RU2607475C2 - Способ координированной обработки сигналов, передаваемых радиомаяками - Google Patents
Способ координированной обработки сигналов, передаваемых радиомаяками Download PDFInfo
- Publication number
- RU2607475C2 RU2607475C2 RU2012145677A RU2012145677A RU2607475C2 RU 2607475 C2 RU2607475 C2 RU 2607475C2 RU 2012145677 A RU2012145677 A RU 2012145677A RU 2012145677 A RU2012145677 A RU 2012145677A RU 2607475 C2 RU2607475 C2 RU 2607475C2
- Authority
- RU
- Russia
- Prior art keywords
- signal
- signals
- stations
- analysis module
- beacon
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 39
- 238000004891 communication Methods 0.000 claims abstract description 12
- 230000005540 biological transmission Effects 0.000 claims description 5
- 230000000694 effects Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 230000001934 delay Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1853—Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
- H04B7/18539—Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S1/00—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
- G01S1/02—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
- G01S1/08—Systems for determining direction or position line
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S1/00—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
- G01S1/02—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
- G01S1/68—Marker, boundary, call-sign, or like beacons transmitting signals not carrying directional information
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/12—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1851—Systems using a satellite or space-based relay
- H04B7/18513—Transmission in a satellite or space-based system
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Astronomy & Astrophysics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Signal Processing (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Radio Relay Systems (AREA)
Abstract
Изобретение относится к технике связи и может использоваться для демодуляции сигнала, несущего сообщение, переданное наземным радиомаяком. Технический результат состоит в повышении точности определения местоположения аварийных радиомаяков спутниковой системой. Для этого система содержит созвездие спутников, выполненных с возможностью детектирования упомянутого сигнала и его повторения в направлении приемных станций на Земле, и модуль анализа, выполненный с возможностью приема сигналов с упомянутых станций, каждая приемная станция передает сигналы, которые она принимает со спутника, в модуль анализа, причем модуль анализа перестраивает упомянутые сигналы относительно друг друга по частоте и/или по времени, комбинирует перестроенные сигналы для формирования синтетического сигнала, имеющего повышенное отношение сигнал/шум, и определяет содержание упомянутого сообщения и/или параметры модуляции упомянутого синтетического сигнала. 3 н. и 9 з.п. ф-лы, 2 ил.
Description
Настоящее изобретение относится к способу обработки сигналов, передаваемых радиомаяками, принимаемых разными независимыми подэлементами модуля сбора. Оно, в частности, применимо для точного и надежного определения местоположения аварийных радиомаяков спутниковой системой.
Одной из известных систем определения местоположения аварийных радиомаяков является система MEOSAR (поисково-спасательная служба средней земной орбиты), которая является спутниковой системой на средней земной орбите, используемой для поиска и спасения. Она содержит:
- передающие сигналы радиомаяки, местоположение которых должно быть определено;
- спутники-ретрансляторы на средней земной орбите (которые могут быть спутниками, используемыми в геолокационной и навигационной системе, системе, которая часто обозначается аббревиатурой GNSS, обозначающей Глобальную систему спутниковой навигации);
- независимые модули обработки на Земле или станции, иногда также называемые как MEOLUT (локальные терминалы пользователя средней земной орбиты);
- центр для координирования модулей обработки на Земле, иногда называемый как MTCF, что означает комплекс координации и слежения MEOLUT.
Центр для координирования модулей обработки на Земле дает возможность содействовать в программировании антенн разных модулей, для того чтобы улучшать покрытие и общую эффективность сети модулей, в частности, когда модули оборудованы несколькими антеннами (как имеет место с некоторыми станциями MEOLUT).
Аварийный радиомаяк SAR (поисково-спасательный) наблюдается одновременно несколькими спутниками, которые улавливают сигналы, которые он передает, и повторно передают их на станции на Земле. Эти станции на Земле демодулируют сообщения радиомаяка, закодированные в этих сигналах, затем измеряют времена поступления (TOA) сигналов, а также сдвиг частоты, которому подвергнуты эти сигналы (FOA, что означает частота поступления) из-за эффекта Доплера, для того чтобы определять положение радиомаяка.
Однако отношение сигнал/шум принятых сигналов не всегда является достаточным, чтобы давать станциям возможность анализировать их, для того чтобы определять местоположение радиомаяка или даже для того чтобы определять содержание его сообщения. Таким образом, даже когда достаточное количество спутников - обычно четыре спутника - было способно передавать сигналы радиомаяка, TOA и FOA не могут определяться для всех этих сигналов, что препятствует определению положения радиомаяка.
Ухудшение отношения сигнал-шум может быть по сути разнородным и, в частности, вызываться окружающей средой радиомаяка во время передачи, распространением в атмосфере, используемым спутником-ретранслятором и окружающей средой станции MEOLUT при приеме.
Одна из целей настоящего изобретения состоит в том, чтобы предложить средство для детектирования сигналов, передаваемых радиомаяком, более надежным и более точным образом, чем у известных систем. Для этой цели предметом изобретения является способ демодуляции сигнала, несущего сообщение, переданное наземным радиомаяком, исполняемый системой, содержащей созвездие спутников, выполненных с возможностью детектирования упомянутого сигнала и его повторения в направлении приемных станций на Земле, и модуль анализа, выполненный с возможностью приема сигналов с упомянутых станций, причем способ отличается тем, что каждая приемная станция передает сигналы, которые она принимает со спутника, в модуль анализа, причем упомянутый модуль перестраивает упомянутые сигналы относительно друг друга по частоте и/или по времени, комбинирует перестроенные сигналы для формирования синтетического сигнала, имеющего улучшенное отношение сигнал/шум, и определяет содержание упомянутого сообщения и/или параметры модуляции упомянутого синтетического сигнала.
По одной из реализаций способа демодуляции согласно изобретению сигнал, передаваемый радиомаяком, начинается с чистой несущей, при этом этап взаимного перестроения сигналов содержит фазу поиска этой чистой несущей посредством поиска разности по частоте между сигналами, принимаемыми станциями, для которой результат корреляции между упомянутыми сигналами становится ближайшим к сигналу чистой несущей.
По одной из реализаций способа демодуляции согласно изобретению сигнал содержит синхрослово, при этом этап взаимного перестроения сигналов содержит фазу поиска разностей по времени и частоте между сигналами посредством выполнения расчета корреляции над синхрословом.
По одной из реализаций способа демодуляции согласно изобретению формируется дубликатный сигнал из определенных параметров демодуляции, и упомянутый дубликатный сигнал сравнивается с сигналами, принятыми станциями на Земле, для того чтобы определять измерения времени и частоты поступления сигнала.
По одной из реализаций способа демодуляции согласно изобретению модуль анализа широковещательно передает на по меньшей мере одну станцию сформированный оптимальный дубликатный сигнал.
По одной из реализаций способа демодуляции согласно изобретению по меньшей мере одна приемная станция принимает сигнал, переданный одним и тем же спутником, через несколько разных антенных каналов, при этом приемная станция выбирает из упомянутых каналов сигнал, снабженный наилучшим отношением сигнал/шум, перед его передачей в модуль анализа.
По одной из реализаций способа демодуляции согласно изобретению модуль анализа широковещательно передает на по меньшей мере одну станцию параметрическую характеристику сигнала радиомаяка (двоичное содержание, индекс модуляции, скорость передачи битов, время нарастания бита, фазовую модель бита) вместо полного сигнала.
Еще одним предметом изобретения является способ определения местоположения передающего сигнал наземного радиомаяка, в котором исполняются этапы способа демодуляции, описанного выше, при этом способ определения местоположения также содержит этап анализа упомянутых параметров для определения местоположения радиомаяка.
Еще одним предметом изобретения является система определения местоположения радиомаяка, передающего сигнал, переданный наземным радиомаяком, отличающаяся тем, что она содержит модуль анализа, выполненный с возможностью исполнения этапов вышеупомянутого способа определения местоположения.
По одной из реализаций системы определения местоположения согласно изобретению система содержит средство для координации станций, выполненное с возможностью программирования и координации ориентаций антенн модулей, при этом модуль анализа совместно расположен с упомянутым средством координации, причем модуль анализа сконфигурирован, чтобы совместно использовать те же самые антенны для передачи на приемные станции, что и средство координации. Этот вариант осуществления дает возможность уменьшить средство передачи, используемое для связи с приемными модулями. Координационный центр иногда обозначается аббревиатурой «MTCF», что означает комплекс координации и слежения MEOLUT.
Согласно еще одному варианту осуществления системы определения местоположения согласно изобретению система содержит средство связи между станциями, и модуль анализа совместно расположен с одной из упомянутых станций.
Согласно еще одному варианту осуществления системы определения местоположения согласно изобретению система содержит средство связи между станциями, и модуль анализа совместно расположен в каждой из упомянутых станций.
Другие признаки станут понятными из прочтения последующего подробного описания, приведенного в качестве неограничивающего примера, данного в свете прилагаемых чертежей, которые представляют собой:
- фиг. 1, иллюстрацию системы согласно изобретению;
- фиг. 2, схему, иллюстрирующую этапы способа согласно изобретению.
Фиг. 1 иллюстрирует систему согласно изобретению. Система 100 содержит созвездие спутников 101, 102, 103, 104, 105, 106, 107, 108, движущихся по средневысотной орбите (на высоте порядка 22000 км), приемные антенны 111, 112, распределенные по разным точкам на поверхности Земли - в этом примере станции MEOLUT (локального терминала пользователя средней земной орбиты), и координационный центр 120 для станций. Более того, в отличие от систем предшествующего уровня техники, система согласно изобретению содержит модуль 150 анализа.
Когда радиомаяк на Земле, например радиомаяк SAR (поисково-спасательный), передает сигналы, они принимаются спутниками созвездия, которые действуют в качестве приемопередатчиков, повторно передавая принятые сигналы на Землю. В качестве примера, радиомаяк SAR принимает форму модуля, передающего периодический сигнал каждые 50 секунд на несущей с частотой, приблизительно равной 406 МГц.
Каждая приемная станция 111, 112 на Земле содержит одну или более антенн 131, 132, 133, 134, 141, 142, 143, 144, которые сконфигурированы, чтобы улавливать сигналы, переданные спутниками созвездия, которые в заданный момент находятся в поле видимости станции. Таким образом, сигналы с радиомаяка на Земле передаются на станции 111, 112 через спутники созвездия. Предпочтительно, по меньшей мере четыре спутника, которые приняли сигналы, переданные радиомаяком, находятся в пределах поля видимости одной и той же станции 111, 112, так что измерения определения местоположения радиомаяка могут выполняться посредством анализа времен поступления сигналов и доплеровского сдвига частоты, испытанного сигналом.
В примере по фиг. 1, если радиомаяк наблюдается первым спутником 101, вторым спутником 102, третьим спутником 103 и пятым спутником 105, местоположение этого радиомаяка может определяться первой станцией 111. Подобным образом, если радиомаяк наблюдается первым спутником 101, пятым спутником 105, седьмым спутником 107 и восьмым спутником 108, местоположение этого радиомаяка может определяться второй станцией.
Координационный центр 120 дает возможность конфигурировать антенны станций 111, 112, с тем чтобы оптимизировать шансы приема сигналов радиомаяка на этих станциях 111, 112. Для передачи команд на станции 111, 112 этот координационный центр 120 также содержит средство связи, дающее ему возможность поддерживать связь со станциями 111, 112.
Модуль 150 анализа содержит вычислительное средство, которое не представлено на чертеже, и средство связи со станциями 111, 112, также не представленное. Модуль 150 анализа способен к приему сигналов и к передаче сигналов на станции 111, 112. Он играет центральную роль в реализации способа согласно изобретению, так как он дает возможность из нескольких сигналов радиомаяка, принятых станциями 111, 112, комбинировать эти сигналы, для того чтобы создавать точную модель сигнала, переданного радиомаяком. Преимущественно, модуль 150 анализа совместно использует средство связи, такое как антенны, с координационным центром 120, с тем чтобы уменьшать объем оборудования, необходимого для реализации способа согласно изобретению.
Фиг. 2 иллюстрирует этапы способа согласно изобретению. На первом этапе 201, сигналы с радиомаяка, полученные с разных спутников 101, 102, 103, 104, 105, 106, 107, 108, действующих в качестве ретранслятора, детектируются станцией или станциями 111, 112.
Каждый из сигналов подвержен влиянию характерного временного сдвига, в частности на расстоянии между станцией 111, 112, которая его принимала, и спутником, который его передавал, и сдвига частоты, также называемого доплеровским сдвигом, который в частности зависит от скорости смещения спутника, который передавал сигнал, относительно станции 111, 112, которая принимала его. Поскольку положение спутников-ретрансляторов и положение станций 111, 112 известны, эти задержки и сдвиги частоты известны. Однако задержки и сдвиги частоты, которые подобным образом возникают в тракте восходящей линии связи между радиомаяком и спутником, неизвестны, поскольку неизвестно положение радиомаяка.
На втором этапе 202, эти станции 111, 112 корректируют сигнал задержки и доплеровского сдвига, созданный каналом нисходящей линии связи, чтобы воссоздать сигнал таким, каким он принимался на борту спутника, только со сдвигами из-за канала восходящей линии связи. Эти станции затем передают эти сигналы в модуль 150 анализа.
На третьем этапе 203, модуль 150 анализа взаимно перестраивает упомянутые сигналы.
В качестве примера, форма волны выбранного сигнала является формой волны сигналов, переданных радиомаяком SAR. Этот тип сигнала начинается с сигнала в виде чистой частоты, которая сопровождается синхрословом, которое сопровождается содержанием сообщения, несомого сигналом. Согласно первому этапу 231 перестроения чистая частота переданного сигнала отыскивается посредством корреляции принятых сигналов друг с другом, в области поиска сдвигов частоты. Сдвиг частоты, соответствующий корреляции, для которой чистая частота появляется наиболее отчетливо, указывает доплеровскую разность между сигналами.
Сложение сигналов, повторно переданных несколькими спутниками и/или несколькими станциями, дает возможность уменьшать шум, поскольку последние фактически являются по меньшей мере частично независимыми. Фактически, если промежуточный спутник отличен, направление передачи и атмосферное распространение восходящей линии связи является другим, а потому декоррелированным; если спутник идентичен, но приемная станция является иной, такая же декорреляция будет в это время появляться во время фазы нисходящей линии связи сигнала. Если отличны и спутник, и станция, эти два выигрыша складываются друг с другом.
Проверка 232 затем исполняется для оценки, дал ли вышеупомянутый способ возможность надежно определять чистую частоту, используемую в сигнале, передаваемом радиомаяком. Например, если уровень корреляционного пика находится ниже предварительно определенного порогового значения, считается, что разность по частоте между сигналами определить невозможно. Если эту чистую частоту было невозможно определить, исполняется второй этап 233, чтобы вновь искать разности по времени и частоте между сигналами по синхрослову. По завершении этого этапа 233 взаимные разности по времени и частоте сигналов определены, так что становится возможным перестраивать их.
На четвертом этапе 204, перестроенные сигналы агрегируются логически последовательным образом по времени и по частоте, чтобы выработать результирующий сигнал, для которого увеличено отношение сигнал/шум. По одной из реализаций способа согласно изобретению только часть, соответствующая содержанию сообщения, переносимого сигналом, учитывается на этом этапе агрегации (в частности, не принимая во внимание синхрослово). По завершении этого этапа, таким образом, есть сигнал, несущий сообщение, для которого увеличено отношение сигнал/шум.
На пятом этапе 205, вышеупомянутый результирующий сигнал демодулируется, или определяются по меньшей мере его параметры модуляции, этими параметрами, например, являются время нарастания бита (или в более общем смысле, характеристическая форма битов), индекс модуляции и скорость передачи битов.
На шестом этапе 206, формируется дубликат демодулированного сигнала. Этот дубликат имеет форму, близкую к сигналу, передаваемому радиомаяком; в идеале, он соответствует точной форме сигнала, передаваемого радиомаяком.
На седьмом этапе 207, дубликат демодулированного сигнала сравнивается с сигналами, принятыми станциями 111, 112, с тем чтобы определять корреляцию (опережение-запаздывание) времени поступления (TOA) и сдвига частоты (или FOA, что означает частота поступления) сигналов, принимаемых на каждой из станций, для каждого спутника в поле видимости этой станции. Таким образом, по завершении этого этапа получена пара (TOA, FOA) для каждой пары (станции, видимого спутника).
На восьмом этапе 208, вышеупомянутые времена поступления и доплеровские сдвиги анализируются для определения положения радиомаяка согласно методикам, известным специалисту в данной области техники.
Согласно примерному способу, описанному на фиг. 2, все этапы, начиная с этапа 203 перестроения, выполняются в модуле 150 анализа. По еще одной реализации способа согласно изобретению операции обработки могут быть по-другому распределены между модулем 150 анализа и станциями. В частности, если первая станция 111 преуспела в демодуляции сигнала, не требуя этапа 203 модуля 150 анализа, сигнал, тем не менее, может передаваться в модуль 150 анализа, который, посредством прибавления к нему соответствующего сигнала, принятого со второй станции 112, будет получать дубликат лучшего качества, а потому будет способен получать большую точность на последующих этапах.
Подобным образом, по одной из реализаций способа согласно изобретению, можно, для того чтобы минимизировать полосу пропускания, организовывать, чтобы станции больше не передавали сигналы в модуль анализа, а только параметрическую характеристику - демодулированное сообщение или характеристики дубликата - характеристику модуляции, скорость передачи битов, индекс, фазовую модель (например, в виде последовательности фазовых отсчетов или характеристического полинома, такого как Фурье, Чебышева, Лагранжа). В этом случае, станция использует параметры, принятые с нескольких станций для создания идеального набора параметров, дающего станциям возможность самим восстанавливать дубликат из этих параметров.
Должно быть отмечено, что одна и та же станция 111, 112 может принимать одни и те же сигналы с одного и того же спутника на нескольких разных антеннах, если эти антенны сконфигурированы (например, правильно ориентированы), чтобы быть способными улавливать сигналы с этого спутника. В этом случае преимущественно выполняется выбор сигнала, который имеет наилучшее отношение сигнал/шум, для восстановления дубликата.
По одной из реализаций способа согласно изобретению обработка также может различаться по станциям 111, 112. Например, в случае, где модуль 150 анализа близко связан с двумя станциями 111, 112 (то есть соединен с линией связи, дающей возможность обмениваться сигналам), но менее близко связан с третьей станцией (не представлена) (то есть соединен с линией связи, которая предоставляет возможность обмениваться только параметрами), он может передавать на эту третью станцию параметры дубликата, полученного за счет измерений на первых двух станциях 111, 112 (или по меньшей мере наилучшего из дубликатов, полученных на первых двух станциях).
По одной из реализаций способа согласно изобретению модуль 150 анализа встроен непосредственно в одну из приемных станций 111, 112, или в каждую из станций 111, 112, так что каждая станция 111, 112 может реализовывать этапы 203-208, описанные выше, комбинируя сигналы, которые она приняла сама, с сигналами, принятыми другими станциями, которые они повторно передали на нее.
Способ согласно изобретению дает возможность улучшать детектирование и улучшать точность определения местоположения радиомаяков, таких как радиомаяки SAR (поисково-спасательные), за счет операций обработки, выполняемых модулем анализа, собирающим сигналы, принятые несколькими станциями, в частности, посредством использования избыточности сигналов, полученных в пределах видимости одного и того же радиомаяка несколькими приемными станциями на Земле.
Система согласно изобретению предлагает несколько преимуществ. В системе согласно предшествующему уровню техники, если отношение сигнал/шум на станциях является недостаточным, то местоположение радиомаяка не определяется никакой станцией, тогда как с системой согласно настоящему изобретению можно, тем не менее, добиваться успешного детектирования посредством комбинирования дубликатов. К тому же, независимо от решения, используемого для детектирования (индивидуальная обработка на станции или комбинационная обработка), комбинация сигналов в любом случае дает возможность улучшать качество дубликатов сигналов и качество измерений TOA и FOA, а потому и определения местоположения.
Claims (12)
1. Способ демодуляции сигнала, несущего сообщение, переданное наземным радиомаяком, исполняемый системой, содержащей созвездие спутников (101, 102, 103, 104, 105, 106, 107, 108), выполненных с возможностью детектирования упомянутого сигнала и его повторения в направлении приемных станций (111, 112) на Земле, и модуль (150) анализа, выполненный с возможностью приема сигналов с упомянутых станций (111, 112), причем упомянутый способ отличается тем, что каждая приемная станция (111, 112) передает (202) сигналы, которые она принимает со спутника, в модуль (150) анализа, причем упомянутый модуль (150) перестраивает (203) упомянутые сигналы относительно друг друга по частоте и/или по времени, комбинирует (204) перестроенные сигналы для формирования синтетического сигнала, имеющего улучшенное отношение сигнал/шум, и определяет (205) содержание упомянутого сообщения и/или параметры модуляции упомянутого синтетического сигнала.
2. Способ демодуляции по п. 1, в котором сигнал, переданный радиомаяком, начинается с чистой несущей, причем этап взаимного перестроения (203) сигналов содержит фазу (231), на которой выполняют поиск упомянутой чистой несущей посредством того, что выполняют поиск разности по частоте между сигналами, принимаемыми станциями (111, 112), для которой результат корреляции между упомянутыми сигналами становится ближайшим к сигналу чистой несущей.
3. Способ демодуляции по п. 1 или 2, в котором сигнал содержит синхрослово, причем этап взаимного перестроения (203) сигналов содержит фазу (232), на которой выполняют поиск разностей по времени и частоте между сигналами посредством того, что выполняют расчет корреляции над синхрословом.
4. Способ демодуляции по любому одному из предыдущих пунктов, в котором формируют (206) дубликатный сигнал из определенных параметров (205) демодуляции и в котором упомянутый дубликатный сигнал сравнивают с сигналами, принятыми станциями (111, 112) на Земле, для того чтобы определять измерения времени и частоты поступления сигнала.
5. Способ демодуляции по п. 4, в котором модуль (150) анализа широковещательно передает на по меньшей мере одну станцию (111, 112) сформированный оптимальный дубликат.
6. Способ демодуляции по любому одному из предыдущих пунктов, в котором по меньшей мере одна приемная станция (111, 112) принимает сигнал, переданный одним и тем же спутником, через определенное количество разных антенных каналов, причем приемная станция (111, 112) выбирает из упомянутых каналов сигнал, снабженный наилучшим отношением сигнал/шум, перед его передачей в модуль (150) анализа.
7. Способ демодуляции по одному из пп. 1-5, в котором модуль (150) анализа широковещательно передает на по меньшей мере одну станцию параметрическую характеристику сигнала радиомаяка, в том числе двоичное содержание, индекс модуляции, скорость передачи битов, время нарастания бита, фазовую модель бита, вместо полного сигнала.
8. Способ определения местоположения передающего сигнал наземного радиомаяка, в котором исполняют этапы способа демодуляции по любому одному из предыдущих пунктов, причем способ содержит этап, на котором анализируют упомянутые параметры для определения местоположения радиомаяка.
9. Система определения местоположения радиомаяка, передающего сигнал, переданный наземным радиомаяком, отличающаяся тем, что она содержит модуль (150) анализа, выполненный с возможностью исполнения этапов способа определения местоположения по п. 8.
10. Система определения местоположения по п. 9, причем система содержит средство (120) для координации станций (111, 112), выполненное с возможностью программирования и координирования ориентаций антенн модулей (111, 112), причем модуль (150) анализа совместно расположен с упомянутым средством (120) координации, причем модуль (150) анализа сконфигурирован, чтобы совместно использовать те же самые антенны для передачи на приемные станции (111, 112), что и средство (120) координации.
11. Система определения местоположения по п. 9, причем система содержит средство связи между станциями (111, 112), причем модуль (150) анализа совместно расположен с одной из упомянутых станций.
12. Система определения местоположения по п. 9, причем система содержит средство связи между станциями (111, 112), причем модуль (150) анализа совместно расположен в каждой из упомянутых станций.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1103284A FR2982033B1 (fr) | 2011-10-26 | 2011-10-26 | Procede de traitement coordonne de signaux emis par des balises |
FR1103284 | 2011-10-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2012145677A RU2012145677A (ru) | 2014-04-27 |
RU2607475C2 true RU2607475C2 (ru) | 2017-01-10 |
Family
ID=47022590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012145677A RU2607475C2 (ru) | 2011-10-26 | 2012-10-25 | Способ координированной обработки сигналов, передаваемых радиомаяками |
Country Status (6)
Country | Link |
---|---|
US (1) | US9250309B2 (ru) |
EP (1) | EP2587691B1 (ru) |
CA (1) | CA2793331C (ru) |
ES (1) | ES2718643T3 (ru) |
FR (1) | FR2982033B1 (ru) |
RU (1) | RU2607475C2 (ru) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3023379B1 (fr) * | 2014-07-04 | 2019-03-22 | Thales | Localisation d'une balise de detresse |
US10416278B2 (en) | 2015-02-09 | 2019-09-17 | Concentric Real Time, Llc | Radio receiver for determining location of a signal source |
FR3046313B1 (fr) * | 2015-12-23 | 2019-05-31 | Thales | Solution a repartition spatiale massive pour constellation telecom |
JP6780357B2 (ja) * | 2016-08-08 | 2020-11-04 | 富士ゼロックス株式会社 | 情報処理装置及び情報処理プログラム |
CN110429974B (zh) * | 2019-08-07 | 2020-05-12 | 清华大学 | 基于回归轨道星座的快速对准方法和装置 |
CN114142913B (zh) * | 2021-11-30 | 2024-01-30 | 中电科(宁波)海洋电子研究院有限公司 | 一种增强返向链路消息接收的方法及信标 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996041494A1 (en) * | 1995-06-07 | 1996-12-19 | Globalstar L.P. | Accounting for a satellite communication system |
RU2253946C2 (ru) * | 2003-08-15 | 2005-06-10 | Закрытое акционерное общество "Теленорд Холд" | Система спутниковой связи для наблюдения за подвижными и стационарными объектами, передачи телефонных сообщений и данных |
RU77738U1 (ru) * | 2008-05-19 | 2008-10-27 | Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Полет" | Система радиосвязи с подвижными объектами |
US20100005951A1 (en) * | 2005-05-12 | 2010-01-14 | Ipg Electronics 504 Limited | Method for synchronizing at least one multimedia peripheral of a portable communication and corresponding portable communication device cross reference to related applications(s) |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1121488A (en) * | 1978-02-07 | 1982-04-06 | Viktor A. Zhilin | System for locating mobile objects in distress |
US5233626A (en) * | 1992-05-11 | 1993-08-03 | Space Systems/Loral Inc. | Repeater diversity spread spectrum communication system |
US5859874A (en) * | 1994-05-09 | 1999-01-12 | Globalstar L.P. | Multipath communication system optimizer |
US5926467A (en) * | 1997-01-03 | 1999-07-20 | General Electric Company | Method and apparatus for doppler based multiple access communication control |
US6317077B1 (en) * | 1999-02-22 | 2001-11-13 | Hughes Electronics Corporation | Method and system of determining user terminal position using multiple satellites |
EP1033582A1 (en) * | 1999-03-04 | 2000-09-06 | ICO Services Ltd. | Mobile station position determination in a satellite mobile telephone system |
US6701127B1 (en) * | 1999-12-16 | 2004-03-02 | General Dynamics Decision Systems, Inc. | Burst communications method and apparatus |
US7706431B2 (en) * | 2005-06-30 | 2010-04-27 | Nokia Corporation | System and method for providing optimized receiver architectures for combined pilot and data signal tracking |
KR101386032B1 (ko) * | 2010-03-12 | 2014-04-16 | 한국전자통신연구원 | 비상 위치 지시용 무선 표지 단말기 및 그의 동작 상태 감시 장치와 방법 |
FR2966606B1 (fr) * | 2010-10-22 | 2012-11-02 | Thales Sa | Procede et systeme de geo-localisation d'une radio-balise dans un systeme d'alerte. |
-
2011
- 2011-10-26 FR FR1103284A patent/FR2982033B1/fr not_active Expired - Fee Related
-
2012
- 2012-10-24 ES ES12189684T patent/ES2718643T3/es active Active
- 2012-10-24 US US13/659,538 patent/US9250309B2/en active Active
- 2012-10-24 EP EP12189684.9A patent/EP2587691B1/fr active Active
- 2012-10-25 CA CA2793331A patent/CA2793331C/en active Active
- 2012-10-25 RU RU2012145677A patent/RU2607475C2/ru active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996041494A1 (en) * | 1995-06-07 | 1996-12-19 | Globalstar L.P. | Accounting for a satellite communication system |
RU2253946C2 (ru) * | 2003-08-15 | 2005-06-10 | Закрытое акционерное общество "Теленорд Холд" | Система спутниковой связи для наблюдения за подвижными и стационарными объектами, передачи телефонных сообщений и данных |
US20100005951A1 (en) * | 2005-05-12 | 2010-01-14 | Ipg Electronics 504 Limited | Method for synchronizing at least one multimedia peripheral of a portable communication and corresponding portable communication device cross reference to related applications(s) |
RU77738U1 (ru) * | 2008-05-19 | 2008-10-27 | Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Полет" | Система радиосвязи с подвижными объектами |
Also Published As
Publication number | Publication date |
---|---|
US20130106656A1 (en) | 2013-05-02 |
EP2587691B1 (fr) | 2019-01-09 |
RU2012145677A (ru) | 2014-04-27 |
EP2587691A1 (fr) | 2013-05-01 |
US9250309B2 (en) | 2016-02-02 |
FR2982033A1 (fr) | 2013-05-03 |
CA2793331A1 (en) | 2013-04-26 |
CA2793331C (en) | 2019-11-05 |
ES2718643T3 (es) | 2019-07-03 |
FR2982033B1 (fr) | 2013-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2607475C2 (ru) | Способ координированной обработки сигналов, передаваемых радиомаяками | |
CN1833178B (zh) | 在位置网络内提供辅助数据的系统和方法 | |
US20200225359A1 (en) | System and method for detecting false global navigation satellite system satellite signals | |
US6636744B1 (en) | Obtaining pilot phase offset time delay parameter for a wireless terminal of an integrated wireless-global positioning system | |
CN100578252C (zh) | 定位方法和装置 | |
CN106908817B (zh) | 辅助导航定位方法及系统 | |
US11496866B2 (en) | Satellite locating and communication method and system for a fixed radio terminal on the ground using at least one non-geostationary satellite | |
US7602334B1 (en) | Method and system of a mobile subscriber estimating position | |
US20070236387A1 (en) | Method of optimization of processing of location data in the presence of a plurality of satellite positioning constellations | |
US7432852B2 (en) | Method of synchronizing base stations of a terrestrial cellular communication network | |
US20070241960A1 (en) | Enhancement of gnss position determination in poor signal propagation environments | |
US20100149032A1 (en) | System for determining position using two way time transfer signals | |
US20180003827A1 (en) | TODA-Based positioning system using terrestrial wireless signal sources | |
CN104380141B (zh) | 用于确定gnss接收器的位置的方法和装置 | |
WO2020041383A1 (en) | System and method for detecting false global navigation satellite system satellite signals | |
CN100381835C (zh) | 基于数字广播电视信号的无线电组合定位方法 | |
Ge et al. | Experimental validation of single base station 5G mm Wave positioning: Initial findings | |
Grayver et al. | Position and navigation using Starlink | |
RU2708383C2 (ru) | Способ обработки сигналов дальности с модулированной смещенной несущей | |
Emenonye et al. | Minimal configurations to achieve 3D positioning with unsynchronized LEO satellites,” | |
García-Molina et al. | Multi-layer PNT solutions for harsh user conditions | |
CN115001530B (zh) | 多径判决方法及装置、存储介质、终端设备 | |
US20230417858A1 (en) | Wireless communication systems and methods | |
Neinavaie | Cognitive sensing and navigation with unknown terrestrial and LEO satellite signals | |
US20140105099A1 (en) | System for synchronizing a satellite pointing device |