (отн.). Введение редкоземельного металла иттрия в указанном количестве позволяет реализовать эффект модифицирования и рафинирования микрообъемов сплава, обеспечить более равномерный и однородный распад β-фазы при старении, обусловленный снижением критического размера зародыша частиц α-фазы. Вышеуказанные эффекты позволяют дополнительно повысить прочностные и пластические характеристики сплава в термически упрочненном состоянии на величину от 2 до 9% (отн.) по сравнению с модельными составами без иттрия.
Микролегирование сплава серой обеспечивает повышение технологичности, которое заключается в улучшении обрабатываемости (резанием, точением и т.д.), снижает износ режущего инструмента и увеличивает срок его службы. Увеличение содержания серы улучшает показатели механической обрабатываемости за счет выделения металлидных соединений, но при концентрации примерно 0,2-0,3 масс. % снижаются технологичность и характеристики длительной работоспособности. При превышении указанных максимальных пределов обрабатываемость в горячем состоянии ухудшается.
Увеличение количества β-стабилизирующих элементов (молибдена до 10%), введение олова и циркония до 2%, а также регламентированное присутствие кислорода, углерода, кремния, азота в предлагаемом сплаве приводит к увеличению коэффициента β-стабилизации (Кβ), позволяя проводить упрочняющую ступенчатую термическую обработку, повышает характеристики трещиностойкости и технологической пластичности без снижения характеристик прочности.
Установленное содержание ванадия способствует (за счет его умеренного твердорастворного упрочнения) получению высокой технологичности сплава при умеренно высоких значениях прочностных свойств.
Выбранное содержание хрома и железа обусловлено тем, что эти элементы хорошо упрочняют титановые сплавы и являются сильными β-стабилизаторами. Но в сплавах с их высоким содержанием (более установленных в данном изобретении максимальных пределов) могут при длительных изотермических выдержках образовываться охрупчивающие интерметаллиды, а при выплавке слитков велика вероятность образования химических неоднородностей.
Предложенный сплав хорошо деформируется в горячем и холодном состояниях. Путем холодной прокатки из предложенного сплава можно изготавливать тонкую ленту и фольгу. При горячей изотермической штамповке сплав отличается низкими удельными давлениями течения металла (90-110 МПа при температуре 700°C при скорости деформирования 3,2 мм/мин). Термическая обработка сплава включает ступенчатый отжиг в вакуумных печах или печах с защитной атмосферой.
Примеры осуществления
Пример 1. Предлагаемый сплав (в соответствии с таблицей №1) в виде слитков выплавляли методом тройного вакуумно-дугового переплава. Затем слитки подвергали деформационной обработке путем всесторонней ковки в обычных или квази-изотермических условиях на сутунки. Полученные сутунки были подготовлены под прокатку путем строгания по всем поверхностям. Прокатка полученных сутунок проводилась в несколько этапов с промежуточными отжигами. Готовые листы подвергались окончательной термической обработке.
Примеры 2-4 аналогичны примеру 1.
В таблице 1 приведен химический состав выплавленных слитков.
Далее определяли следующие характеристики полученных полуфабрикатов (листы):
- предел прочности и относительное удлинение определяли путем проведения испытаний на растяжение образцов при комнатной температуре по ГОСТ 1497;
- предел технологической пластичности определяли в закаленном состоянии путем деформации цилиндрических образцов осадкой по ГОСТ 8817;
- угол изгиба определяли при комнатной температуре по ГОСТ 14019;
- КС у, МПа м-1/2, критический коэффициент интенсивности напряжений в условиях плоского напряженного состояния по ОСТ 1 90356;
- (КСТ) Дж/см2, ударная вязкость образца с концентратором вида Т по ГОСТ 9454;
- удельные давления течения металла определены по ГОСТ 25.503;
- была проведена оценка характеристик механической обрабатываемости резанием, показатели которой выражены в баллах по 10-бальной шкале, где 10 - наилучший показатель. При оценке учитывался износ режущего инструмента и связанный с ним ресурс, характеристики стружки, ее размер, степень перегрева стружки и заготовки.
В таблице 2 приведены механические и технологические свойства предлагаемого сплава и сплава-прототипа.
Как видно из таблицы 2, в предлагаемом сплаве по сравнению со сплавом-прототипом технологичность при обработке резанием повысилась на 1-2 балла, технологическая пластичность повысилась на 9-18%, характеристики трещиностойкости (K1C) - на 8-13%, остальные характеристики сохранены на примерно одинаковом уровне.
Предлагаемый сплав может быть применен в качестве конструкционного материала для изготовления крупногабаритных деталей и конструкций методом холодного деформирования с высоким коэффициентом использования металла. Сплав обладает высокой надежностью по сравнению с известным благодаря повышенным характеристикам трещиностойкости и может быть использован для изделий длительного ресурса (например, в гражданской авиации).
Claims (6)
1. Сплав на основе титана, содержащий алюминий, молибден, ванадий, хром, железо, олово, цирконий, кислород, водород, азот, углерод и кремний, отличающийся тем, что он дополнительно содержит серу, при следующем соотношении компонентов, мас. %:
2. Сплав на основе титана по п. 1, отличающийся тем, что он дополнительно содержит иттрий в количестве от 0,01 до 0,15 мас. %.
3. Сплав на основе титана по п. 1, отличающийся тем, что он дополнительно содержит ниобий в количестве от 0,01 до 0,2 мас. %.
4. Сплав на основе титана по п. 1, отличающийся тем, что соотношение алюминия и кислорода составляет от 42/1 до 19/1 (в мас. долях) при содержании алюминия в сплаве не более 2,5 мас. %.
5. Изделие, выполненное из сплава на основе титана, отличающееся тем, что оно выполнено из сплава по п. 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015143327A RU2610657C1 (ru) | 2015-10-13 | 2015-10-13 | Сплав на основе титана и изделие, выполненное из него |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015143327A RU2610657C1 (ru) | 2015-10-13 | 2015-10-13 | Сплав на основе титана и изделие, выполненное из него |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2610657C1 true RU2610657C1 (ru) | 2017-02-14 |
Family
ID=58458681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015143327A RU2610657C1 (ru) | 2015-10-13 | 2015-10-13 | Сплав на основе титана и изделие, выполненное из него |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2610657C1 (ru) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108070737A (zh) * | 2017-12-11 | 2018-05-25 | 李春浓 | 一种高尔夫球头用钛合金 |
RU2690257C1 (ru) * | 2018-11-28 | 2019-05-31 | Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) | Сплав на основе титана |
CN111225989A (zh) * | 2017-10-06 | 2020-06-02 | 莫纳什大学 | 改进的可热处理钛合金 |
CN112752855A (zh) * | 2018-09-25 | 2021-05-04 | 钛金属公司 | 具有中等强度和高延展性的钛合金 |
RU2776521C1 (ru) * | 2021-07-29 | 2022-07-21 | Публичное Акционерное Общество "Корпорация Всмпо-Ависма" | Сплав на основе титана и изделие, выполненное из него |
US11920231B2 (en) | 2018-08-28 | 2024-03-05 | Ati Properties Llc | Creep resistant titanium alloys |
US12071678B2 (en) | 2018-05-07 | 2024-08-27 | Ati Properties Llc | High strength titanium alloys |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1479855A (en) * | 1976-04-23 | 1977-07-13 | Statni Vyzkumny Ustav Material | Protective coating for titanium alloy blades for turbine and turbo-compressor rotors |
US5304263A (en) * | 1991-05-14 | 1994-04-19 | Compagnie Europeenne Du Zirconium Cezus | Titanium alloy part |
US20100074795A1 (en) * | 2006-10-26 | 2010-03-25 | Kazuhiro Takahashi | Beta-TYPE TITANIUM ALLOY |
RU2496901C2 (ru) * | 2009-05-29 | 2013-10-27 | Титаниум Металс Корпорейшн | Сплав, близкий к бета-титану, для применений, требующих высокой прочности, и способы его изготовления |
SU1039245A1 (ru) * | 1982-02-08 | 2015-10-10 | В.Н. Моисеев | Сплав на основе титана |
-
2015
- 2015-10-13 RU RU2015143327A patent/RU2610657C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1479855A (en) * | 1976-04-23 | 1977-07-13 | Statni Vyzkumny Ustav Material | Protective coating for titanium alloy blades for turbine and turbo-compressor rotors |
SU1039245A1 (ru) * | 1982-02-08 | 2015-10-10 | В.Н. Моисеев | Сплав на основе титана |
US5304263A (en) * | 1991-05-14 | 1994-04-19 | Compagnie Europeenne Du Zirconium Cezus | Titanium alloy part |
US20100074795A1 (en) * | 2006-10-26 | 2010-03-25 | Kazuhiro Takahashi | Beta-TYPE TITANIUM ALLOY |
RU2496901C2 (ru) * | 2009-05-29 | 2013-10-27 | Титаниум Металс Корпорейшн | Сплав, близкий к бета-титану, для применений, требующих высокой прочности, и способы его изготовления |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111225989A (zh) * | 2017-10-06 | 2020-06-02 | 莫纳什大学 | 改进的可热处理钛合金 |
CN111225989B (zh) * | 2017-10-06 | 2022-03-15 | 莫纳什大学 | 改进的可热处理钛合金 |
CN108070737A (zh) * | 2017-12-11 | 2018-05-25 | 李春浓 | 一种高尔夫球头用钛合金 |
US12071678B2 (en) | 2018-05-07 | 2024-08-27 | Ati Properties Llc | High strength titanium alloys |
US11920231B2 (en) | 2018-08-28 | 2024-03-05 | Ati Properties Llc | Creep resistant titanium alloys |
US12234539B2 (en) | 2018-08-28 | 2025-02-25 | Ati Properties Llc | Creep resistant titanium alloys |
CN112752855A (zh) * | 2018-09-25 | 2021-05-04 | 钛金属公司 | 具有中等强度和高延展性的钛合金 |
US11708630B2 (en) | 2018-09-25 | 2023-07-25 | Titanium Metals Corporation | Titanium alloy with moderate strength and high ductility |
RU2690257C1 (ru) * | 2018-11-28 | 2019-05-31 | Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) | Сплав на основе титана |
RU2776521C1 (ru) * | 2021-07-29 | 2022-07-21 | Публичное Акционерное Общество "Корпорация Всмпо-Ависма" | Сплав на основе титана и изделие, выполненное из него |
WO2023009030A1 (ru) * | 2021-07-29 | 2023-02-02 | Публичное Акционерное Общество "Корпорация Всмпо-Ависма" | Сплав на основе титана и изделие, выполненное из него |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2610657C1 (ru) | Сплав на основе титана и изделие, выполненное из него | |
CN105803314B (zh) | 一种具有高性能的高级热作模具钢及其制造方法 | |
CN105779817A (zh) | 一种低成本高强高韧钛合金及其制备方法 | |
AU2023282167B2 (en) | Creep Resistant Titanium Alloys | |
CN107574335A (zh) | 一种中强度钛合金及其制备方法 | |
CN101654764A (zh) | 一种铁镍基高弹性合金及其毛细管和毛细管的制造方法 | |
CN104789821A (zh) | 一种含铬防锈铝合金材料及其处理工艺 | |
RU2525003C1 (ru) | Сплав на основе алюминида титана и способ обработки заготовок из него | |
CN105400993B (zh) | 一种耐高速冲击低成本钛合金 | |
RU2614356C1 (ru) | Сплав на основе титана и изделие, выполненное из него | |
RU2690257C1 (ru) | Сплав на основе титана | |
CN104388823B (zh) | 一种高强度耐热合金钢 | |
RU2583556C2 (ru) | Экономнолегированный титановый сплав | |
CN114134367B (zh) | 一种牌号为mp-5的高强度耐氢脆膜片及制备方法 | |
RU2569285C1 (ru) | Высокопрочный сплав на основе титана и изделие, выполненное из высокопрочного сплава на основе титана | |
RU2560481C1 (ru) | СПЛАВ НА ОСНОВЕ СИСТЕМЫ Al-Cu-Li И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | |
RU2606677C1 (ru) | Сплав на основе титана (варианты) и изделие, выполненное из него | |
RU2610190C1 (ru) | Высокопрочный сплав на основе алюминия и изделие, выполненное из него | |
RU2716922C1 (ru) | Аустенитная коррозионно-стойкая сталь с азотом | |
RU2706916C2 (ru) | Заготовка для изготовления упругих элементов из сплава на основе титана | |
JP2005120455A (ja) | 冷間加工性に優れた高硬度鋼 | |
Li et al. | Effect of Ce on deformation performance of ZK20 magnesium alloy | |
KR20240070638A (ko) | 티타늄 합금 및 그로부터 제조된 물품 | |
CN115815490A (zh) | 一种高强度镁-锌-锰系变形镁合金的锻造工艺 | |
CN115181900A (zh) | 一种奥氏体时效性硬化型耐热钢及其制备方法 |