RU2600116C2 - Композиты с регулируемым высвобождением реагентов для обработки скважин - Google Patents
Композиты с регулируемым высвобождением реагентов для обработки скважин Download PDFInfo
- Publication number
- RU2600116C2 RU2600116C2 RU2013152253/03A RU2013152253A RU2600116C2 RU 2600116 C2 RU2600116 C2 RU 2600116C2 RU 2013152253/03 A RU2013152253/03 A RU 2013152253/03A RU 2013152253 A RU2013152253 A RU 2013152253A RU 2600116 C2 RU2600116 C2 RU 2600116C2
- Authority
- RU
- Russia
- Prior art keywords
- composite
- wells
- reagent
- formation
- metal oxide
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 123
- 238000011282 treatment Methods 0.000 title claims abstract description 105
- 238000013270 controlled release Methods 0.000 title 1
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 107
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 99
- 239000012530 fluid Substances 0.000 claims abstract description 61
- 239000002245 particle Substances 0.000 claims abstract description 46
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 40
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 40
- 238000012545 processing Methods 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims abstract description 35
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000004576 sand Substances 0.000 claims abstract description 32
- 239000011148 porous material Substances 0.000 claims abstract description 18
- 230000035699 permeability Effects 0.000 claims abstract description 7
- 230000000149 penetrating effect Effects 0.000 claims abstract description 5
- 239000000725 suspension Substances 0.000 claims abstract description 5
- 238000005086 pumping Methods 0.000 claims abstract description 4
- 230000002401 inhibitory effect Effects 0.000 claims abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 50
- 239000000203 mixture Substances 0.000 claims description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 30
- 239000003112 inhibitor Substances 0.000 claims description 21
- 239000003463 adsorbent Substances 0.000 claims description 19
- -1 oxygen scavengers Substances 0.000 claims description 17
- 239000002455 scale inhibitor Substances 0.000 claims description 14
- 150000003839 salts Chemical class 0.000 claims description 9
- 229930195733 hydrocarbon Natural products 0.000 claims description 8
- 150000002430 hydrocarbons Chemical class 0.000 claims description 8
- 230000005484 gravity Effects 0.000 claims description 7
- 239000004094 surface-active agent Substances 0.000 claims description 7
- 238000005260 corrosion Methods 0.000 claims description 6
- 230000007797 corrosion Effects 0.000 claims description 6
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- 229940123973 Oxygen scavenger Drugs 0.000 claims description 4
- 239000004088 foaming agent Substances 0.000 claims description 4
- 239000003139 biocide Substances 0.000 claims description 3
- NMJORVOYSJLJGU-UHFFFAOYSA-N methane clathrate Chemical compound C.C.C.C.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O NMJORVOYSJLJGU-UHFFFAOYSA-N 0.000 claims description 3
- 239000012188 paraffin wax Substances 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims 2
- 230000004936 stimulating effect Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 8
- 230000000670 limiting effect Effects 0.000 abstract description 6
- 239000003795 chemical substances by application Substances 0.000 abstract description 5
- 229910052751 metal Inorganic materials 0.000 abstract description 4
- 239000002184 metal Substances 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 4
- 239000003180 well treatment fluid Substances 0.000 abstract description 3
- 230000000638 stimulation Effects 0.000 abstract description 2
- 238000005065 mining Methods 0.000 abstract 1
- 238000005755 formation reaction Methods 0.000 description 74
- 239000008187 granular material Substances 0.000 description 17
- 239000007789 gas Substances 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 16
- YDONNITUKPKTIG-UHFFFAOYSA-N [Nitrilotris(methylene)]trisphosphonic acid Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CP(O)(O)=O YDONNITUKPKTIG-UHFFFAOYSA-N 0.000 description 15
- 239000003921 oil Substances 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- 239000000758 substrate Substances 0.000 description 12
- 238000005056 compaction Methods 0.000 description 11
- 238000002347 injection Methods 0.000 description 11
- 239000007924 injection Substances 0.000 description 11
- 235000019198 oils Nutrition 0.000 description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 239000011159 matrix material Substances 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 150000001412 amines Chemical class 0.000 description 7
- 230000008021 deposition Effects 0.000 description 7
- 238000010304 firing Methods 0.000 description 7
- 239000007863 gel particle Substances 0.000 description 7
- 238000007792 addition Methods 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 239000005909 Kieselgur Substances 0.000 description 4
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000008186 active pharmaceutical agent Substances 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000000356 contaminant Substances 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 238000010828 elution Methods 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 235000013312 flour Nutrition 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- IRLPACMLTUPBCL-KQYNXXCUSA-N 5'-adenylyl sulfate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OS(O)(=O)=O)[C@@H](O)[C@H]1O IRLPACMLTUPBCL-KQYNXXCUSA-N 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 239000002280 amphoteric surfactant Substances 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- 239000012267 brine Substances 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 239000003093 cationic surfactant Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- 150000004677 hydrates Chemical class 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 239000011236 particulate material Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- 125000001453 quaternary ammonium group Chemical group 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 239000012798 spherical particle Substances 0.000 description 3
- 239000002023 wood Substances 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- XYOMMVNZIAGSMW-UHFFFAOYSA-N (prop-2-enoylamino)methyl propane-1-sulfonate Chemical compound CCCS(=O)(=O)OCNC(=O)C=C XYOMMVNZIAGSMW-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical class COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000003945 anionic surfactant Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical group NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 150000002194 fatty esters Chemical class 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 229910021485 fumed silica Inorganic materials 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 150000002462 imidazolines Chemical class 0.000 description 2
- JYJIGFIDKWBXDU-MNNPPOADSA-N inulin Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@]1(OC[C@]2(OC[C@]3(OC[C@]4(OC[C@]5(OC[C@]6(OC[C@]7(OC[C@]8(OC[C@]9(OC[C@]%10(OC[C@]%11(OC[C@]%12(OC[C@]%13(OC[C@]%14(OC[C@]%15(OC[C@]%16(OC[C@]%17(OC[C@]%18(OC[C@]%19(OC[C@]%20(OC[C@]%21(OC[C@]%22(OC[C@]%23(OC[C@]%24(OC[C@]%25(OC[C@]%26(OC[C@]%27(OC[C@]%28(OC[C@]%29(OC[C@]%30(OC[C@]%31(OC[C@]%32(OC[C@]%33(OC[C@]%34(OC[C@]%35(OC[C@]%36(O[C@@H]%37[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O%37)O)[C@H]([C@H](O)[C@@H](CO)O%36)O)[C@H]([C@H](O)[C@@H](CO)O%35)O)[C@H]([C@H](O)[C@@H](CO)O%34)O)[C@H]([C@H](O)[C@@H](CO)O%33)O)[C@H]([C@H](O)[C@@H](CO)O%32)O)[C@H]([C@H](O)[C@@H](CO)O%31)O)[C@H]([C@H](O)[C@@H](CO)O%30)O)[C@H]([C@H](O)[C@@H](CO)O%29)O)[C@H]([C@H](O)[C@@H](CO)O%28)O)[C@H]([C@H](O)[C@@H](CO)O%27)O)[C@H]([C@H](O)[C@@H](CO)O%26)O)[C@H]([C@H](O)[C@@H](CO)O%25)O)[C@H]([C@H](O)[C@@H](CO)O%24)O)[C@H]([C@H](O)[C@@H](CO)O%23)O)[C@H]([C@H](O)[C@@H](CO)O%22)O)[C@H]([C@H](O)[C@@H](CO)O%21)O)[C@H]([C@H](O)[C@@H](CO)O%20)O)[C@H]([C@H](O)[C@@H](CO)O%19)O)[C@H]([C@H](O)[C@@H](CO)O%18)O)[C@H]([C@H](O)[C@@H](CO)O%17)O)[C@H]([C@H](O)[C@@H](CO)O%16)O)[C@H]([C@H](O)[C@@H](CO)O%15)O)[C@H]([C@H](O)[C@@H](CO)O%14)O)[C@H]([C@H](O)[C@@H](CO)O%13)O)[C@H]([C@H](O)[C@@H](CO)O%12)O)[C@H]([C@H](O)[C@@H](CO)O%11)O)[C@H]([C@H](O)[C@@H](CO)O%10)O)[C@H]([C@H](O)[C@@H](CO)O9)O)[C@H]([C@H](O)[C@@H](CO)O8)O)[C@H]([C@H](O)[C@@H](CO)O7)O)[C@H]([C@H](O)[C@@H](CO)O6)O)[C@H]([C@H](O)[C@@H](CO)O5)O)[C@H]([C@H](O)[C@@H](CO)O4)O)[C@H]([C@H](O)[C@@H](CO)O3)O)[C@H]([C@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 JYJIGFIDKWBXDU-MNNPPOADSA-N 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003129 oil well Substances 0.000 description 2
- HWGNBUXHKFFFIH-UHFFFAOYSA-I pentasodium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O HWGNBUXHKFFFIH-UHFFFAOYSA-I 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 150000003009 phosphonic acids Chemical class 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000007420 reactivation Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- VNDYJBBGRKZCSX-UHFFFAOYSA-L zinc bromide Chemical compound Br[Zn]Br VNDYJBBGRKZCSX-UHFFFAOYSA-L 0.000 description 2
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical class C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Chemical class OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- MXRGSJAOLKBZLU-UHFFFAOYSA-N 3-ethenylazepan-2-one Chemical compound C=CC1CCCCNC1=O MXRGSJAOLKBZLU-UHFFFAOYSA-N 0.000 description 1
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 239000004604 Blowing Agent Substances 0.000 description 1
- 229910021532 Calcite Inorganic materials 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical class O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 229920001202 Inulin Polymers 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical class CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- VBIIFPGSPJYLRR-UHFFFAOYSA-M Stearyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)C VBIIFPGSPJYLRR-UHFFFAOYSA-M 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- WERKSKAQRVDLDW-ANOHMWSOSA-N [(2s,3r,4r,5r)-2,3,4,5,6-pentahydroxyhexyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO WERKSKAQRVDLDW-ANOHMWSOSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 229910001622 calcium bromide Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- WGEFECGEFUFIQW-UHFFFAOYSA-L calcium dibromide Chemical compound [Ca+2].[Br-].[Br-] WGEFECGEFUFIQW-UHFFFAOYSA-L 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000003857 carboxamides Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 description 1
- 239000013000 chemical inhibitor Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 229940090960 diethylenetriamine pentamethylene phosphonic acid Drugs 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- DUYCTCQXNHFCSJ-UHFFFAOYSA-N dtpmp Chemical compound OP(=O)(O)CN(CP(O)(O)=O)CCN(CP(O)(=O)O)CCN(CP(O)(O)=O)CP(O)(O)=O DUYCTCQXNHFCSJ-UHFFFAOYSA-N 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 235000019256 formaldehyde Nutrition 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical class O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- GBHRVZIGDIUCJB-UHFFFAOYSA-N hydrogenphosphite Chemical class OP([O-])[O-] GBHRVZIGDIUCJB-UHFFFAOYSA-N 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229940029339 inulin Drugs 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical class OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 150000002689 maleic acids Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- NQMRYBIKMRVZLB-UHFFFAOYSA-N methylamine hydrochloride Chemical compound [Cl-].[NH3+]C NQMRYBIKMRVZLB-UHFFFAOYSA-N 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 125000005496 phosphonium group Chemical group 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000010399 physical interaction Effects 0.000 description 1
- 150000004885 piperazines Chemical class 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920005996 polystyrene-poly(ethylene-butylene)-polystyrene Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229940048842 sodium xylenesulfonate Drugs 0.000 description 1
- QUCDWLYKDRVKMI-UHFFFAOYSA-M sodium;3,4-dimethylbenzenesulfonate Chemical compound [Na+].CC1=CC=C(S([O-])(=O)=O)C=C1C QUCDWLYKDRVKMI-UHFFFAOYSA-M 0.000 description 1
- HIEHAIZHJZLEPQ-UHFFFAOYSA-M sodium;naphthalene-1-sulfonate Chemical compound [Na+].C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1 HIEHAIZHJZLEPQ-UHFFFAOYSA-M 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium group Chemical group [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229940066771 systemic antihistamines piperazine derivative Drugs 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- 229940102001 zinc bromide Drugs 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/52—Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
- C09K8/536—Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning characterised by their form or by the form of their components, e.g. encapsulated material
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/009—Porous or hollow ceramic granular materials, e.g. microballoons
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B40/00—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
- C04B40/06—Inhibiting the setting, e.g. mortars of the deferred action type containing water in breakable containers ; Inhibiting the action of active ingredients
- C04B40/0641—Mechanical separation of ingredients, e.g. accelerator in breakable microcapsules
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/54—Compositions for in situ inhibition of corrosion in boreholes or wells
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/62—Compositions for forming crevices or fractures
- C09K8/70—Compositions for forming crevices or fractures characterised by their form or by the form of their components, e.g. foams
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/80—Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/80—Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
- C09K8/805—Coated proppants
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/92—Compositions for stimulating production by acting on the underground formation characterised by their form or by the form of their components, e.g. encapsulated material
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/25—Methods for stimulating production
- E21B43/26—Methods for stimulating production by forming crevices or fractures
- E21B43/267—Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2208/00—Aspects relating to compositions of drilling or well treatment fluids
- C09K2208/32—Anticorrosion additives
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/25—Methods for stimulating production
- E21B43/26—Methods for stimulating production by forming crevices or fractures
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Geology (AREA)
- Structural Engineering (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Wood Science & Technology (AREA)
- Dispersion Chemistry (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
Abstract
Изобретение относится к операциям обработки скважин с использованием реагентов. Композит для обработки скважин, содержащий реагент для обработки скважин и обожженный пористый оксид металла, где пористость и проницаемость обожженного пористого оксида металла является такой, что реагент для обработки скважин адсорбируется во внутрипоровых пространствах пористого оксида металла, и кроме того: площадь поверхности обожженного пористого оксида металла составляет от приблизительно 1 м2/г до приблизительно 10 м2/г, диаметр частиц 0,1 3 мм и объем пор указанного оксида металла от 0,01 до 0,10 см3/г. По другому варианту композит для обработки скважин, вводимый в подземный пласт, содержит реагент для обработки скважин и обожженный пористый оксид металла, где пористость и проницаемость указанного оксида такая, что указанный реагент абсорбируется во внутрипоровых пространствах пористого оксида алюминия, и реагент способен десорбироваться при постоянной скорости в течение продолжительного периода времени в пластовой текучей среде, содержащейся в подземном пласте. Расклинивающий наполнитель, содержащий указанный выше последний композит, где не более 15% расклинивающего наполнителя раздавливается при смыкающем напряжении, составляющем 10000 фунтов на квадратный дюйм (68,95 МПа), когда композит содержит 10 мас.% реагента для обработки скважин. Способ обработки подземного пласта, пронизанного стволом скважины, включающий закачивание в ствол скважины текучей среды для обработки скважин, содержащей указанный выше композит. Способ стимуляции подземного пласта, включающий закачивание в пласт текучей среды для обработки скважин, содержащей указанный выше композит. Способ обработки подземного пласта, включающий введение в подземный пласт или ствол скважины, пронизывающий подземный пласт, указанный выше композита. Способ ингибирования или регулирования скорости высвобождения реагента для обработки скважин в подземном пласте или в стволе скважины путем введения в пласт или ствол скважины указанного выше композита, который после однократной обработки имеет продолжительность действия, составляющую, по меньшей мере, шесть месяцев. Способ ограничения поступления песка в ствол скважины, пронизывающий подземный пласт, включающий: введение в ствол скважины суспензии указанного выше композита и текучего носителя, помещение композита вблизи подземного пласта для образования проницаемого текучей средой уплотнения, способного уменьшать или практически предотвращать прохождение пластовых частиц из подземного пласта в ствол скважины при одновременном свободном прохождении пластовых текучих сред из подземного пласта в ствол скважины. Изобретение развито в зависимых пунктах формулы. Технический результат - повышение эффективности обработки. 8 н. и 19 з.п. ф-лы, 9 пр., 5 табл., 6 ил.
Description
Область техники, к которой относится изобретение
Композиты, содержащие, по меньшей мере, один реагент для обработки скважин и обожженный пористый оксид металла, можно использовать в операциях обработки скважин, чтобы замедлять высвобождение реагента для обработки скважин в окружающую среду.
Уровень техники, к которой относится изобретение
Текучие среды, добываемые из скважин, как правило, содержат сложную смесь компонентов, в том числе алифатические углеводороды, ароматические соединения, гетероатомные соединения, анионные и катионные соли, кислоты, пески, илистые отложения и глины. Природа этих текучих сред в сочетании с жесткими условиями температуры, давления и турбулентности, которыми они часто подвергаются, представляют собой факторы, благодаря которым происходит образование отложений, образование солей, осаждение парафинов, образование эмульсий (типа «вода в масле» и «масло в воде»), образование газовых гидратов, коррозия, осаждение асфальтенов и образование парафинов в нефтяных и/или газовых эксплуатационных скважинах и поверхностном оборудовании. Такие условия, в свою очередь, уменьшают проницаемость подземного пласта и таким образом, снижают производительность скважины. Кроме того, такие условия сокращают срок службы производственного оборудования. Для удаления отложений из скважин и оборудования необходимо останавливать производство, что приводит к одновременному расходованию времени и средств.
Реагенты для обработки скважин часто используют в эксплуатационных скважинах, чтобы предотвращать неблагоприятные эффекты, вызванные такими отложениями и осадками. Например, образование отложений в пласт (а также в эксплуатационных скважинных линиях) часто ограничивают путем использования ингибиторов отложений.
В технике известны несколько способов введения реагентов для обработки скважин в эксплуатационные скважины. Например, жидкий реагент для обработки скважин можно нагнетать в пласт путем приложения гидравлического давления с поверхности, что направляет реагент для обработки в заданную зону. В большинстве случаев такие виды обработки осуществляют, используя скважинное инжекционное давление на уровне ниже давления гидравлического разрыва пласта. В качестве альтернативы, способ введения может представлять собой помещение твердого реагента для обработки скважин в продуктивный пласт в сочетании с операцией гидравлического разрыва. Данный способ часто оказывается предпочтительным, потому что он приводит реагент для обработки в контакт с текучими средами, содержащимися в пласте, прежде чем эти текучие среды поступают в ствол скважины, обычно возникают неблагоприятные эффекты.
Основной недостаток таких способов представляет собой затруднительное высвобождение реагента для обработки скважин в скважину в течение продолжительного периода времени. В результате этого периодически необходимо осуществлять обработку для обеспечения того, чтобы требуемый уровень реагента для обработки постоянно присутствовал в скважине. Такая обработка приводит к потере производительности вследствие простоя.
Таким образом, требуются способы обработки в целях введения реагентов для обработки скважин в нефтяные и/или газовые скважины, в которых реагент для обработки может высвобождаться в течение продолжительного периода времени, и в которых не является обязательным непрерывное внимание операторов в течение продолжительных периодов.
Патент США № 7491682 и патент США № 7493955 описывают способы обработки скважин путем использования композита, содержащего реагент для обработки скважин, адсорбируемый на имеющих высокую площадь поверхности твердых материалах-носителях. Такие композиты можно использовать в целях медленного высвобождения реагентов для обработки скважин в пласт и окружающую среду. Их используют в разнообразных пластах, включающих глубоководные, газонепроницаемые и содержащие метан угольные пласты. Патент США № 7686081 и патентная публикация США № 2010/0175875 описывают пополнение таких композитов по мере их расходования.
Такие композиты, однако, часто имеют присущий им недостаток, заключающийся в том, что они не проявляют требуемую прочность расклинивающих наполнителей, и, таким образом, обычно их требуется смешивать, используя менее чем 10 мас.% расклинивающего наполнителя в обработке для гидравлического разрыва или ограничения поступления песка в пласты. Более высокие содержания приводят к раздавливанию композитов, и в результате этого происходит потеря проводимости уплотнения.
Таким образом, существует необходимость разработки композитов для обработки скважин, которые проявляют прочность расклинивающего наполнителя и при этом отличаются высокой площадью поверхности, чтобы можно было повышать содержание композита в уплотнении из расклинивающего наполнителя.
Сущность изобретения
Композит для обработки скважин можно использовать в стимуляции скважины путем его введения в подземный пласт или в ствол скважины, пронизывающей подземный пласт. Композит для обработки скважин проявляет прочность традиционного расклинивающего наполнителя, и при этом обеспечивают медленное высвобождение одного или нескольких реагентов для обработки скважин в пласт и/или ствол скважины. В некоторых случаях сам по себе композит для обработки скважин можно использовать в качестве расклинивающего наполнителя.
Композит для обработки скважин можно использовать в стимулирующей обработке в качестве компонента текучей среды для гидравлического разрыва или в качестве подкисляющей текучей среды, такой как подкисляющей матрицу текучей среды. Композит имеет определенную применимость в завершающих текучих средах, включающих концентрированные солевые растворы, содержащие бромид цинка, бромид кальция, хлорид кальция и бромид натрия. Такие текучие среды можно вводить вниз через межтрубное пространство скважины и, когда это желательно, смывать добываемой водой.
Композит для обработки скважин содержит наноразмерный обожженный пористый субстрат (адсорбент), имеющий высокую площадь поверхности, на которую нанесен реагент для обработки скважин. Когда его используют в нефтяной, газовой или геотермальной скважине или подземном пласте, пронизанном такой скважиной, реагент для обработки скважин медленно высвобождается из адсорбента и может медленно высвобождаться в уплотнение из расклинивающего наполнителя.
Подходящие субстраты представляют собой обожженные оксиды металлов и включают оксид алюминия, диоксид циркония и диоксид титана.
В особенно предпочтительном варианте осуществления композиты согласно настоящему изобретению используют в скважинах, чтобы ингибировать образование отложений, ограничивать образование отложений или продлевать высвобождение ингибиторов отложений в скважину. Например, композит можно использовать в операциях заканчивания или производства. Композиты согласно настоящему изобретению можно использовать в скважине для удаления нежелательных загрязняющих веществ или для ограничения образования нежелательных загрязняющих веществ на трубчатой поверхности оборудование внутри ствола скважины.
Краткое описание чертежей
Для более полного понимания чертежей, упомянутых в подробном описании настоящего изобретения, далее представлено краткое описание каждого чертежа, в числе которых:
Фиг. 1A и фиг. 1B представляют профили высвобождения ингибитора отложений в высокопрочных композитах, содержащих адсорбенты на основе пористого оксида алюминия в количестве, составляющем от 0 до 2500 поровых объемов и от 0 до 10000 поровых объемов, соответственно.
Фиг. 2 представляет профиль высвобождения ингибитора отложений в высокопрочных композитах, содержащих адсорбент на основе пористого оксида алюминия с переменными диаметрами частиц, которые составляют от 0 до 2000 поровых объемов.
Фиг. 3 представляет профиль высвобождения ингибитора отложений в высокопрочных композитах, содержащих адсорбент на основе пористого оксида алюминия с переменным диаметром частиц песчаного уплотнения, где используется 50% частиц от частиц на фиг. 2.
Фиг. 4A и фиг. 4B представляют профили высвобождения ингибитора отложений в высокопрочных композитах, содержащих адсорбенты на основе пористого оксида алюминия с переменными диаметрами и размерами частиц, которые составляют от 0 до 4000 поровые объемы и от 0 до 10000 поровых объемов, соответственно.
Подробное описание предпочтительных вариантов осуществления
Композит для обработки скважин, который используют в обработке скважин или подземных пластов, отличается тем, что он содержит обожженный пористый субстрат, изготовленный из наноразмерного материала, на который может адсорбироваться, по меньшей мере, один реагент для обработки скважин.
Пористость и проницаемость обожженного пористого субстрата является такой, что реагент для обработки скважин может также абсорбироваться во внутрипоровых пространствах пористого субстрата. Как правило, площадь поверхности обожженного пористого субстрата составляет от приблизительно 1 м2/г до приблизительно 10 м2/г, предпочтительно от приблизительно 1,5 м2/г до приблизительно 4 м2/г, диаметр частиц обожженного пористого субстрата составляет от приблизительно 0,1 до приблизительно 3 мм, предпочтительно от приблизительно 150 до приблизительно 1780 мкм, и поровый объем обожженного пористого субстрата составляет от приблизительно 0,01 до приблизительно 0,10 г/см3.
Реагент для обработки скважин, как правило, способен растворяться, как правило, с постоянной скоростью в течение продолжительного периода времени в водной текучей среде, воде или жидких углеводородах, которые содержатся в подземном пласте.
Как правило, удельный вес композита для обработки скважин составляет менее чем или равняется 3,75 г/см3.
Пористый оксид металла, как правило, содержит сферические частицы и не растворяется в скважинных текучих средах в подземных условиях, например, при температуре, составляющей менее чем приблизительно 250°C, и при давлении, составляющем менее чем приблизительно 80 МПа.
Пористый субстрат может представлять собой оксид металла, такой как оксид алюминия, диоксид циркония и диоксид титана. Как правило, пористый субстрат представляет собой оксид алюминия.
Адсорбент можно изготавливать, осуществляя:
(a) смешивание гидрозоля оксида металла (такого как гидрозоль оксида алюминия), содержащего гидрат оксида металла или активированного оксида металла (такого как активированный оксид алюминия) и дополнительного компонента, выбранного из углерода (такого как технический углерод) или высокомолекулярного природного органического материала (такого как древесная мука и крахмал), который не растворяется в водном растворе вплоть до температуры, составляющей 50°C, и углерода с раствором гидролизуемого основания для образования смеси;
(b) введение смеси в диспергированной форме в не смешивающуюся с водой жидкость, у которой температура составляет приблизительно от 60° до 100°C, в результате чего образуются частицы геля;
(c) выдерживание частиц геля в жидкости при данной температуре и затем в водном растворе основании, таком как водный раствор аммиака;
(d) извлечение выдержанных частиц; и затем
(e) обжиг извлеченных частиц. В течение обжига дополнительный компонент удаляется. Обожженные частицы имеют меньшую насыпную плотность, когда дополнительный компонент присутствует в течение обжига, чем когда дополнительный компонент не присутствует. Как правило, насыпная плотность композита для обработки скважин составляет от приблизительно 75 до приблизительно 150 фунтов на кубический фут (от 1,2 до 2,4 г/см3). Кроме того, сгорание дополнительного компонента в течение обжига гидрозоля приводит к образованию пор в обожженном оксиде металла.
Гидрозоль оксида металла может необязательно включать содержащее диоксид кремния вещество, которое в своей нерастворимой форме осаждается совместно с частицами оксида металла. Содержащее диоксид кремния вещество предпочтительно представляет собой диоксид кремния низкой плотности, такой как диоксид кремния, полученный гидролизом тетрахлорида кремния в кислородно-водородном пламени и известный под названием «пирогенный диоксид кремния».
В варианте осуществления содержащий сферические частицы оксида металла адсорбент можно изготавливать, используя концентрированный гидрозоль оксида металла, у которого значение pH составляет от приблизительно 3 до приблизительно 5, и который, в свою очередь, изготавливают растворением металла в хлористоводородной кислоте и/или хлорида металла в водном растворе или растворением гидрохлорида металла в воде, причем его концентрацию регулируют таким образом, что оксид металла, полученный из золя, составляет от 15 до 35 мас.%, предпочтительно от 20 до 30 мас.% по отношению к массе обожженных частиц. Гидрат оксида металла и/или активированный оксид металла, у которого средний размер частиц предпочтительно составляет не более чем 10 мкм, затем добавляют в гидрозоль в таком количестве, что содержание оксида металла составляет от 65 до 85 мас.%, предпочтительно от 70 до 80 мас.% по отношению к массе обожженных частиц. Необязательно пирогенный диоксид кремния можно добавлять в гидрозоль таким образом, что содержание SiO2 в обожженных частицах составляет от 10 до 40 мас.%. После этого в смесь можно добавлять древесную муку от мягкой до среднетвердой, причем древесную муку, содержащую тонкодисперсные частицы, добавляют в таком количестве, что она составляет от 5 до 35 мас.%, предпочтительно от 10 до 25 мас.% по отношению к массе обожженных частиц. Гидрозоль, содержащий древесную муку, можно затем смешивать с концентрированным водным раствором гексаметилентетрамина и затем вводить распылением или каплями в колонку, заполненную минеральным маслом при температуре от 60°C до 100°C. Частицы геля затем выдерживают при температуре осаждения в течение периода времени, составляющего от 4 до 16 часов; после этого частицы геля выдерживают в течение от 2 до 8 часов в водном растворе аммиака, промывают водой, высушивают при температуре от 100°C до 150°C или предпочтительно при температуре от приблизительно 120°C до приблизительно 200°C, подогревают до температуры от 250°C до 400°C и обжигают при температуре, составляющей приблизительно от 600°C до 1000°C.
Альтернативные способы изготовления содержащего содержащий оксид металла адсорбента подробно описаны в патенте США № 4013587, включенном в настоящий документ посредством ссылки.
В предпочтительном варианте осуществления, когда содержащий оксид металла адсорбент представляет собой содержащий оксид алюминия адсорбент, данный адсорбент можно изготавливать, осуществляя гидролиз алкоксидов алюминия для получения наноразмерного оксида алюминия, высушивание для удаления воды и последующее введение высушенного оксида алюминия в диспергированной форме в масло при температуре, составляющей приблизительно от 60° до 100°C, в результате чего образуются частицы геля. Частицы геля затем выдерживают в жидкости и после этого в водном растворе аммиака, извлекают и затем обжигают. Можно изготавливать наноразмерный оксид алюминия, у которого средний диаметр частиц составляет от приблизительно 0,4 мм до приблизительно 1 мм.
Количество реагента в композите для обработки скважин обычно составляет от приблизительно 1 до 50 мас.% и предпочтительно от приблизительно 14 до приблизительно 40 мас.%.
Реагент для обработки скважин предпочтительно является растворимым в воде или растворимым в алифатических и ароматических углеводородах. Когда добывают текучую среду, реагент для обработки скважин может десорбироваться в соответствующей солюбилизующей жидкости. Например, в том случае, где твердый материал для обработки скважин представляет собой ингибитор отложений, коррозии, солей или обладает биоцидным действием, реагент для обработки может десорбироваться и переходить в добываемую воду. При отсутствии водного потока реагент для обработки скважин может оставаться в неизменном виде на твердом адсорбенте. В качестве еще одного примера, твердые ингибиторы парафинов или асфальтенов могут десорбироваться и переходить в углеводородную фазу добываемой текучей среды.
В предпочтительном варианте осуществления реагент для обработки скважин может представлять собой, по меньшей мере, один реагент, выбранный из группы, которую составляют деэмульгаторы (разрушающие эмульсии типа «вода в масле» и «масло в воде»), ингибиторы коррозии, ингибиторы отложений, ингибиторы парафинов, ингибиторы газовых гидратов, ингибиторы образования солей и диспергаторы асфальтенов, а также их смеси.
Кроме того, другие подходящие реагенты для обработки включают пенообразующие вещества, поглотители кислорода, биоциды и поверхностно-активные вещества, а также другие вещества, для которых является желательным медленное высвобождение внутри эксплуатационной скважины
Адсорбция реагента для обработки скважин на адсорбенте уменьшает (или сокращает до нуля) количество реагента для обработки скважин, требуемое для присутствия в растворе. Поскольку реагент для обработки скважин является адсорбированным на субстрате, только небольшое количество реагента для обработки скважин может высвобождаться в водной среде.
Реагент для обработки скважин предпочтительно представляет собой жидкий материал. Если реагент для обработки скважин является твердым, его можно растворять в подходящем растворителе, переводя его, таким образом, в жидкое состояние.
Композиты, определенные в настоящем документе, используют в композициях для обработки скважин, таких как текучие среды, используемые для обработки газовых скважин или нефтяных скважин, в которых оказывается желательным ингибирование образования нежелательных загрязняющих веществ, ограничение образования нежелательных загрязняющих веществ или предотвращение высвобождения нежелательных загрязняющих веществ внутри скважины. Например, композит можно использовать для завершающих или производственных операций. Композиты согласно настоящему изобретению можно использовать в скважине для удаления нежелательных загрязняющих веществ или для ограничения образования нежелательных загрязняющих веществ на трубчатой поверхности оборудования внутри ствола скважины.
В предпочтительном варианте осуществления композит для обработки скважин согласно настоящему изобретению эффективно ингибирует, ограничивает, предотвращает или устраняет образование неорганических отложений, которые осаждаются в подземных пластах, например, в стволах скважин, включая нефтяные скважины, газовые скважины, водяные скважины и геотермальные скважины. Композиты согласно настоящему изобретению являются особенно эффективными для обработки отложений солей кальция, бария, магния и т. п., включая отложения, содержащие сульфат бария, сульфат кальция и карбонат кальция. Кроме того, композиты могут находить применение для обработки отложений других неорганических соединений, таких как сульфид цинка, сульфид железа и т. д.
Композит для обработки скважин можно также использовать, чтобы ограничивать и/или предотвращать нежелательное образование солей, парафинов, газовых гидратов, асфальтенов, а также коррозию в пластах или на поверхностном оборудовании. Кроме того, другие подходящие реагенты для обработки включают пенообразующие вещества, поглотители кислорода, биоциды, эмульгаторы (для образования эмульсий типа «вода в масле» и «масло в воде») и поверхностно-активные вещества, а также можно использовать другие реагенты с адсорбентом, когда оказывается желательным осуществление медленного высвобождения таких реагентов внутри эксплуатационной скважины.
Подходящие ингибиторы отложений представляют собой анионные ингибиторы отложений.
Предпочтительные ингибиторы отложений включают сильнокислые материалы, такие как фосфоновая кислота, фосфорная кислота или фосфористая кислота, сложные эфиры фосфорной кислоты, фосфонаты/фосфоновые кислоты, разнообразные аминополикарбоновые кислоты, хелатообразующие реагенты, а также полимерные ингибиторы и соответствующие соли. Включаются органофосфонаты, органофосфаты и сложные эфиры фосфорной кислоты, а также соответствующе кислоты и их соли.
Ингибиторы отложений типа фосфонатов/фосфоновых кислот часто оказываются предпочтительными в свете их эффективности для ограничения отложений при относительно низкой концентрации. Полимерные ингибиторы отложений, такие как полиакриламиды, соли сополимера акриламидометилпропансульфоната и акриловой кислоты (AMPS/AA), фосфинированный малеиновый сополимер (PHOS/MA) или натриевые соли терполимеров малеиновой кислоты, акриловой кислоты и акриламидометилпропансульфоната (PMA/AMPS), также представляют собой эффективные ингибиторы отложений. Натриевые соли являются предпочтительными.
Кроме того, являются полезными, особенно для концентрированных солевых растворов, хелатообразующие реагенты, в том числе диэтилентриаминпентаметиленфосфоновая кислота и этилендиаминтетрауксусная кислота.
Кроме того, реагент для обработки скважин может представлять собой любое соединение из полимеров фруктозы или их производных, такое как инулин и производные инулина, которые описаны в патентной публикации США № 2009/0325825, включенной в настоящий документ посредством ссылки.
Примеры деэмульгаторов, которые можно использовать, включают, но не ограничиваются этим, конденсационные полимеры алкиленоксидов и гликолей, такие как конденсационные полимеры этиленоксида и пропиленоксида с дипропиленгликолем, а также триметилолпропан; и содержащие алкильные заместители фенолформальдегидные смолы, бисфенилдипероксиды, а также сложные эфиры и диэфиры таких дифункциональных соединений. Особенно предпочтительными в качестве неионных деэмульгаторов являются оксиалкилированые фенолформальдегидные смолы, оксиалкилирвоанные амины и полиамины, диэпоксидированные оксиалкилированные простые полиэфиры и т. д. Подходящие деэмульгаторы для разрушения эмульсий типа «масло в воде» включают четвертичный политриэтаноламинметилхлорид, коллоид меламиновых солей кислот, аминометилированный полиакриламид и т. д.
Ингибиторы парафинов, используемые для практического осуществления настоящего изобретения, включают, но не ограничиваются этим, сополимеры этилена и винилацетата, акрилаты (такие как сложные эфиры полиакриловой кислоты и сложные эфиры жирных спиртов и метакриловой кислоты), а также сополимеры олефинов и сложных эфиров малеиновой кислоты.
Примерные ингибиторы коррозии, используемые для практического осуществления настоящего изобретения, включают, но не ограничиваются этим, жирные имидазолины, алкилпиридины, четвертичные алкилпиридиниевые соединения, четвертичные соединения жирных аминов и фосфатные соли жирных имидазолинов.
Химические реагенты или ингибиторы для обработки газовых гидратов, которые используются для практического осуществления настоящего изобретения, включают, но не ограничиваются этим, полимеры, а также гомополимеры и сополимеры винилпирролидона, винилкапролактама и ингибиторы газовых гидратов на основе аминов, такие как соединения, описанные в патентных публикациях США № 2006/0223713 и № 2009/0325823, причем они обе включаются в настоящий документ посредством ссылки.
Примерные химические реагенты для обработки асфальтенов включают, но не ограничиваются этим, жирные сложноэфирные гомополимеры и сополимеры (такие как жирные сложноэфирные полимеры и сополимеры акриловой и метакриловой кислоты) и сорбитмоноолеат.
Подходящие пенообразующие вещества включают, но не ограничиваются этим, оксиалкилированные сульфаты или этоксилированные спиртосульфаты или их смеси.
Примерные поверхностно-активные вещества включают катионные, амфотерные, анионные и неионные поверхностно-активные вещества. В качестве катионных поверхностно-активных веществ используют соединения, содержащие четвертичный аммониевый фрагмент (такие как галогениды четвертичного линейного амина, четвертичного бензиламина или четвертичного аммония), четвертичный сульфониевый фрагмент или четвертичный фосфониевый фрагмент, или их смеси. Подходящие поверхностно-активные вещества, содержащие четвертичную группу, включают галогенид четвертичного аммония или четвертичный амин, такие как хлорид четвертичного аммония или бромид четвертичного аммония. В качестве амфотерных поверхностно-активных веществ используют глицинаты, амфоацетаты, пропионаты, бетаины и их смеси. Катионное или амфотерное поверхностно-активное вещество может содержать гидрофобный фрагмент (который может быть насыщенным или ненасыщенным), такой как радикал, цепь которого содержит от 12 до 18 атомов углерода. Кроме того, гидрофобный фрагмент можно получить из природного масла растительного происхождения, используя, например, одно или несколько масел, таких как кокосовое масло, рапсовое масло и пальмовое масло.
Предпочтительные поверхностно-активные вещества включают хлорид N,N,N-триметил-1-октадециламмония, хлорид N,N,N-триметил-1-гексадециламмония и хлорид N,N,N-триметил-1-соевого аммония, а также их смеси. Подходящие анионные поверхностно-активные вещества представляют собой сульфонаты (такие как ксилолсульфонат натрия и нафталинсульфонат натрия), фосфонаты, этоксисульфаты и их смеси.
Примерные поглотители кислорода включают триазины, маоеимиды, формальдегиды, амины, карбоксамиды, алкилкарбоксилазосоединения, соединения пероксида кумола, морфолиновые и аминопроизводные, морфолиновые и пиперазиновые производные, аминоксиды, алканоламины, алифатические и ароматические полиамины.
Для композита согласно настоящему изобретению не требуются избыточные количества реагентов для обработки скважин. Количество реагента для обработки скважин в композите представляет собой такое количество, которое является достаточным для осуществления желательного результата в течение продолжительного периода времени, и может быть настолько низким, как 1 часть на миллион. Как правило, количество реагента для обработки скважин в композите составляет от приблизительно 0,05 до приблизительно 5 (предпочтительно от приблизительно 0,1 до приблизительно 2) мас.% по отношению к суммарной массе композита.
При помещении в скважину реагент для обработки скважин медленно растворяется, как правило, с постоянной скоростью в течение продолжительного периода времени в воде или углеводородах, которые содержатся в пласте и/или в скважине. Таким образом, композит обеспечивает непрерывное поступление реагента для обработки скважин в заданную область. Как правило, продолжительность действия однократной обработки с использованием композита согласно настоящему изобретению составляет от шести до двенадцати месяцев и может превышать три года в зависимости от объема воды или углеводородов, добываемых в эксплуатационной скважине, и от количества реагента для обработки скважин, связанного с обожженным пористым оксидом металла.
Адсорбция реагента для обработки скважин на пористом оксиде металла и во внутрипоровых пространствах оксида уменьшает (сокращает до нуля) количество реагента для обработки скважин, требуемого для присутствия в растворе. В свете физического взаимодействия между реагентом для обработки скважин и пористым оксидом металла, только небольшое количество реагента для обработки скважин может высвобождаться в водной или углеводородной среде.
Например, если реагент для обработки скважин представляет собой ингибитор отложений, количество ингибитора отложений, высвобождающегося из композита, представляет собой такое количество, которое требуется для предотвращения, или, по меньшей мере, существенного снижения степени образование отложений. Для большинства приложений количество ингибитора отложений, высвобождающегося из композита для обработки скважин, может быть малым, составляя лишь 0,1 части на миллион. Таким образом, значительно снижается стоимость данной операции.
Когда текучая среда с нефтяного месторождения проходит насквозь или циркулирует вокруг композитов для обработки скважин, реагент для обработки скважин медленно десорбируется. При этом композиты характеризуются способностью продолжительного высвобождения. Постепенная десорбция реагентов для обработки скважин обеспечивает их присутствие в добываемых текучих средах в течение продолжительных периодов времени, причем, как правило, эти периоды времени составляют более чем один год и вплоть до пяти лет. Как правило, получаемая в результате концентрация реагента для обработки скважин в стволе скважины составляет от приблизительно 1 до приблизительно 50 частей на миллион и может снижаться вплоть до 1 части на миллион. Такое малое количество реагента для обработки скважин может оказаться достаточным вплоть до 1000 поровых объемов.
Композиты согласно настоящему изобретению можно использовать с носителем или текучими средами для обработки, чтобы способствовать введению композита в желательную область внутри пласта. В данном отношении, можно использовать любой текучий носитель, подходящий для переноса композита. Композиции для обработки скважин, содержащие композит, можно превращать или не превращать в гели. В одном варианте осуществления композиты для обработки скважин, описанные в настоящем документе, можно вводить или закачивать в скважину в форме нейтральных плавучих частиц, используя, например, текучий носитель, содержащий насыщенный раствор хлорида натрия, или текучий носитель, который представляет собой любой другой завершающий или эксплуатационный концентрированный солевой раствор, известный в технике. Можно использовать подходящие текучие носители, которые представляют собой или включают текучие среды, в которых содержатся гелеобразующие вещества, сшивающие реагенты, реагенты для разрушения гелей, поверхностно-активные вещества, пенообразующие вещества, деэмульгаторы, буферные вещества, стабилизаторы глин кислоты, или их смеси.
Текучий носитель может представлять собой концентрированный солевой раствор (такой как насыщенный раствор хлорида калия или хлорида натрия), соленую воду, пресную воду, жидкий углеводород или газ, такой как азот или диоксид углерода. Количество композита, присутствующего в композиции для обработки скважин, составляет, как правило, от приблизительно 15 частей на миллион до приблизительно 100000 частей на миллион в зависимости от степени образования отложений. Подходящие композиции включают текучие среды для гидравлического разрыва, текучие среды для заканчивания скважин, подкисляющие композиции и т. д.
По существу, композиции для обработки скважин, содержащие композиты, можно использовать в операциях обработки вблизи ствола скважины, чтобы воздействовать на области вблизи ствола скважины, и они могут быть предназначены для повышения производительности скважины и/или регулирования расклинивающего наполнителя для гидравлического разрыва или пластового песка. Конкретные примеры включают гравийное уплотнение, сетчатые фильтры и водяные уплотнения. Кроме того, такие частицы можно использовать отдельно как расклинивающий наполнитель для гидравлического разрыва/зернистый материал для ограничения поступления песка или в смесях, содержащих в определенных количествах и типах расклинивающий наполнитель для гидравлического разрыва/ограничивающие поступление песка материалы, такие как традиционные зернистые материалы для гидравлического разрыва или ограничения поступления песка. В таких приложениях композит можно использовать в сочетании с расклинивающим наполнителем или зернистым материалом для ограничения поступления песка.
Такие расклинивающие наполнители или зернистые материалы для ограничения поступления песка могут представлять собой традиционные зернистые материалы, используемые в операциях гидравлического разрыва или ограничение поступления песка, например, песок, у которого кажущийся удельный вес (ASG) согласно API RP 60 составляет 2,65, или боксит, у которого значение ASG составляет 3,55. В качестве альтернативы, расклинивающий наполнитель или зернистый материал для ограничения поступления песка может иметь «относительно малый вес», определенный как значение ASG (API RP 56), которое составляет менее чем приблизительно 2,45, предпочтительнее составляет менее чем или равняется 2,0, еще предпочтительнее составляет менее чем или равняется 1,75 и наиболее предпочтительно составляет менее чем или равняется 1,25. Такие различные типы зернистых материалов можно выбирать, например, для получения смеси материалов, имеющих различные значения удельного веса или плотности по отношению к выбранному текучему носителю. Например, можно выбирать смесь трех различных материалов для использования в обработке для гидравлического разрыва, изготавливая смесь зернистых материалов для обработки скважин, имеющих три различных значения удельного веса, таких как материал первого типа, у которого значение ASG составляет от приблизительно 1 до менее чем приблизительно 1,5; материал второго типа, у которого значение ASG составляет от более чем приблизительно 1,5 до приблизительно 2,0; и материал третьего типа, у которого значение ASG составляет от приблизительно более чем приблизительно 2,0 до приблизительно 3,0; или в одном конкретном варианте осуществления материалы трех типов, у которых соответствующие значения удельного веса составляют приблизительно 2,65, приблизительно 1,7 и приблизительно 1,2. В одном примере можно выбирать, по меньшей мере, один из типов выбранных зернистых материалов для обработки скважин, который является практически нейтрально плавучим в выбранном носителе или текучей среде для обработки.
В некоторых случаях композиция для обработки скважин может содержать от приблизительно 1 до приблизительно 99 мас.% расклинивающего наполнителя.
В других случаях композит, определенный в настоящем документе, является достаточно прочным при высоких давлениях, чтобы его можно было использовать в качестве расклинивающего наполнителя в операциях гидравлического разрыва, осуществляемых при температурах, превышающих 250°C, и при давлениях, превышающих 80 МПа.
Например, при использовании в обработке для гидравлического разрыва и/или ограничения поступления песка пористый зернистый материал можно выбирать таким образом, чтобы он проявлял сопротивление раздавливанию в условиях высокого смыкающего напряжения, составляющего 10000 фунтов на квадратный дюйм (68,95 МПа) согласно API RP 56 или API RP 60, как правило, от приблизительно 250 до приблизительно 8000 фунтов на квадратный дюйм (от 1,724 до 55,16 МПа).
Композиты согласно настоящему изобретению являются особенно эффективными в текучих средах для гидравлического разрыва, а также ограничения поступления песка, таких как вода, концентрированный солевой раствор, снижающий поверхностное натяжение реагент на водной основе, такой как снижающий поверхностное натяжение реагент для операции гидравлического разрыва при относительно низких концентрациях, чтобы обеспечивать частичные монослойные разрывы, текучие среды с низкой концентрацией полимерного геля (линейного или сшитого), содержащая пену (с газом) текучая среда, сжиженный газ, такой как жидкий диоксид углерода, обеспечивающий в операции гидравлического разрыва более глубокое проникновение расклинивающего наполнителя, операции обработки в чувствительных к воде зонах и операции обработки в скважинах для хранения газа.
При использовании для гидравлического разрыва композит можно вводить в подземный пласт в сочетании с текучей средой для гидравлического разрыва при достаточно высоких давлениях, чтобы вызывать образование или расширение разрывов. Поскольку зернистые материалы способны выдерживать температуры, составляющие более чем приблизительно 370°C, и смыкающие напряжения, составляющие более чем приблизительно 8000 фунтов на квадратный дюйм (55,16 МПа), их можно использовать в качестве зернистого материала расклинивающего наполнителя. В качестве альтернативы, композит можно использовать в сочетании с традиционным расклинивающим наполнителем. Поскольку пористый зернистый материал композита является нерастворимым, композит может продолжать функционирование в качестве расклинивающего наполнителя даже того, как реагент для обработки скважин полностью высвобождается из композита.
Текучие среды, содержащие композиты для обработки скважин, можно использовать, чтобы оптимизировать геометрию гидравлического разрыва и повышать производительность скважины. В качестве примера, текучие среды можно использовать, чтобы обеспечивать увеличение вызванного расклиниванием разрыва в относительно газонепроницаемых пластах. Выбор различных зернистых материалов и их количеств для использования в таких смесях можно осуществлять на основании одного или нескольких соображений обработки скважин, включая, но не ограничиваясь этим, задачу (задачи) обработки скважин, такие как ограничение поступления песка и/или создание разрывов путем расклинивания, характеристики текучей среды для обработки скважин, такие как кажущийся удельный вес и/или реологические свойства текучего носителя, условия скважины и пласта, такие как глубина пласта, пористость/проницаемость пласта, смыкающее напряжение пласта, тип оптимизации, желательный для геометрических параметров помещенных в скважину зернистых материалов, таких как оптимизированная длина уплотнения для расклинивающего разрыва, оптимизированная высота уплотнения для ограничения поступления песка, оптимизированная проводимость уплотнения для гидравлического разрыва и/или ограничения поступления песка уплотнение и их сочетания. Текучая среда для гидравлического разрыва, которую используют с композитом, проявляет высокую вязкость, чтобы, таким образом, иметь способность переноса эффективных объемов одного или нескольких расклинивающих наполнителей. Она может включать водные гели и углеводородные гели.
Кроме того, композит можно преимущественно использовать в текучих носителях на основе сжиженных газов и вспененных газов, таких как системы на основе жидкого CO2, CO2/N2 и вспененного N2 в CO2. В данном отношении, технологические характеристики систем для гидравлического разрыва на основе жидкого CO2, такие как количества расклинивающих наполнителей, размеры частиц расклинивающих наполнителей, технологии смешивания и закачивания, при использовании имеющих относительно низкую плотность пористых керамических материалов могут быть такими же, как при использовании традиционных расклинивающих наполнителей.
Кроме того, операцию гравийного уплотнения можно осуществлять в стволе скважины, который пронизывает подземный пласт, чтобы предотвращать или существенно уменьшать проникновение пластовых частиц в ствол скважины из пласта в течение добычи пластовых текучих сред. Подземный пласт можно заканчивать таким образом, чтобы он находился в соединении с внутренней частью ствола скважины, используя любой подходящий способ, известный в технике, например посредством перфорации обсаженного ствола скважины и/или посредством сечения необсаженного ствола скважины. Фильтровальный блок, такой как блок, известный в технике, можно размещать или иным способом устанавливать внутри ствола скважины, чтобы таким способом, по меньшей мере, часть фильтровального блока находилась вблизи подземного пласта. Суспензию, включающую композит и текучий носитель, можно затем вводить в ствол скважины и размещать вблизи подземного пласта, используя циркуляцию или другой подходящий способ, таким образом, чтобы получать проницаемое текучей средой уплотнение в межтрубной области между внешней поверхностью фильтра и внутренней поверхностью ствола скважины, которое способно уменьшать или практически предотвращать прохождение пластовых частиц из подземного пласта в ствол скважины в течение добычи текучих сред из пласта, допуская в то же время прохождение пластовых текучих сред из подземного пласта через фильтр в ствол скважины. Можно использовать суспензию, которая состоит из композита полностью или только частично, причем остальную массу суспензии может составлять другой материал, такой как традиционный зернистый материал для гравийного уплотнения.
В качестве альтернативы использованию фильтра, композит можно использовать в любом способе, в котором внутри ствола скважины образуется уплотнение, которое является проницаемым для текучих сред, добываемых из ствола скважины, таких как нефть, газ или вода, но которое практически предотвращает или сокращает проникновение пластовых материалов, таких как пластовый песок, из пласта в ствол скважины. В таких способах можно использовать или не использовать гравийный уплотняющий фильтр, который можно вводить в ствол скважины при давлениях ниже, на уровне или выше давления гидравлического разрыва пласта, такой как сетчатый фильтр, и/или его можно использовать в сочетании со смолами, такими как отверждающие песок смолы, если это желательно.
Композит является, как правило, достаточно прочным для его использования в качестве расклинивающего наполнителя в течение операции гидравлического разрыва при высоких давлениях. Кроме того, его можно использовать в сочетании с другими реагентами для обработки скважин, включая непористые расклинивающие материалы-наполнители, такие как песок.
При использовании для гидравлического разрыва текучая среда может содержать или не содержать расклинивающий наполнитель.
В еще одном варианте осуществления обожженный пористый оксид металла в композите можно повторно активировать или наполнять реагентом для обработки скважин после расходования, по меньшей мере, части реагента для обработки скважин. Такие способы описывают патент США № 7686081 и патентная публикация США № 2010/0175875, причем оба эти документа включены в настоящий документ посредством ссылки.
В данной процедуре первоначальную порцию композита можно вводить в ствол скважины традиционным способом, в том числе для гидравлического разрыва или для гравийного уплотнения. Такие традиционные способы включают, например, транспортировку, непрерывное введение или закачивание при высоком давлении. Скважинная матрица, образующаяся внутри пласта после первоначальной загрузки, состоит из реагента для обработки скважин на не растворимом в воде адсорбенте, который составляет часть песчаной матрицы.
В случае гравийного уплотнения в способе ограничения поступления песка композит находится рядом с подземным пластом, образуя проницаемую текучей средой матрицу, которая способна уменьшать или практически предотвращать прохождение пластовых частиц из подземного пласта в ствол скважины, допуская в то же время прохождение пластовых текучих сред из подземного пласта в ствол скважины.
Когда используют фильтровальное устройство, это фильтровальное устройство устанавливают в ствол скважины перед введением композита. Смесь вводят таким образом, что она располагается вокруг внешней поверхности фильтровального устройства, образуя проницаемую текучей средой матрицу вокруг фильтровального устройства, которое способно уменьшать или практически предотвращать прохождение пластовых частиц из подземного пласта в ствол скважины, допуская в то же время прохождение пластовых текучих сред из подземного пласта в ствол скважины. Кроме того, сам фильтр можно наполнять композитом для обработки скважин.
Дополнительное количество текучей среды, содержащей реагент для обработки скважин, можно вводить в пласт в любое время после того, как, по меньшей мере, частично расходуется первоначально введенный реагент для обработки скважин. Как правило, дополнительный реагент для обработки скважин вводят, когда реагент для обработки скважин, адсорбированный на адсорбенте или во внутрипоровых пространствах композита, в значительной мере расходуется, и уровень эффективности реагента для обработки скважин в композите становится неприемлемым.
Введение дополнительного реагента для обработки скважин можно осуществлять таким же способом, как введение первоначального композита в ствол скважины, и его можно осуществлять, используя любой традиционный способ введения текучих сред в ствол нефтяной или газовой скважины, который упомянут выше. Текучая среда, которую вводят в скважину, как правило, представляет собой желательный реагент (реагенты) для обработки скважин в растворе, который дополнительно содержит растворитель. Разумеется, относительные количества растворителя и реагента для обработки в растворе для введения в ствол скважины, будут различаться в зависимости от используемого реагента и растворителя, но, как правило, массовое соотношение растворителя и реагента составляет от приблизительно 10:90 до приблизительно 95:5. В одном варианте осуществления растворитель представляет собой ксилол, толуол или тяжелый ароматический дистиллят, или их смесь. Когда используют смесь всех компонентов, включая ксилол, толуол и тяжелый ароматический дистиллят, относительные количества каждого компонента растворителя могут изменяться, но, как правило, переменные массовые соотношения ксилола, толуола и тяжелого ароматического дистиллята составляют 10:70:20, 20:70:10, 70:20:10 или 20:10:70. В другом варианте осуществления растворитель может представлять собой воду (в случае растворимых в воде реагентов для обработки скважин).
После осуществления стадии введения в стволе скважины увеличивают давление в течение времени и при условиях, которые являются достаточными для повторной активации скважинной матрицы в пласте. Это повышение давления материала в стволе скважины и разрыв пласта обычно называют термином «нагнетание». Повторная активация реагента для обработки скважины может происходить вследствие процесса нагнетания при том условии, что активность реагента для обработки, помещенного в матрицу, увеличивается по отношению к активности реагента для обработки матрицы непосредственно перед введением раствора. Определение того, что активность реагента для обработки увеличивается по отношению к активности того же реагента непосредственно перед введением раствора и завершением нагнетания можно осуществлять, используя традиционный остаточный анализ и сравнение его результатов до и после нагнетания, а также традиционный анализ физических параметров скважины, например, производительности скважины и давления скважины.
Давление, которому ствол скважины подвергается в процессе нагнетания, как правило, представляет собой давление ниже давления гидравлического разрыва и, когда это применимо, ниже давления, которое приводит к разрыву гравийного уплотнения. В одном варианте осуществления настоящего изобретения абсолютное давление находится в интервале от приблизительно 500 до приблизительно 15000 фунтов на квадратный дюйм (от 3,448 до 103,34 МПа). Период времени, в течение которого состояние давления существует в скважине, различается в зависимости от легкости гидравлического разрыва, но составляет, как правило, от приблизительно 2 до приблизительно 10 часов.
В еще одном варианте осуществления композит для обработки скважин можно использовать, чтобы предварительно наполнять фильтр для использования в гравийном уплотнении скважин. В данном варианте осуществления композит предпочтительно помещают в максимально возможной близости от точки равновесия, чтобы обеспечивать непрерывное высвобождение реагента для обработки скважин посредством образования поточного движения. Таким образом, композит для обработки скважин можно использовать в качестве профилактической меры, останавливая образования осадка реагента для обработки скважин до его начала. Такие альтернативы являются желательными, например, когда существует необходимость увеличения количества твердого реагента для обработки скважин, которое можно помещать в уплотненные гравием скважины, чтобы было минимальным количество расклинивающего наполнителя или гравия, помещенного в скважину. Кроме того, композиты для обработки скважин в предварительно наполненных фильтрах можно использовать, чтобы увеличивать количество твердого субстрата, находящегося под воздействием в ходе ограничения поступления песка. При использовании для ограничения поступления песка фильтры, предварительно наполненные композитом для обработки скважин, могут уменьшать расходы на вмешательство в целях восстановления и дополнительно увеличивать эффективность операции. Предпочтительно, однако, использовать фильтр такого размера, чтобы препятствовать миграции тонкодисперсных частиц в пласте.
Следующие примеры представляют собой иллюстрации некоторых вариантов осуществления настоящего изобретения. Другие варианты осуществления, находящиеся в пределах объема приведенной ниже формулы изобретения, станут очевидными для специалиста в данной области техники после ознакомления с описанием, содержащемся в настоящем документе. Предусмотрено, что данное описание вместе с примерами следует рассматривать исключительно в качестве иллюстрации, в то время как объем и идея настоящего изобретения представлены в приведенной ниже формуле изобретения.
Все процентные соотношения, приведенные в примерах, представляют собой массовые соотношения, если не определены другие условия.
Примеры
Пример 1. В соответствии с процедурой, изложенной в патенте США № 4013587, сферические частицы оксида алюминия изготавливали путем гидролиза алкоксида алюминия. Получаемые в результате сферические частицы затем высушивали для удаления воды. Высушенный оксид алюминия затем диспергировали в масле при температуре, составлявшей приблизительно 90°C. Образовывались частицы геля.
Нерастворимые в воде сферические частицы, содержащие более чем 95% оксида алюминия, получали как образец A. Сферические гранулы оксида алюминия представляли собой необожженный оксид алюминия в форме бемита, у которого диаметр частиц составлял 1 мм, поровый объем составлял 0,5 см3/г и площадь поверхности 216 м2/г.
Порцию образца A обжигали при 1200°C в течение 2 часов, получая сферические гранулы с диаметром 1 мм диаметр (образец B), которые составляет альфа/дельта-тета-оксид алюминия, и которые имеют поровый объем 0,08 см3/г и площадь поверхности 3 м2/г.
Порцию образца A обжигали при 1400°C в течение 2 часов, получая сферические гранулы диаметром 1 мм (образец C), состоящие из альфа-оксида алюминия и имеющие поровый объем 0,03 см3/г и площадь поверхности 4 м2/г.
Пример 2. Каждый из образца A, образца B и образца C добавляли в различных массовых процентных соотношениях к товарному керамическому расклинивающему наполнителю низкой плотности, которую поставляет под наименованием CARBO LITE® компания Carbo Ceramics Inc. (Даллас, штат Техас), и раздавливание исследовали согласно стандарту ISO 13503-2 «Измерение свойств расклинивающих наполнителей, используемых в операциях гидравлического разрыва и гравийного уплотнения». Результаты представлены ниже в таблице I, в которой сравнительный образец представляет собой диатомовую землю Celite MP-79 с размером частиц от 10 до 50 меш (от 0,3 до 1,7 мм).
Результаты показывают, что необожженный образец A имел прочность, сопоставимую с прочностью диатомовой земли сравнительного образца, в то время как обожженный образец B и образец C имели прочность товарного керамического расклинивающего наполнителя, причем даже после добавления 10 мас.% образца B или образца C прочность на раздавливание смеси частиц объединенного расклинивающего наполнителя даже при напряжении, составляющем 10000 фунтов на квадратный дюйм (68,95 МПа), не изменилась.
Пример 3. Товарный ингибитор отложений аминотриметиленфосфоновая кислота (ATMP), поставляемый под наименованием Dequest 2000 компанией ThermPhos International BV, адсорбировали на каждом из образца A, образца B и образца C, получая образцы FBG-90706-4A, FBG-90706-4B и FBG-90706-4C, соответственно. Данные образцы изготавливали, адсорбируя сначала воду на образцах, чтобы определить, какое количество воды могло адсорбироваться. Воду добавляли к образцу до тех пор, пока образец не становился влажным. Обнаружено, что образец A адсорбировал 0,698 г H2O на 1 г образца, образец B адсорбировал 0,362 г H2O на 1 г образца, и образец C адсорбировал 0,415 г H2O на 1 г образца. После этого Dequest 2000 добавляли к каждому образцу. Вследствие низкой адсорбционной способности по сравнению с диатомовой землей, осуществляли два добавления для изготовления образцов. При первом добавлении для образца A можно было добавить только 0,32 г Dequest 2000 на 1 г образца A. При втором добавлении можно было добавить 0,25 г Dequest 2000 на 1 г образца A. В результате этого получали продукт, который содержал приблизительно 22% активного вещества. Способ, использованный для изготовления продукта на основе диатомовой земли, который описан в патенте США № 7493955, модифицировали для данных образцов оксида алюминия. В случае образца B можно было добавлять только 0,31 г Dequest 2000 на 1 г образца B, после чего вводили 0,13 г Dequest 2000 на 1 г образца B во втором добавлении. В результате этого получали продукт, который содержал приблизительно 18% активного вещества. В случае образца C можно было добавлять только 0,23 г Dequest 2000 на 1 г образца C, после чего вводили 0,08 г Dequest 2000 на 1 г образца C во втором добавлении. В результате этого получали продукт, который содержал приблизительно 13,5% активного вещества. Свойства каждого из этих образцов представлены ниже в таблице II.
Пример 4. Характеристики элюирования твердых композитов в примере 3 определяли, помещая песок Ottawa с размером частиц от 20 до 40 меш (от 0,42 до 0,85 мм) и твердый ингибитор (2% от массы песка) в колонку из нержавеющей стали, имеющую длину 35 см и внутренний диаметр 1,08 см. Поровый объем составлял приблизительно 12 мл. Колонку элюировали, используя синтетический концентрированный солевой раствор, содержащий 0,025 моль/л CaCl2, 0,015 моль/л NaHCO3, 1 моль/л NaCl и насыщенный 100% CO2, при температуре 60°C и скорости потока 120 мл/час. Данный синтетический концентрированный солевой раствор был насыщен кальцитом, чтобы моделировать типичный реликтовый солевой раствор в пласте. Выходящий раствор собирали и анализировали, определяя концентрацию фосфора и кальция, чтобы получить профиль высвобождения ингибитора. Результаты представлены на фиг. 1A и фиг. 1B. Минимальная эффективная концентрация для ингибирования отложений составляла 0,1 части на миллион.
Пример 5. Изготавливали пять образцов оксида алюминия, маркированных 23A, 23B, 23C, 23D и 23E. Образец 23-A был таким же, как образец A (необожженные гранулы оксида алюминия размером 1 мм); образец 23-B был таким же, как образец B (гранулы оксида алюминия размером 1 мм, обожженные при 1200°C в течение 2 часов), и образец 23-C был таким же, как образец C (гранулы оксида алюминия размером 1 мм, обожженные при 1400°C в течение 2 часов). Образцы 23D и 23E изготавливали, используя такие же процедуры, как для изготовления образца B и образца C, соответственно, за исключением того, что диаметр сферических гранул составлял 0,8 мм. Каждый из образцов 23A, 23B, 23C, 23D и 23E нагревали до 225°F (107,2°C) и охлаждали до комнатной температуры в эксикаторе перед добавлением раствора ATMP. Изготавливали раствор, содержащий 55 мас.% ATMP. В каждый образец осуществляли по три добавления раствора, и его количество было таким, что оно могло адсорбироваться, как представлено ниже в таблице III.
Результаты, представленные в таблице III, не соответствуют 22,1% для образца A, 18,1% для образца B и 13,5% для образца C.
Пример 6. Элюирование образцов 22B, 23C, 23D, 23E и сравнительного образца примера 2 осуществляли таким же способом, как в примере 4, используя 2% частиц по отношению к массе песка в колонке. Результаты представлены на фиг. 2. Данные результаты аналогичны результатам, проиллюстрированным на фиг. 1A и фиг. 1B. Поскольку отсутствует экономический смысл в использовании более высокого процентного содержания частиц в уплотнении из расклинивающего наполнителя, исследования путем элюирования осуществляли, используя образцы, содержащие 50% частиц в песчаном уплотнении, и результаты представлены на фиг. 3. Фиг. 3 демонстрирует значительное снижение скорости высвобождение и более продолжительный период эффективного ингибирования.
Пример 7. Изготавливали четыре образца, содержащие частицы двух различных размеров (диаметр частиц перед обжигом составлял 0,8 мм и 1,0 мм), в соответствии с процедурой, изложенной в примере 1. Эти четыре образца маркировали C010118 (0,8 мм), C010118 (1 мм), C010524 (0,8 мм) и C010593 (1 мм). Образец C010118 после обжига имел размер частиц 25 меш (0,71 мм) и площадь поверхности 1 м2/г, и образец C010118 после обжига имел размер частиц 30 меш (0,59 мм) и площадь поверхности менее чем 1 м2/г. Образец C010524 после обжига имел размер частиц 30 меш (0,59 мм) и площадь поверхности 5,6 м2/г, и образец C010593 после обжига имел размер частиц 20 меш (0,84 мм) и площадь поверхности 7,3 м2/г. Исследование при раздавливании осуществляли для каждого из данных образцов, а также для образца товарного расклинивающего наполнителя ECONOPROP®, который поставляет компания Carbo Ceramics Inc. Кроме того, изготавливали еще два образца, маркированных 25 меш APA1.0/3C 12853 (площадь поверхности 3,1 м2/г) и 30 меш APA0.8/3C 12852. Данные о раздавливании этих образцов также представлены в таблице 4. Данные о раздавливании каждого образца получали, используя способ орошения для помещения расклинивающего наполнителя в ячейку для раздавливания согласно стандарту API. Результаты представлены ниже в таблице IV.
Пример 8. В качестве ингибитора отложений использовали товарную аминотриметиленфосфоновую кислоту (ATMP), поставляемую под наименованием Dequest 2000 компанией ThermPhos International BV; ее адсорбировали на четырех образцах примера 7, и полученные в результате материалы маркировали FBG-100824A, FBG-100824B, FBG-100824C и FBG-100824D, соответственно. Процедура изготовления этих образцов представлена выше в примере 3. Свойства каждого из образцов приведены ниже в таблице V.
Пример 9. Элюирование каждого из образцов примера 8 осуществляли в соответствии с процедурами, представленными в примерах 4 и 6, используя 50% частиц по отношению к массе песка в колонке. Результаты, представленные на фиг. 4A и фиг. 4B, сравнивали с результатами 2% содержания композита, представленными в патенте США № 7493955. Данные результаты являются аналогичны результатам примера 6 и показывают, что количество композита можно регулировать вместе с количеством расклинивающего наполнителя в зависимости от количества воды, добываемой из скважины, и желательной продолжительности защиты. Согласно этой иллюстрации, 2% частиц в песке и 50% частиц в песке можно использовать для одной и той же цели.
На основании вышеизложенного становится очевидным, что можно осуществлять многочисленные вариации и модификации без отклонения от идеи и выхода за пределы объема новых концепций настоящего изобретения.
Claims (27)
1. Композит для обработки скважин, содержащий реагент для обработки скважин и обожженный пористый оксид металла, в котором пористость и проницаемость обожженного пористого оксида металла является такой, что реагент для обработки скважин адсорбируется во внутрипоровых пространствах пористого оксида металла, и в котором, кроме того:
(a) площадь поверхности обожженного пористого оксида металла составляет от приблизительно 1 м2/г до приблизительно 10 м2/г;
(b) диаметр частиц обожженного пористого оксида металла составляет от приблизительно 0,1 до приблизительно 3 мм; и
(c) объем пор обожженного пористого оксида металла составляет от приблизительно 0,01 до приблизительно 0,10 см3/г.
(a) площадь поверхности обожженного пористого оксида металла составляет от приблизительно 1 м2/г до приблизительно 10 м2/г;
(b) диаметр частиц обожженного пористого оксида металла составляет от приблизительно 0,1 до приблизительно 3 мм; и
(c) объем пор обожженного пористого оксида металла составляет от приблизительно 0,01 до приблизительно 0,10 см3/г.
2. Композит для обработки скважин по п. 1, который содержит от приблизительно 1 до приблизительно 50 мас.% реагента для обработки скважин.
3. Композит для обработки скважин по п. 1, в котором адсорбент дополнительно содержит диоксид кремния.
4. Композит для обработки скважин по п. 1, в котором реагент для обработки скважин выбран из группы, которую составляют ингибиторы отложений, ингибиторы коррозии, ингибиторы парафинов, ингибиторы солей, ингибиторы газовых гидратов, ингибиторы асфальтенов, поглотители кислорода, биоциды, пенообразующие вещества, деэмульгаторы, поверхностно-активные вещества и их смеси.
5. Композит для обработки скважин по п. 1, в котором обожженный пористый оксид алюминия представляет собой альфа/дельта/тета-оксид алюминия или альфа-оксид алюминия.
6. Композит для обработки скважин, вводимый в подземный пласт, причем данный композит для обработки скважин содержит реагент для обработки скважин и обожженный пористый оксид металла, при этом пористость и проницаемость обожженного пористого оксида алюминия является такой, что реагент для обработки скважин абсорбируется во внутрипоровых пространствах пористого оксида алюминия, и, кроме того, реагент для обработки скважин способен десорбироваться, как правило, при постоянной скорости в течение продолжительного периода времени в пластовой текучей среде, содержащейся в подземном пласте.
7. Композит для обработки скважин по п. 6, в котором оксид алюминия обжигают при температуре, превышающей или равной 1200°С.
8. Композит для обработки скважин по п. 7, в котором оксид алюминия обжигают при температуре, превышающей или равной 1400°С.
9. Композит для обработки скважин по п. 6, в котором пористый оксид металла представляет собой оксид алюминия.
10. Композит для обработки скважин по п. 6, в котором реагент для обработки скважин растворяется в воде.
11. Композит для обработки скважин по п. 6, в котором реагент для обработки скважин растворяется в углеводородах.
12. Композит для обработки скважин по п. 6, который содержит от приблизительно 1 до приблизительно 50 мас.% реагента для обработки скважин.
13. Композит для обработки скважин по п. 6, в котором адсорбент дополнительно содержит диоксид кремния.
14. Композит для обработки скважин по п. 6, в котором преобладает, по меньшей мере, одно из следующих условий:
(a) площадь поверхности обожженного пористого оксида металла составляет от приблизительно 1 м2/г до приблизительно 10 м2/г;
(b) диаметр частиц обожженного пористого оксида металла составляет от приблизительно 0,1 до 3 мм/ и
(c) поровый объем обожженного пористого оксида металла составляет от приблизительно 0,01 до приблизительно 0,10 см3/г;
(d) насыпная плотность композита составляет от приблизительно 75 до приблизительно 150 фунтов на кубический фут (от 1,2 до 2,4 г/см3);
(e) удельный вес композита для обработки скважин составляет менее чем или равняется 3,75 г/см3.
(a) площадь поверхности обожженного пористого оксида металла составляет от приблизительно 1 м2/г до приблизительно 10 м2/г;
(b) диаметр частиц обожженного пористого оксида металла составляет от приблизительно 0,1 до 3 мм/ и
(c) поровый объем обожженного пористого оксида металла составляет от приблизительно 0,01 до приблизительно 0,10 см3/г;
(d) насыпная плотность композита составляет от приблизительно 75 до приблизительно 150 фунтов на кубический фут (от 1,2 до 2,4 г/см3);
(e) удельный вес композита для обработки скважин составляет менее чем или равняется 3,75 г/см3.
15. Композит для обработки скважин по п. 14, в котором обожженный пористый оксид металла представляет собой оксид алюминия.
16. Расклинивающий наполнитель, содержащий композит для обработки скважин по п. 6, в котором не более чем 15% расклинивающего наполнителя раздавливается при смыкающем напряжении, составляющем 10000 фунтов на квадратный дюйм (68,95 МПа), когда композит содержит 10 мас.% реагента для обработки скважин.
17. Композиция для обработки скважин, содержащая композит для обработки скважин по п. 6 и расклинивающий наполнитель.
18. Композиция для обработки скважин, содержащая расклинивающий наполнитель по п. 17 и, по меньшей мере, один другой расклинивающий наполнитель.
19. Композиция для обработки скважин по п. 18, содержащая от приблизительно 1 до приблизительно 99 мас. % указанного, по меньшей мере, одного другого расклинивающего наполнителя.
20. Способ обработки подземного пласта, пронизанного стволом скважины, который включает закачивание в ствол скважины текучей среды для обработки скважин, содержащей композит по п. 6.
21. Способ по п. 20, который включает осуществление гидравлического разрыва пласта путем закачивания текучей среды для обработки скважин в ствол скважины при давлении, достаточном для инициирования или увеличения разрыва.
22. Способ по п. 21, дополнительно включающий введение реагента для обработки скважин в ствол скважины после расходования, по меньшей мере, части реагента для обработки скважин на композите для пополнения или повторной активации обожженного пористого оксида металла в композите.
23. Способ стимуляции подземного пласта, который включает закачивание в пласт текучей среды для обработки скважин, содержащей композит по п. 6.
24. Способ обработки подземного пласта, который включает введение в подземный пласт или ствол скважины, пронизывающий подземный пласт, композита по п. 6, где прочность на раздавливание композита для обработки скважин, содержащего 10 мас.% реагента для обработки скважин, при 10000 фунтов на квадратный дюйм (68,95 МПа) является практически такой же, как прочность на раздавливание пористого оксида металла без реагента для обработки скважин.
25. Способ ингибирования или регулирования скорости высвобождения реагента для обработки скважин в подземном пласте или в стволе скважины путем введения в пласт или ствол скважины композита по п. 6, в котором композит после однократной обработки имеет продолжительность действия, составляющую, по меньшей мере, шесть месяцев.
26. Способ ограничения поступления песка в ствол скважины, пронизывающий подземный пласт, включающий:
введение в ствол скважины суспензии композита для обработки скважин по п. 6 и текучего носителя;
помещение композита вблизи подземного пласта для образования проницаемого текучей средой уплотнения, способного уменьшать или практически предотвращать прохождение пластовых частиц из подземного пласта в ствол скважины при одновременном свободном прохождении пластовых текучих сред из подземного пласта в ствол скважины.
введение в ствол скважины суспензии композита для обработки скважин по п. 6 и текучего носителя;
помещение композита вблизи подземного пласта для образования проницаемого текучей средой уплотнения, способного уменьшать или практически предотвращать прохождение пластовых частиц из подземного пласта в ствол скважины при одновременном свободном прохождении пластовых текучих сред из подземного пласта в ствол скважины.
27. Способ по п. 26, дополнительно включающий помещение фильтра в ствол скважины, предварительно заполненный композитом для обработки скважин.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/094,186 US9029300B2 (en) | 2011-04-26 | 2011-04-26 | Composites for controlled release of well treatment agents |
US13/094,186 | 2011-04-26 | ||
PCT/US2012/034507 WO2012148819A1 (en) | 2011-04-26 | 2012-04-20 | Composites for controlled release of well treatment agents |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2013152253A RU2013152253A (ru) | 2015-06-10 |
RU2600116C2 true RU2600116C2 (ru) | 2016-10-20 |
Family
ID=46046322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013152253/03A RU2600116C2 (ru) | 2011-04-26 | 2012-04-20 | Композиты с регулируемым высвобождением реагентов для обработки скважин |
Country Status (13)
Country | Link |
---|---|
US (2) | US9029300B2 (ru) |
EP (1) | EP2702116B1 (ru) |
CN (1) | CN103492526A (ru) |
AR (1) | AR086048A1 (ru) |
BR (1) | BR112013027230B1 (ru) |
CA (1) | CA2831800C (ru) |
CO (1) | CO6791604A2 (ru) |
DK (1) | DK2702116T3 (ru) |
MX (1) | MX366177B (ru) |
MY (1) | MY184548A (ru) |
RU (1) | RU2600116C2 (ru) |
SG (1) | SG194642A1 (ru) |
WO (1) | WO2012148819A1 (ru) |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9976070B2 (en) * | 2010-07-19 | 2018-05-22 | Baker Hughes, A Ge Company, Llc | Method of using shaped compressed pellets in well treatment operations |
US10822536B2 (en) * | 2010-07-19 | 2020-11-03 | Baker Hughes, A Ge Company, Llc | Method of using a screen containing a composite for release of well treatment agent into a well |
US10077395B2 (en) | 2011-03-11 | 2018-09-18 | Carbo Ceramics Inc. | Proppant particles formed from slurry droplets and methods of use |
EP2782971B1 (en) | 2011-11-22 | 2020-07-22 | Baker Hughes Holdings LLC | Method of using controlled release tracers |
US9580642B2 (en) | 2011-11-22 | 2017-02-28 | Baker Hughes Incorporated | Method for improving isolation of flow to completed perforated intervals |
US9663708B2 (en) | 2012-08-01 | 2017-05-30 | Halliburton Energy Services, Inc. | Synthetic proppants and monodispersed proppants and methods of making the same |
US20140190692A1 (en) * | 2013-01-04 | 2014-07-10 | Independence Oilfield Chemicals | Production-treating chemicals added to polymer slurries used in treatment of oil and gas wells |
US10161236B2 (en) | 2013-04-24 | 2018-12-25 | Halliburton Energy Services, Inc. | Methods for fracturing subterranean formations |
NO340689B1 (no) * | 2013-06-24 | 2017-05-29 | Inst Energiteknik | Sporingsstoffer |
US10822917B2 (en) | 2013-09-17 | 2020-11-03 | Baker Hughes, A Ge Company, Llc | Method of cementing a well using delayed hydratable polymeric viscosifying agents |
US10844270B2 (en) | 2013-09-17 | 2020-11-24 | Baker Hughes, A Ge Company, Llc | Method of enhancing stability of cement slurries in well cementing operations |
US10081762B2 (en) | 2013-09-17 | 2018-09-25 | Baker Hughes, A Ge Company, Llc | Well treatment methods and fluids containing synthetic polymer |
GB2520019A (en) * | 2013-11-06 | 2015-05-13 | Statoil Petroleum As | Functionalized proppants |
CN103773356B (zh) * | 2014-01-21 | 2016-11-16 | 成都新柯力化工科技有限公司 | 一种页岩气开采用颗粒料及其制备方法 |
US10287865B2 (en) | 2014-05-19 | 2019-05-14 | Baker Hughes, A Ge Company, Llc | Use of an acid soluble or degradable solid particulate and an acid liberating or acid generating composite in the stimulation of a subterranean formation |
US20170198209A1 (en) * | 2014-06-27 | 2017-07-13 | Imerys Oilfield Minerals, Inc. | Proppant-based chemical delivery system |
WO2016003304A1 (ru) * | 2014-06-30 | 2016-01-07 | Шлюмберже Канада Лимитед | Композитный проппант, способ изготовления композитного проппанта и способы его применения |
CA2955926C (en) | 2014-07-23 | 2018-11-20 | Baker Hughes Incorporated | Composite comprising well treatment agent and/or a tracer adhered onto a calcined substrate of a metal oxide coated core and a method of using the same |
US9656237B2 (en) | 2014-07-31 | 2017-05-23 | Baker Hughes Incorporated | Method of scavenging hydrogen sulfide and mercaptans using well treatment composites |
CN111808600B (zh) | 2014-07-31 | 2023-09-08 | 卡博陶粒有限公司 | 用化学处理剂注入多孔陶瓷支撑剂的方法和系统 |
EP3286278B1 (en) * | 2015-04-20 | 2021-06-02 | Baker Hughes Holdings LLC | Shaped compressed pellets for slow release of well treatment agents into a well and methods of using the same |
US10280737B2 (en) | 2015-06-15 | 2019-05-07 | Baker Hughes, A Ge Company, Llc | Methods of using carbon quantum dots to enhance productivity of fluids from wells |
WO2017003813A1 (en) * | 2015-06-30 | 2017-01-05 | Dow Global Technologies Llc | Coating for controlled release |
CN105152367A (zh) * | 2015-10-10 | 2015-12-16 | 无棣华信石油技术服务有限公司 | 一种环保型油田回注水缓蚀阻垢剂及其制备方法 |
CA2963758C (en) | 2016-04-08 | 2019-07-23 | Baker Hughes Incorporated | Well treatment material for slow release of biocide |
US10641083B2 (en) | 2016-06-02 | 2020-05-05 | Baker Hughes, A Ge Company, Llc | Method of monitoring fluid flow from a reservoir using well treatment agents |
EP3440150B1 (en) | 2016-06-03 | 2019-09-04 | Tomson Technologies | Nanoparticle carrier platform and methods for controlled release of subterranean well treatment additives |
US10413966B2 (en) | 2016-06-20 | 2019-09-17 | Baker Hughes, A Ge Company, Llc | Nanoparticles having magnetic core encapsulated by carbon shell and composites of the same |
US10400152B2 (en) * | 2016-08-19 | 2019-09-03 | Baker Hughes, A Ge Company, Llc | Liquid loaded powders made from hybrid calcium carbonate for oil and gas drilling fluids |
CN106593358B (zh) * | 2017-02-09 | 2022-12-30 | 中国石油化工股份有限公司 | 一种抽油井中接力式释放药剂的装置 |
WO2018208587A1 (en) | 2017-05-11 | 2018-11-15 | Baker Hughes, A Ge Company, Llc | Method of using crosslinked well treatment agents for slow release into well |
US11254861B2 (en) * | 2017-07-13 | 2022-02-22 | Baker Hughes Holdings Llc | Delivery system for oil-soluble well treatment agents and methods of using the same |
US12060523B2 (en) | 2017-07-13 | 2024-08-13 | Baker Hughes Holdings Llc | Method of introducing oil-soluble well treatment agent into a well or subterranean formation |
US11254850B2 (en) | 2017-11-03 | 2022-02-22 | Baker Hughes Holdings Llc | Treatment methods using aqueous fluids containing oil-soluble treatment agents |
EP3830213A1 (en) * | 2018-07-30 | 2021-06-09 | Baker Hughes Holdings Llc | Delayed release well treatment compositions and methods of using same |
US11028309B2 (en) | 2019-02-08 | 2021-06-08 | Baker Hughes Oilfield Operations Llc | Method of using resin coated sized particulates as spacer fluid |
CN110157401A (zh) * | 2019-05-06 | 2019-08-23 | 中国石油天然气股份有限公司 | 一种可控长效缓释阻垢剂胶囊的制备方法 |
CN110259427B (zh) * | 2019-07-10 | 2023-05-26 | 河南理工大学 | 水力压裂液、瓦斯抽采系统及瓦斯抽采方法 |
CN110643345B (zh) * | 2019-10-16 | 2021-12-14 | 北京弘毅恩泽能源技术有限公司 | 用于酸压的吸附缓释酸体系及其制备方法 |
US10961444B1 (en) | 2019-11-01 | 2021-03-30 | Baker Hughes Oilfield Operations Llc | Method of using coated composites containing delayed release agent in a well treatment operation |
WO2022093611A1 (en) | 2020-10-26 | 2022-05-05 | Ecolab Usa Inc. | Calcite scale control agent for geothermal wells |
CN113403052A (zh) * | 2021-06-16 | 2021-09-17 | 陕西丰登石化有限公司 | 一种油井防腐阻垢缓释颗粒及其制备方法 |
US12168913B2 (en) | 2022-05-12 | 2024-12-17 | Baker Hughes Oilfield Operations Llc | Methods for transporting scale removal agents into a well |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4522731A (en) * | 1982-10-28 | 1985-06-11 | Dresser Industries, Inc. | Hydraulic fracturing propping agent |
US5964291A (en) * | 1995-02-28 | 1999-10-12 | Aea Technology Plc | Well treatment |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2299911A1 (fr) | 1975-02-04 | 1976-09-03 | Kali Chemie Ag | Procede de fabrication de particules spheriques contenant de l'alumine et produits obtenus |
US4390456A (en) | 1979-08-08 | 1983-06-28 | W. R. Grace & Co. | Spheroidal alumina particles and catalysts employing the particles as a support |
GB9611422D0 (en) | 1996-05-31 | 1996-08-07 | Bp Exploration Operating | Coated scale inhibitors |
US7426961B2 (en) | 2002-09-03 | 2008-09-23 | Bj Services Company | Method of treating subterranean formations with porous particulate materials |
GB0028269D0 (en) | 2000-11-20 | 2001-01-03 | Norske Stats Oljeselskap | Well treatment |
GB0028264D0 (en) | 2000-11-20 | 2001-01-03 | Norske Stats Oljeselskap | Well treatment |
US7140438B2 (en) | 2003-08-14 | 2006-11-28 | Halliburton Energy Services, Inc. | Orthoester compositions and methods of use in subterranean applications |
US20080287324A1 (en) | 2002-03-01 | 2008-11-20 | Cesi Chemical, Inc., A Flotek Company | Process for well cleaning |
US7135231B1 (en) * | 2003-07-01 | 2006-11-14 | Fairmont Minerals, Ltd. | Process for incremental coating of proppants for hydraulic fracturing and proppants produced therefrom |
US7871702B2 (en) | 2003-07-30 | 2011-01-18 | Halliburton Energy Services, Inc. | Particulates comprising silica and alumina, and methods of utilizing these particulates in subterranean applications |
US20050028976A1 (en) | 2003-08-05 | 2005-02-10 | Nguyen Philip D. | Compositions and methods for controlling the release of chemicals placed on particulates |
US20060065396A1 (en) | 2004-08-13 | 2006-03-30 | Dawson Jeffrey C | Compositions containing water control treatments and formation damage control additives, and methods for their use |
US7491682B2 (en) | 2004-12-15 | 2009-02-17 | Bj Services Company | Method of inhibiting or controlling formation of inorganic scales |
US8012533B2 (en) * | 2005-02-04 | 2011-09-06 | Oxane Materials, Inc. | Composition and method for making a proppant |
EP2292894A1 (en) * | 2005-02-04 | 2011-03-09 | Oxane Materials, Inc. | A composition and method for making a proppant |
BRPI0609373A2 (pt) | 2005-03-01 | 2010-03-30 | Carbo Ceramics Inc | métodos para produzir partìculas sinterizadas de uma lama de um material bruto contendo alumina |
US20060223713A1 (en) | 2005-04-05 | 2006-10-05 | Bj Services Company | Method of completing a well with hydrate inhibitors |
US20060272816A1 (en) | 2005-06-02 | 2006-12-07 | Willberg Dean M | Proppants Useful for Prevention of Scale Deposition |
US7598209B2 (en) | 2006-01-26 | 2009-10-06 | Bj Services Company | Porous composites containing hydrocarbon-soluble well treatment agents and methods for using the same |
US8562900B2 (en) * | 2006-09-01 | 2013-10-22 | Imerys | Method of manufacturing and using rod-shaped proppants and anti-flowback additives |
US8183184B2 (en) | 2006-09-05 | 2012-05-22 | University Of Kansas | Polyelectrolyte complexes for oil and gas applications |
US7490667B2 (en) * | 2006-10-02 | 2009-02-17 | Fairmount Minerals, Inc. | Proppants with soluble composite coatings |
RU2344155C2 (ru) * | 2006-12-27 | 2009-01-20 | Шлюмбергер Текнолоджи Б.В. | Проппант на основе алюмосиликатов, способ его получения и способ его применения |
US7918281B2 (en) | 2007-03-06 | 2011-04-05 | Baker Hughes Incorporated | Method of treating flow conduits and vessels with foamed composition |
US20080217012A1 (en) | 2007-03-08 | 2008-09-11 | Bj Services Company | Gelled emulsions and methods of using the same |
US7737091B2 (en) * | 2007-08-28 | 2010-06-15 | Imerys | Proppants and anti-flowback additives made from sillimanite minerals, methods of manufacture, and methods of use |
MX2008014639A (es) | 2007-11-16 | 2009-05-20 | Bj Services Co | Metodo de tratar formaciones subterraneas por medio de hidrolisis in situ de esteres de acidos organicos. |
US7968500B2 (en) | 2008-06-25 | 2011-06-28 | Baker Hughes Incorporated | Gas hydrate protection with heat producing two-component gas hydrate inhibitors |
US7977283B2 (en) | 2008-06-27 | 2011-07-12 | Baker Hughes Incorporated | Method of minimizing or reducing salt deposits by use of a fluid containing a fructan and derivatives thereof |
US7686081B1 (en) | 2008-10-30 | 2010-03-30 | Bj Services Company | Squeeze process for reactivation of well treatment fluids containing diatomaceous earth |
US8336624B2 (en) | 2008-10-30 | 2012-12-25 | Baker Hughes Incorporated | Squeeze process for reactivation of well treatment fluids containing a water-insoluble adsorbent |
US9010430B2 (en) | 2010-07-19 | 2015-04-21 | Baker Hughes Incorporated | Method of using shaped compressed pellets in treating a well |
US8664168B2 (en) | 2011-03-30 | 2014-03-04 | Baker Hughes Incorporated | Method of using composites in the treatment of wells |
US9102860B2 (en) | 2011-06-16 | 2015-08-11 | Baker Hughes Incorporated | Method of inhibiting or controlling release of well treatment agent |
-
2011
- 2011-04-26 US US13/094,186 patent/US9029300B2/en active Active
-
2012
- 2012-04-20 CA CA2831800A patent/CA2831800C/en active Active
- 2012-04-20 WO PCT/US2012/034507 patent/WO2012148819A1/en active Application Filing
- 2012-04-20 SG SG2013079546A patent/SG194642A1/en unknown
- 2012-04-20 MY MYPI2013702010A patent/MY184548A/en unknown
- 2012-04-20 BR BR112013027230-9A patent/BR112013027230B1/pt active IP Right Grant
- 2012-04-20 RU RU2013152253/03A patent/RU2600116C2/ru active
- 2012-04-20 DK DK12719850.5T patent/DK2702116T3/da active
- 2012-04-20 CN CN201280020200.2A patent/CN103492526A/zh active Pending
- 2012-04-20 EP EP12719850.5A patent/EP2702116B1/en active Active
- 2012-04-20 MX MX2013012367A patent/MX366177B/es active IP Right Grant
- 2012-04-24 AR ARP120101417A patent/AR086048A1/es active IP Right Grant
-
2013
- 2013-10-08 CO CO13238682A patent/CO6791604A2/es not_active Application Discontinuation
-
2015
- 2015-05-05 US US14/704,739 patent/US9574130B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4522731A (en) * | 1982-10-28 | 1985-06-11 | Dresser Industries, Inc. | Hydraulic fracturing propping agent |
US5964291A (en) * | 1995-02-28 | 1999-10-12 | Aea Technology Plc | Well treatment |
Also Published As
Publication number | Publication date |
---|---|
CA2831800A1 (en) | 2012-11-01 |
US9574130B2 (en) | 2017-02-21 |
MX366177B (es) | 2019-07-01 |
US20150232741A1 (en) | 2015-08-20 |
AR086048A1 (es) | 2013-11-13 |
SG194642A1 (en) | 2013-12-30 |
US9029300B2 (en) | 2015-05-12 |
MY184548A (en) | 2021-04-01 |
US20120273197A1 (en) | 2012-11-01 |
AU2012249983A1 (en) | 2013-10-24 |
EP2702116A1 (en) | 2014-03-05 |
RU2013152253A (ru) | 2015-06-10 |
EP2702116B1 (en) | 2020-03-25 |
DK2702116T3 (da) | 2020-06-08 |
CO6791604A2 (es) | 2013-11-14 |
BR112013027230A2 (pt) | 2016-12-27 |
CN103492526A (zh) | 2014-01-01 |
MX2013012367A (es) | 2014-02-03 |
BR112013027230B1 (pt) | 2021-01-26 |
CA2831800C (en) | 2016-07-12 |
WO2012148819A1 (en) | 2012-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2600116C2 (ru) | Композиты с регулируемым высвобождением реагентов для обработки скважин | |
US10400159B2 (en) | Composite comprising well treatment agent and/or a tracer adhered onto a calcined substrate of a metal oxide coated core and a method of using the same | |
US9976070B2 (en) | Method of using shaped compressed pellets in well treatment operations | |
US7493955B2 (en) | Well treating compositions for slow release of treatment agents and methods of using the same | |
CN114651053B (zh) | 包含延迟释放剂的带涂层复合材料及其使用方法 | |
US10822536B2 (en) | Method of using a screen containing a composite for release of well treatment agent into a well | |
AU2016252607B2 (en) | Shaped compressed pellets for slow release of well treatment agents into a well and methods of using the same | |
US20170350236A1 (en) | Method of monitoring fluid flow from a reservoir using well treatment agents | |
AU2012249983B2 (en) | Composites for controlled release of well treatment agents | |
GB2448442A (en) | Treatment agent adsorbed on a water-insoluble adsorbent |