[go: up one dir, main page]

RU2606229C1 - Сложный гафнат лития-лантана в качестве люминесцентного материала для преобразования монохроматического излучения лазера и способ его получения - Google Patents

Сложный гафнат лития-лантана в качестве люминесцентного материала для преобразования монохроматического излучения лазера и способ его получения Download PDF

Info

Publication number
RU2606229C1
RU2606229C1 RU2015133421A RU2015133421A RU2606229C1 RU 2606229 C1 RU2606229 C1 RU 2606229C1 RU 2015133421 A RU2015133421 A RU 2015133421A RU 2015133421 A RU2015133421 A RU 2015133421A RU 2606229 C1 RU2606229 C1 RU 2606229C1
Authority
RU
Russia
Prior art keywords
temperature
lithium
luminescent material
lanthanum
hafnate
Prior art date
Application number
RU2015133421A
Other languages
English (en)
Inventor
Яна Викторовна Бакланова
Лидия Григорьевна Максимова
Владимир Георгиевич Зубков
Ольга Андреевна Липина
Татьяна Александровна Денисова
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Priority to RU2015133421A priority Critical patent/RU2606229C1/ru
Application granted granted Critical
Publication of RU2606229C1 publication Critical patent/RU2606229C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1691Solid materials characterised by additives / sensitisers / promoters as further dopants
    • H01S3/1698Solid materials characterised by additives / sensitisers / promoters as further dopants rare earth

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

Изобретение относится к новым соединениям класса сенсибилизированных люминофоров на основе неорганических кристаллических соединений, а именно к сложному гафнату лития-лантана состава Li7La3-x-y-z-nNdxHoyErzDynHf2O12, где x=2.5⋅10-2-1⋅10-1, y=1.6⋅10-7-4.7⋅10-7, z=1.5⋅10-6, n=1.2⋅10-6-4.7⋅10-6. Также предложен его способ получения. Полученный состав используется в качестве люминесцентного материала для преобразования монохроматического излучения лазера с длиной волны 808 нм в серию эмиссионных линий 2-2.3 мкм, 2.5-2.9 мкм, 3.1-3.35 мкм. 2 н.п. ф-лы, 3 ил., 3 пр.

Description

Изобретение относится к новым соединениям класса сенсибилизированных люминофоров на основе неорганических кристаллических соединений, конкретно - к сложным активированным РЗЭ гафнатам лития-гафния, и может быть использовано для преобразования возбуждающего монохроматического излучения лазера с длиной волны 808 нм в серию эмиссионных линий 2-2.3 мкм, 2.5-2.9 мкм, 3.1-3.35 мкм коротковолнового (1-3 мкм) ИК-диапазона.
Известны в качестве люминесцентного материала с излучением в ближнем и среднем ИК диапазоне теллуритные стекла, допированные ионами эрбия, гольмия и неодима, состава 70ТеО2-20ZnO-9.0СаО-0.6Er2O3-0.1Ho2O3-0.3Nb2O3 (Y. Zhang, L. Sun, Y. Chang, W. Li, C. Jiang. «Multiband infrared luminescence of Er3+-Ho3+-Nd3+/Tm3+ - codoped telluride glasses», Front. Optoelectron. 2014, 7(1):74-76). Материал интенсивно возбуждается в области ИК с длиной волны 808 нм и генерирует одновременное излучение с длинами волн 1.53, 1.80, 2.10, 2.70 и 3.00 мкм. Известный люминесцентный материал может быть получен путем расплава исходных компонентов в алундовом тигле при 800-900°С в электрической печи сопротивления с нагревателями из карбида кремния, выдержкой расплавленного материала в течение 3 ч при 100°С и охлаждением.
Недостатком известного материала является использование при синтезе в качестве основного компонента оксида теллура, являющегося токсичным соединением (ПДК в воздухе ~0.0070.01 мг/м3).
Известен люминесцентный материал на основе кристалла со структурой граната, состав которого выражается формулой (A,Но)3B2C3O12, где A - по крайней мере один из элементов группы Y, La, Ce, Gb, Lu, Sc, Tb, Eu; В - один из элементов группы Sc, Ga, In, Lu, Al, Gb, Yb, Y, Cr, Tb, Eu; C - Ga или смесь Ga и Al, причем количество Al не более половины смеси, при этом содержание Ho составляет от 0.025 ф.ед. до 2.95 ф.ед., и дополнительно материал содержит по крайней мере один из элементов группы Li, Be, В, Na, Са, Mg, Si, K, Ti, V, Μn, Fe, Co, Ni, Cu, Zn, Ge, Rb, Sr, Zr, Nb, Mo, W, Ta, Hf, Bi (патент RU 2095900, МПК H01S 3/16, 1996). Лазер генерирует на нескольких штарковских подуровнях перехода 5I65I7 (переходы иона Ho3+). Длины волн генерации составляют: 2.842; 2.888; 2.926; 2.973; 2.973; 3.057 мкм.
Материал может быть получен путем отжига смеси компонентов в платиновом тигле в течение 10 ч при 1200°С расплава таблеток в иридиевом тигле в герметичной камере в атмосфере 98 об. N2 + 2 об. О2 с последующим вытягиванием кристалла из расплава объемом 300 см3 со скоростью 4 мм/ч. и частотой вращения кристалла 40 об/мин и после отрыва выращенного кристалла от расплава кристалл постепенным охлаждением до комнатной температуры в течение 40 ч.
Недостатком известного люминесцентного материала является то, что стимулированное излучение было получено только в диапазоне 2.80-3.1 мкм. Синтез известного материала трудоемок и основан на методе вытягивания из расплава, что требует длительного высокотемпературного отжига и длительного охлаждения.
Известен в качестве лазерного материала с излучением в среднем ИК-диапазоне материал на основе смеси различных компонентов с мольными процентами: (55-x)%GeO2-20%Al2O3-20%BaF2-4%Na2O-1%ErF3-x%NdF3 при x=0.5% (G. Bai, L. Tao, K. Li, L. Hu, Y. Hong Tsang. «Enhanced light emission near 2.7 um from Er-Nd co-doped germanate glass», Optical Materials 35 (2013) 1247-1250). Материал имеет диапазон свечения в интервале длин волн 2.5-2.9 мкм с пиком при 2.7 мкм (переход 4I11/24I13/2 иона Er3+) при возбуждении 808 нм диодным лазером. Известный материал может быть получен путем расплава смеси исходных компонентов в тигле из сплава Pt-Au при 1300°С в течение 30 мин с последующей выдержкой расплавленного материала при 500°С в течение 2 ч.
Недостатком известного лазерного материала является получение стимулированного излучения только при одной длине волны 2.7 мкм. Также недостатком является высокотемпературный синтез материала.
Таким образом, перед авторами стояла задача разработать состав люминесцентного материала, позволяющий расширить диапазон преобразования монохроматического излучения лазера ближнего ИК-диапазона в излучение коротковолнового ИК-диапазона.
Поставленная задача решена путем использования нового химического соединения сложного гафната лития-лантана со структурой граната тетрагональной модификации состава Li7La3-x-y-z-nNdxHoyErzDynHf2O12, где x=2.5⋅10-2-1⋅10-1, y=1.6⋅10-7-4.7⋅10-7, z=1.5⋅10-6, n=1.2⋅10-6-4.7⋅10-6 в качестве люминесцентного материала для преобразования монохроматического излучения лазера с длиной волны 808 нм в серию эмиссионных линий 2-2.3 мкм, 2.5-2.9 мкм, 3.1-3.35 мкм.
Поставленная задача также решена в способе получения люминесцентного материала состава Li7La3-x-y-z-nNdxHoyErzDynHf2O12, где x=2.5⋅10-2-1⋅10-1, y=1.6⋅10-7-4.7⋅10-7, z=1.5⋅10-6, n=1.2⋅10-6-4.7⋅10-6, включающем получение исходной смеси стехиометрических количеств оксидов соответствующих металлов, предварительно прокаленных при температуре 900-910°С, и карбоната лития, взятого с избытком 7-10%, ее интенсивное перемешивание и истирание с добавлением этилового спирта, прессование, нагревание до температуры 900-910°С со скоростью нагрева 30-35 град/мин и выдержкой при этой температуре в течение 5-5.2 часа, после чего полученный продукт быстро вынимают и помещают в жидкий азот с выдержкой 1-2 мин, затем выдерживают в сухой атмосфере при нормальных условиях, после чего продукт перешихтовывают, прессуют, нагревают до температуры 960-980°С со скоростью нагрева 30-35 град/мин, выдерживают при этой температуре 5-5.2 часа и снова помещают в жидкий азот с выдержкой 1-2 мин.
В настоящее время из патентной и научно-технической литературы не известен люминесцентный материал предлагаемого состава с сенсибилизатором из Nd3+ и активаторами из Ho3+, Er3+, Dy3+, позволяющий преобразование монохроматического излучения с длиной волны 808 нм в серию эмиссионных линий 2-2.3 мкм, 2.5-2.9 мкм, 3.1-3.35 мкм, а также способ его получения.
Один из традиционных методов преобразования ближнего ИК-излучения в излучение коротковолнового ИК-диапазона основан на использовании эффектов возбуждения и девозбуждения активатора, находящегося в оптической матрице. При возбуждении активатор переходит из основного состояния в возбужденное, далее следует безызлучательная релаксация из возбужденного состояния на метастабильное состояние и, наконец, излучательный переход из метастабильного состояния в основное состояние с излучением коротковолнового ИК-диапазона. Одним из эффективных активаторов при таких процессах является Но3+, Er3+, Dy+3. Однако в этом случае для генерации излучения, например, при длине волны 2.7 мкм (переход 4I11/24I13/2 иона Er3+) необходимо увеличить время жизни на верхнем уровне 4I11/2, что достигается за счет увеличения концентрации Er вплоть до 30 ат. %. В лазерных активных средах, имеющих несколько метастабильных уровней, возможна генерация на нескольких лазерных каналах. В частности, возможна ситуация, когда конечный уровень одного канала является начальным уровнем другого или эти уровни связаны безызлучательной релаксацией. Такая схема генерации называется каскадной.
Авторами предлагаемого технического решения в ходе экспериментальных исследований свойств нового химического соединения сложного гафната лития-лантана со структурой граната состава Li7La3-x-y-z-nNdxHoyErzDynHf2O12 обнаружено, что Nd эффективно поглощает излучение лазера и в данной оптической матрице выступает в качестве сенсибилизатора редкоземельных ионов Ho, Er, Dy (см. фиг. 1). Для Nd3+ наиболее эффективно проводить возбуждение в полосу поглощения 4F5/2 излучением с длиной волны порядка 808 нм. Переход с возбужденного уровня 4F5/2 на метастабильный уровень 4F3/2 является безызлучательным, а переход с уровня 4F3/2 на уровни 4I15/2, 4I13/2, 4I11/2 сопровождается появлением серии линий в ИК-диапазоне с максимумами в области длин волн 1.7-1.9 мкм, 1.25-1.45 мкм, 1.00-1.13 мкм соответственно. Переход с уровня 4F3/2 на уровень 4I9/2 с пиковым значением излучения при ~0.9 мкм не входит в диапазон измеренных длин волн.
Одновременно из-за небольшой разницы в энергии между уровнями Nd3+ (4F3/2) и Er3+ (4I9/2) энергия с возбужденного уровня Nd3+ (4F3/2) переносится на уровень Er3+ (4I9/2) (ΕΤ1, см. фиг. 1). Переход с возбужденного уровня Er3+ (4I9/2) на метастабильный уровень Er3+ (4I11/2) является безызлучательным, а переход с уровня иона Er3+ 4I11/2 на уровень 4Ι13/2 сопровождается появлением линии в коротковолновом ИК-диапазоне с максимумом в области длин волн 2.5-2.9 мкм. Из-за малого различия в энергиях между уровнями Er3+ (4I13/2), Ho3+ (5I7) и Dy3+ (6Н11/2) энергия с уровня Er3+ (4I13/2) переносится на уровни Но3+ (5I7) и Dy3+ (6Н11/2) (ЕТ2 и ЕТ3, см. фиг. 1). Переход с возбужденного уровня Dy3+ (6Н11/2) на метастабильный уровень Dy3+ (6Н13/2) является безызлучательным, а переходы с возбужденных уровней Но3+ (5Ι7) и Dy3+ (6Н13/2) на уровни Но3+ (5I8) и Dy3+ (6Н15/2) соответственно сопровождаются появлением серии линий в коротковолновом и среднем ИК-диапазоне с максимумами в области длин волн 2-2.3 мкм и 3.1-3.35 мкм.
Авторами впервые было получено новое химическое соединение - твердый раствор состава Li7La3-x-y-z-nNdxHoyErzDynHf2O12, где x=2.5⋅10-2-1⋅10-1, y=1.6⋅10-7-4.7⋅10-7, z=1.5⋅10-6, n=1.2⋅10-6-4.7⋅10-6.
Исследования, проведенные авторами, позволили сделать вывод о том, что твердый раствор состава Li7La3-x-y-z-nNdxHoyErzDynHf2O12, где х=2.5⋅10-2-1⋅10-1, y=1.6⋅10-7-4.7⋅10-7, z=1.5⋅10-6, n=1.2⋅10-6-4.7⋅10-6, обладает наилучшими люминесцентными свойствами, которые позволяют использовать его в качестве люминесцентного материала для преобразования монохроматического излучения с длиной волны 808 нм в серию эмиссионных линий 2-2.3 мкм, 2.5-2.9 мкм, 3.1-3.35 мкм (см. фиг. 2, где показаны концентрационные зависимости эмиссии в твердых растворах Li7La3-x-y-z-nNdxHoyErzDynHf2O12 при возбуждении излучением с λex=808 нм). Концентрационные зависимости интенсивности люминесценции твердых растворов Li7La3-x-y-z-nNdxHoyErzDynHf2O12 имеют максимум в области x=2.5⋅10-2-1⋅101 (см. фиг. 3, где показаны концентрационные зависимости интенсивности люминесценции твердых растворов Li7La3-x-y-z-nNdxHoyErzDynHf2O12 при а - 1.043 мкм (переход 4F3/24I11/2 иона Nd3+), б - 1.318 мкм (переход 4F3/24I13/2 иона Nd3+), в - 1.846 мкм (переход 4F3/24I15/2 иона Nd3+), г - 2.106 мкм (переход 5I75I8 иона Но3+), д - 2.658 мкм (переход 4I11/24I13/2 иона Er3+), е - 3.168 мкм (переход 6Η13/26H15/2 иона Dy3+)). При x<2.5⋅10-2 происходит «разгорание» люминесценции, при x>1⋅10-1 наступает концентрационное тушение.
Как показали исследования, проведенные авторами, нагрев смеси исходных реактивов до 900-910°С и выдержка при этой температуре в течение 5-5.2 часов приводят к началу формирования фаз Li7La3-x-y-z-nNdxHoyErzDynHf2O12 тетрагональной модификации оксида лантана (La2O3) и гафната лантана (La2Hf2O7). Дальнейший нагрев при более высокой температуре (960-980°С) с кратковременной обработкой в жидком азоте вынутых из печи образцов приводит к полному образованию соединений состава: Li7La3-x-y-z-nNdxHoyErzDynHf2O12 тетрагональной модификации без примесей оксида лантана (La2O3), гафната лития (Li2HfO3) и гафната лантана (La2Hf2O7). Нагрев до температур ниже 900°С и выдержка менее 5 часов недостаточны для начала формирования фазы Li7La3-x-y-z-nNdxHoyErzDynHf2O12 и приводят к образованию смеси гафната лантана (La2Hf2O7), оксида лантана (La2O3) и карбоната лития (Li2CO3). Нагрев до температур выше 980°С и выдержка более 5.2 часов приводят к образованию примеси гафната лития (Li2HfO3) и гафната лантана (La2Hf2O7). Карбонат лития (Li2CO3) взят с избытком 7-10% с учетом летучести Li при нагреве, взятие избытка меньше 7% приводит к формированию примесей гафната лития (Li2HfO3) и гафната лантана (La2Hf2O7), взятие избытка более 10% приводит к необоснованному перерасходу карбоната лития. Предварительное прессование и выдержка в жидком азоте в течение 1-2 мин термообработанных таблетированных образцов, вынутых из печи, препятствуют формированию указанных примесей, легко образуемых при медленном охлаждении порошкообразной смеси. Для получения чистых образцов, а именно предотвращения возможности вхождения алюминия в состав соединения при контакте стенок алундового тигля с образцом и образования примесей La2Hf2O7 и Li2HfO3 на поверхности таблеток, нами было предпринято прокладывание дополнительных тонких таблеток диаметром также 10 мм и толщиной 2-2.5 мм на дно алундового тигля и сверху основного таблетированного образца.
Таким образом, авторами предлагается новое химическое соединение состава Li7La3-x-y-z-nNdxHoyErzDynHf2O12, где x=2.5⋅10-2-1⋅10-1, y=1.6⋅10-7-4.7⋅10-7, z=1.5⋅10-6, n=1.2⋅10-6-4.7⋅10-6, в качестве люминесцентного материала, позволяющего преобразовывать монохроматическое излучение с длиной волны 808 нм в серию эмиссионных линий 2-2.3 мкм, 2.5-2.9 мкм, 3.1-3.35 мкм, и способ его получения.
Предлагаемый сложный гафнат лития-лантана со структурой тетрагонального граната состава Li7La3-x-y-z-nNdxHoyErzDynHf2O12, где x=2.5⋅10-2-1⋅10-1, y=1.6⋅10-7-4.7⋅10-7, z=1.5⋅10-6, n=1.2⋅10-6-4.7⋅10-6, может быть получен следующим образом. В качестве исходных соединений для синтеза используют прокаленные при 850-900°С в течение 4-5 часов оксиды лантана (La2O3), неодима (Nd2O3) квалификации (х.ч.), в которых присутствуют в виде примесей Но3+, Er3+, Dy3+ в количестве 1⋅10-6-4.5⋅10-3 масс. %, оксид гафния (Hf2O3) (ч.д.а.), карбонат лития (Li2CO3) (х.ч.). Взвешенные в стехиометрическом количестве навески оксида гафния перемешивают с прокаленными оксидами лантана, неодима и карбоната лития, взятого с избытком 7-10% с учетом летучести Li при нагреве. Смесь реагентов тщательно истирают в агатовой ступке с добавлением нескольких капель этилового спирта и подвергают прессованию. Готовят таблетки основного вещества диаметром 10 мм и высотой 5-10 мм и дополнительно из той же смеси готовят тонкие таблетки для прокладывания на дно алундового тигля и сверху основного таблетированного образца диаметром также 10 мм и высотой 2-2.5 мм. Далее прессованные образцы помещают в алундовые тигли высотой 35 мм и внутренним диаметром 27 мм, затем нагревают при 900-910°С и выдерживают при этой температуре в течение 5-5.2 часов. Скорость нагрева составляет 30-35 град/мин. Полученные после нагрева образцы быстро вынимают из печи, опускают в сосуд с жидким азотом и выдерживают 1-2 минуты до остывания, далее переносят в стеклянные бюксы с крышкой и хранят в сухом закрытом эксикаторе, то есть в сухой атмосфере при нормальных условиях. После перешихтовки образцы снова прессуют, нагревают до 960-980°С со скоростью нагрева 30-35 град/мин, выдерживают в печи в течение 5-5.2 часов и повторяют процедуру охлаждения аналогично ранее указанной. После шихтования порошкообразные образцы подвергают рентгенофазовому и структурному анализам, исследуют их физико-химические свойства. Полученные продукты по данным рентгенофазового, структурного и химического анализов являются однофазными составами, соответствуют формуле Li7La3-x-y-z-nNdxHOyErzDynHf2O12, где x=2.5⋅10-2-1⋅10-1, y=1.6⋅10-7-4.7⋅10-7, z=1.5⋅10-6, n=1.2⋅10-6-4.7⋅10-6, и имеют гранатную структуру тетрагональной модификации. Средний размер кристаллитов по данным сканирующей электронной микроскопии составляет ~2.4-3.2 мкм.
Предлагаемый способ иллюстрируется следующими примерами.
Пример 1
В качестве исходных реагентов берут: 3.0406 г HfO2 (ч.д.а.); 3.4710 г La2O3 (х.ч.) (с примесью Nd3+, Но3+, Er3+, Dy3+ в количестве 1.2⋅10-3, 2⋅10-6, 5⋅10-5, 1⋅10-6 масс. %) и 0.06076 г (Nd2O3) (х.ч.) (с примесью La3+, Но3+, Er3+, Dy3+ в количестве 8⋅10-3, 4⋅10-4, 5⋅10-5, 4.5⋅10-3 масс. %), предварительно прокаленные при 900°С в течение 4 ч, 2.0580 г Li2CO3 (х.ч.) с избытком по литию 10%. Далее навески интенсивно перемешивают, истирают в агатовой ступке с добавлением нескольких капель этилового спирта и подвергают прессованию под давлением 3000 кг/см2. В результате приготавливают 2 больших таблетки высотой 5 мм и диаметром 10 мм и две тонкие таблетки высотой 2-2.3 мм, необходимые для прокладывания на дно алундового тигля и сверху основного таблетированного образца. Далее прессованный образец помещают в алундовый тигель высотой 35 мм и внутренним диаметром 27 мм и затем ставят в печь «СНОЛ-Е5СС», нагревают до 910°С и выдерживают в течение 5 ч. Скорость нагрева при этом составляет 30 град/мин. Полученный после термообработки таблетированный образец быстро вынимают из печи и из тигля, опускают в сосуд с жидким азотом, выдерживают 1 мин до охлаждения. Затем переносят в стеклянный бюкс с крышкой и ставят в сухой закрытый эксикатор. После перешихтовки образцы прессуют, нагревают до 980°С и выдерживают в течение 5 ч с использованием тонких таблеток, а затем выдерживают в жидком азоте в течение 1 мин. После шихтования приготовленный порошкообразный образец исследуют физико-химическими методами. По данным рентгенофазового, структурного и химического анализов продукт является сложным гафнатом лития-лантана состава Li7La2.949996Nd0.05Ho0.00000026Er0.0000015Dy0.0000024Hf2O12 и имеет тетрагональную модификацию гранатной структуры с параметрами решетки а=13.0984 Å, с=12.6292 Å, А=2166.77 Å3. Средний размер кристаллитов по данным сканирующей электронной микроскопии составляет ~2.4-3.2 мкм. Интенсивность излучения при его работе в качестве люминесцентного материала для преобразования возбуждающего монохроматического излучения лазера с длиной волны 808 нм в серию эмиссионных линий 2-2.3 мкм, 2.5-2.9 мкм, 3.1-3.35 мкм коротковолнового (1-3 мкм) ИК-диапазона приведена на фиг. 2 (х=0.05).
Пример 2
В качестве исходных реагентов берут: 2.8164 г HfO2 (ч.д.а.); 3.1605 г La2O3 (х.ч.) (с примесью Nd3+, Но3+, Er3+, Dy3+ в количестве 1.2⋅10-3, 2⋅10-6, 5⋅10-5, 1⋅10-6 масс. %) и 0.1126 г (Nd2O3) (х.ч.) (с примесью La3+, Но3+, Er3+, Dy3+ в количестве 8⋅10-3, 4⋅10-4, 5⋅10-5, 4.5⋅10-3 масс. %), предварительно прокаленные при 850°С в течение 5 ч, 1.9062 г Li2CO3 (х.ч.) с избытком по литию 7%. Далее навески интенсивно перемешивают, истирают в агатовой ступке с добавлением нескольких капель этилового спирта и подвергают прессованию под давлением 3000 кг/см2. В результате приготавливают 2 большие таблетки высотой 10 мм и диаметром 10 мм и две тонкие таблетки высотой 2.2-2.5 мм, необходимые для прокладывания на дно алундового тигля и сверху основного таблетированного образца. Далее прессованный образец помещают в алундовый тигель высотой 35 мм и внутренним диаметром 27 мм и затем ставят в печь «СНОЛ-Е5СС», нагревают до 900°С и выдерживают в течение 5.2 час. Скорость нагрева при этом составляет 35 град/мин. Полученный после термообработки таблетированный образец быстро вынимают из печи и из тигля, опускают в сосуд с жидким азотом, выдерживают 2 мин до охлаждения. Затем переносят в стеклянный бюкс с крышкой и ставят в сухой закрытый эксикатор. После перешихтовки образцы прессуют, нагревают до 960°С и выдерживают в течение 5.2 ч с использованием тонких таблеток и аналогичным вышеописанным образом выдерживают в жидком азоте в течение 2 мин. После шихтования приготовленный порошкообразный образец исследовали физико-химическими методами.
По данным рентгенофазового, структурного и химического анализов продукт является сложным гафнатом лития-лантана состава Li7La2.899993Nd0.1Ho0.00000047Er0.0000015Dy0.0000047Hf2O12 и имеет тетрагональную модификацию гранатной структуры с параметрами решетки а=13.0966 Å, с=12.6287 Å, А=2166.09 Å3. Средний размер кристаллитов по данным сканирующей электронной микроскопии составляет ~2.4-3.2 мкм. Интенсивность излучения при его работе в качестве люминесцентного материала для преобразования возбуждающего монохроматического излучения лазера с длиной волны 808 нм в серию эмиссионных линий 2-2.3 мкм, 2.5-2.9 мкм, 3.1-3.35 мкм коротковолнового (1-3 мкм) ИК-диапазона приведена на фиг. 2 (х=0.1)
Пример 3
В качестве исходных реагентов берут: 2.4091 г HfO2 (.ч.д.а); 2.7734 г La2O3 (х.ч.) (с примесью Nd3+, Ho3+, Er3+, Dy3+ в количестве 1.2⋅10-3, 2⋅10-6, 5⋅10-5, 1⋅10-6 масс. %) и 0.02407 г (Nd2O3) (х.ч.) (с примесью La3+, Но3+, Er3+, Dy3+ в количестве 8⋅10-3, 4⋅10-4, 5⋅10-5, 4.5⋅10-3 масс. %), предварительно прокаленные при 900°С в течение 4 ч, 1.6306 г Li2CO3 (х.ч.) с избытком по литию 10%. Далее навески интенсивно перемешивают, истирают в агатовой ступке с добавлением нескольких капель этилового спирта и подвергают прессованию под давлением 3000 кг/см2. В результате приготавливают 2 большие таблетки высотой 5 мм и диаметром 10 мм и две тонкие таблетки высотой 2-2.3 мм, необходимые для прокладывания на дно алундового тигля и сверху основного таблетированного образца. Далее прессованный образец помещают в алундовый тигель высотой 35 мм и внутренним диаметром 27 мм и затем ставят в печь «СНОЛ-Е5СС», нагревают до 910°С и выдерживают в течение 5 ч. Скорость нагрева при этом составляет 30 град/мин. Полученный после термообработки таблетированный образец быстро вынимают из печи и из тигля, опускают в сосуд с жидким азотом, выдерживают 1 мин до охлаждения. Затем переносят в стеклянный бюкс с крышкой и ставят в сухой закрытый эксикатор. После перешихтовки образцы прессуют, нагревают до 980°С со скоростью нагрева 35 град/мин и выдерживают в течение 5 ч с использованием тонких таблеток и аналогичным вышеописанным образом выдерживают в жидком азоте в течение 1 мин. После шихтования приготовленный порошкообразный образец исследовали физико-химическими методами. По данным рентгенофазового, структурного и химического анализов продукт являлся сложным гафнатом лития-лантана состава Li7La2.974997Nd0.025Ho0.00000016Er0.0000015Dy0.0000012Hf2O12 и имеет тетрагональную модификацию гранатной структуры с параметрами решетки a=13.0992 Å, с=12.6285 Å, А=2166.91 Å3. Средний размер кристаллитов по данным сканирующей электронной микроскопии составляет ~2.4-3.2 мкм. Интенсивность излучения при его работе в качестве люминесцентного материала для преобразования возбуждающего монохроматического излучения лазера с длиной волны 808 нм в серию эмиссионных линий 2-2.3 мкм, 2.5-2.9 мкм, 3.1-3.35 мкм коротковолнового (1-3 мкм) ИК-диапазона приведена на фиг. 2 (х=0.025)
Таким образом, авторами предлагается новое химическое соединение сложный гафнат лития-лантана со структурой граната тетрагональной модификации состава Li7La3-x-y-z-nNdxHoyErzDynHf2O12, где x=2.5⋅10-2-1⋅10-1, y=1.6⋅10-7-4.7⋅10-7, z=1.5⋅10-6, n=1.2⋅10-6-4.7⋅10-6, в качестве люминесцентного материала для преобразования монохроматического излучения лазера с длиной волны 808 нм в серию эмиссионных линий 2-2.3 мкм, 2.5-2.9 мкм, 3.1-3.35 мкм, что позволяет значительно расширить диапазон конвертируемого излучения.

Claims (2)

1. Сложный гафнат лития-лантана состава Li7La3-x-y-z-nNdxHoyErzDynHf2O12, где x=2.5⋅10-2-1⋅10-1, y=1.6⋅10-7-4.7⋅10-7, z=1.5⋅10-6, n=1.2⋅10-6-4.7⋅10-6, в качестве люминесцентного материала для преобразования монохроматического излучения лазера с длиной волны 808 нм в серию эмиссионных линий 2-2.3 мкм, 2.5-2.9 мкм, 3.1-3.35 мкм.
2. Способ получения сложного гафната лития-лантана состава Li7La3-x-y-z-nNdxHoyErzDynHf2O12, где x=2.5⋅10-2-1⋅10-1, y=1.6⋅10-7-4.7⋅10-7, z=1.5⋅10-6, n=1.2⋅10-6-4.7⋅10-6, включающий получение исходной смеси стехиометрических количеств оксидов соответствующих металлов, предварительно прокаленных при температуре 900-910°C, и карбоната лития, взятого с избытком 7-10%, ее интенсивное перемешивание и истирание с добавлением этилового спирта, прессование, нагревание до температуры 900-910°C со скоростью нагрева 30-35 град/мин и выдержкой при этой температуре в течение 5-5.2 часа, после чего полученный продукт быстро вынимают и помещают в жидкий азот с выдержкой 1-2 мин, затем выдерживают в сухой атмосфере при нормальных условиях, после чего продукт перешихтовывают, прессуют, нагревают до температуры 960-980°C со скоростью нагрева 30-35 град/мин, выдерживают при этой температуре 5-5.2 часа и снова помещают в жидкий азот с выдержкой 1-2 мин.
RU2015133421A 2015-08-10 2015-08-10 Сложный гафнат лития-лантана в качестве люминесцентного материала для преобразования монохроматического излучения лазера и способ его получения RU2606229C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015133421A RU2606229C1 (ru) 2015-08-10 2015-08-10 Сложный гафнат лития-лантана в качестве люминесцентного материала для преобразования монохроматического излучения лазера и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015133421A RU2606229C1 (ru) 2015-08-10 2015-08-10 Сложный гафнат лития-лантана в качестве люминесцентного материала для преобразования монохроматического излучения лазера и способ его получения

Publications (1)

Publication Number Publication Date
RU2606229C1 true RU2606229C1 (ru) 2017-01-10

Family

ID=58452450

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015133421A RU2606229C1 (ru) 2015-08-10 2015-08-10 Сложный гафнат лития-лантана в качестве люминесцентного материала для преобразования монохроматического излучения лазера и способ его получения

Country Status (1)

Country Link
RU (1) RU2606229C1 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2095900C1 (ru) * 1996-02-29 1997-11-10 Юрий Дмитриевич Заварцев Лазерное вещество
CN101089242A (zh) * 2006-06-13 2007-12-19 中国科学院福建物质结构研究所 掺钕钨酸锂镧钡激光晶体及其制备方法和用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2095900C1 (ru) * 1996-02-29 1997-11-10 Юрий Дмитриевич Заварцев Лазерное вещество
CN101089242A (zh) * 2006-06-13 2007-12-19 中国科学院福建物质结构研究所 掺钕钨酸锂镧钡激光晶体及其制备方法和用途

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AWAKA J. et al., Neutron powder diffraction study of tetragonal Li 7 La 3 Hf 2 O 12 with the garnet-related type structure, Journal of Solid State Chemistry, 2010, v. 183, p.180-185. *
ZHANG Y. et al., Multiband infrared luminescence of Er 3+ -Ho 3+ -Nd 3+ /Tm 3+ -codoped telluride glasses, Front. Optoelectron., 2014, v. 7, p. 74-76. *
ZHANG Y. et al., Multiband infrared luminescence of Er 3+ -Ho 3+ -Nd 3+ /Tm 3+ -codoped telluride glasses, Front. Optoelectron., 2014, v. 7, p. 74-76. AWAKA J. et al., Neutron powder diffraction study of tetragonal Li 7 La 3 Hf 2 O 12 with the garnet-related type structure, Journal of Solid State Chemistry, 2010, v. 183, p.180-185. *

Similar Documents

Publication Publication Date Title
Yadav et al. Improved photon upconversion photoluminescence and intrinsic optical bistability from a rare earth co-doped lanthanum oxide phosphor via Bi 3+ doping
Kesavulu et al. Structural and NIR to visible upconversion properties of Er3+-doped LaPO4 phosphors
Chen et al. CsRe 2 F 7@ glass nanocomposites with efficient up-/down-conversion luminescence: from in situ nanocrystallization synthesis to multi-functional applications
Lian et al. Structural and optical properties of Dy3+: YAlO3 phosphors for yellow light-emitting diode applications
Wang et al. Preparation and up-conversion luminescence of Er-doped yttria stabilized zirconia single crystals
Stojadinović et al. Photoluminescence properties of Er3+/Yb3+ doped ZrO2 coatings formed by plasma electrolytic oxidation
Boyer et al. Transparent polycrystalline Sr RE Ga 3 O 7 melilite ceramics: potential phosphors for tuneable solid state lighting
Castaing et al. Hexagonal Sr 1− x/2 Al 2− x Si x O 4: Eu 2+, Dy 3+ transparent ceramics with tuneable persistent luminescence properties
Ohyama et al. Combustion synthesis of YAG: Ce phosphors via the thermite reaction of aluminum
Pellegrino et al. Novel sol–gel fabrication of Yb 3+/Tm 3+ co-doped β-NaYF 4 thin films and investigation of their upconversion properties
Zhai et al. Annealing temperature dependent afterglow of Tb3+ doped CaAl2O4
Zhou et al. Preparation and spectral analysis of 4.3% Dy: YCa 4 O (BO 3) 3 and 5% Dy, 1.25% Tb: YCa 4 O (BO 3) 3 crystals for potential use in solid state yellow lasers
Merízio et al. Persistent luminescent phosphor-in-glass composites based on NaPO3–Ga2O3 glasses loaded with Sr2MgSi2O7: Eu2+, Dy3+
Sajwan et al. Recent progress in multicolor tuning of rare earth-doped gadolinium aluminate phosphors GdAlO 3
Liu et al. Fabrication and optical characterizations of PrF3-doped SrF2 transparent ceramics
Guo et al. Preparation and luminescence properties of Tb3+-Sm3+ co-doped K3Gd (PO4) 2 crystalline glass ceramics
Giri et al. SrAl 4 O 7: Tm 3+/Yb 3+ nanocrystalline blue phosphor: structural, thermal and optical properties
Vilejshikova et al. Up-Conversion Luminescence in Oxyfluoride Glass-Ceramics with PbF 2:(Yb 3+, Eu 3+, RE 3+)(RE= Tm, Ho, OR Er) Nanocrystals
Chen et al. Temperature dependent near-infrared emission and energy transfer of NaY (MoO4) 2: Re (Re= Er3+/Nd3+, Tm3+) crystals
RU2606229C1 (ru) Сложный гафнат лития-лантана в качестве люминесцентного материала для преобразования монохроматического излучения лазера и способ его получения
Khaidukov et al. Specific features of synthesis and luminescence for lithium aluminum spinel LiAl5O8 doped with manganese ions
Li et al. Cyan long lasting phosphorescence in green emitting phosphors Ba 2 Gd 2 Si 4 O 13: Eu 2+, RE 3+(RE 3+= Dy 3+, Ho 3+, Tm 3+, Nd 3+ and Tb 3+)
RU2654032C1 (ru) Сложный натриевый германат лантана, неодима и гольмия в качестве люминесцентного материала для преобразования монохроматического излучения лазера и способ его получения
Nobuta et al. Formation and photoluminescence of zirconia dendrites in borosilicate glass-ceramics
Huang et al. The luminescence of Pr3+ ions doped in Y4Al2O9 by sol–gel synthesis

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180811