RU2599997C1 - Способ определения угла наклона и направления падения трещин в керновом материале - Google Patents
Способ определения угла наклона и направления падения трещин в керновом материале Download PDFInfo
- Publication number
- RU2599997C1 RU2599997C1 RU2015119882/03A RU2015119882A RU2599997C1 RU 2599997 C1 RU2599997 C1 RU 2599997C1 RU 2015119882/03 A RU2015119882/03 A RU 2015119882/03A RU 2015119882 A RU2015119882 A RU 2015119882A RU 2599997 C1 RU2599997 C1 RU 2599997C1
- Authority
- RU
- Russia
- Prior art keywords
- core
- core material
- cracks
- core column
- column
- Prior art date
Links
- 239000011162 core material Substances 0.000 title claims abstract description 198
- 238000000034 method Methods 0.000 title claims abstract description 48
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 8
- 239000003550 marker Substances 0.000 claims abstract description 5
- 206010034972 Photosensitivity reaction Diseases 0.000 claims description 4
- 230000036211 photosensitivity Effects 0.000 claims description 4
- 238000005755 formation reaction Methods 0.000 abstract description 7
- 239000000126 substance Substances 0.000 abstract description 2
- 238000001514 detection method Methods 0.000 abstract 1
- 239000011435 rock Substances 0.000 description 7
- 230000002068 genetic effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000013517 stratification Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 238000004033 diameter control Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/02—Determining slope or direction
- E21B47/026—Determining slope or direction of penetrated ground layers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8806—Specially adapted optical and illumination features
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N2021/1765—Method using an image detector and processing of image signal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8854—Grading and classifying of flaws
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Pathology (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Signal Processing (AREA)
- Geophysics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Optics & Photonics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Image Processing (AREA)
Abstract
Изобретение относится к области геологии, а именно к средствам определения угла наклона и направления падения трещин в керновом материале, в частности к способу для определения элементов залегания трещин и границ пластов в керне. Техническим результатом является повышение эффективности и точности. Предложен способ определения угла наклона и направления падения трещин в керновом материале, в котором выкладывают на неподвижный лоток керновый материал, вдоль которого перемещают устройство, определяющее расстояние пересечения кернового материала трещинами. При этом первоначально у образцов кернового материала проводят оценку первичного состояния, затем керновый материал состыковывают с образованием керновой колонки 4 и маркером наносят условную линию Z-Z вдоль всей длины керновой колонки 4. Далее керновый материал моют и помещают керновую колонку 4 на неподвижный лоток, затем с помощью персонального компьютера с соответствующим программным обеспечением устанавливают параметры съемки и последовательно производят сканирование участков «L» первой стороны «А» по дуге «Н» керновой колонки от 0 до 180°+2-3°. Затем сканирующий блок возвращают на исходную позицию, керновую колонку накрывают вторым фиксирующим лотком и производят поворот фиксирующих лотков с керновой колонкой на 180° относительно условной стороны «А» и в настройках программного обеспечения выбирают съемку керновой колонки на стороне «Б», которую устанавливают на месте уже отсканированной стороны «А». Далее сканируют сторону «Б» аналогично процессу сканирования стороны «А», т.е. получают снимки сторон «А» и «Б» керновой колонки, которые помещают в общую базу данных исследуемого кернового материала и сшивают в один снимок, являющийся плоской разверткой всей отсканированной поверхности керновой колонки. Далее, посредством использования программного обеспечения, на плоской развертке сторон «А» и «Б» отмечают выявленные трещины, после чего по координатам выявленных трещин рассчитывают углы наклона и направление падения этих трещин относительно условной линии Z-Z вдоль всей длины керновой колонки. 4 з.п. ф-лы, 9 ил.
Description
Изобретение «Способ определения угла наклона и направления падения трещин в керновом материале» относится к области геологии, в частности к способам для определения элементов залегания трещин и границ пластов в керне.
Известен способ определения сопротивляемости сдвигу пород по трещинам в скальных породах, включающий измерение в массиве скальной породы углов наклона выступов поверхности трещин, извлечение образца, сдвиг его при различных нормальных напряжениях и определение предельной сопротивляемости сдвигу (см. описание к Авт. Св. СССР №1338575, опубл. 27.11.2001, E21C 39/00, G01N 3/24).
Однако такой способ не дает возможности определения углов наклона и направления падения трещин непосредственно в керновом материале, поскольку проводят непосредственно в массивах скальных пород.
Ивестен также описанный в заявке РСТ FR 97/00925 и в Российской заявке №98103464/09 (дата публикации заявки: 10.01.2000, МПК G01V 3/38, G06K 9/50, G06T 1/00) метод автоматического определения стратификационных слоев в породе по изображениям скважины или развертке керна этой породы, при котором каждое изображение представляется в виде полосы боковой стенки скважины или керна с привязкой к вертикальной оси у по глубине и к горизонтальной оси х по азимутам и образуется множеством линий или колонок, каждая из которых направлена по оси у, начиная с точек, расположенных вдоль оси х, и представляет значение параметра, связанного с характеристикой этой стенки, измеренной в зависимости от глубины, при этом боковая стенка скважины или керна воспроизводится путем объединения N изображений стенки, отличающийся тем, что сегментируется каждое из N изображений стенки, использующихся для воспроизведения изображения боковой стенки скважины или керна.
Недостатком известного способа является сложность и отсутствие возможности определения угла наклона и направления падения трещин в керновом материале.
Данный недостаток обусловлен тем, что приводится только определение стратификационных слоев в породе по изображениям одной боковой стенки скважины или керна.
Известен принятый за прототип способ определения угла наклона и направления падения трещин в керновом материале, реализованный устройством для определения углов падения и простирания трещин и границ пластов на керне (См. Патент РФ на ПМ №139738, МПК Е21В 47/02, опубл. 20.04.2014), когда керн выкладывали на ложе таким образом, чтобы в начальной точке измеряемого керна большая ось эллипса наклона пластов лежала в вертикальной плоскости вдоль основания. Азимут наклона пластов в данной точке принимали равным нулю и брали его привязочным для измерения углов в других точках. Контроль истинного азимута падения пластов производили по структурной карте или данным скважинных имиджеров. По рельсовым направляющим вдоль ложа с керном перемещали тележку, по мере продвижения которой проводили с помощью шкал измерения на рельсовых направляющих и определяли расстояние (глубину вскрытия) пересечения керна трещинами и границами пластов от начала керна, стрелки измерительных шкал выставляли против трещины или границы пластов таким образом, чтобы эти стрелки образовывали одну плоскость с измеряемыми объектами (трещиной или границей пласта), по одним измерительным шкалам определяли угол наклона образованной плоскости к оси керна , а по другим измерительным шкалам определяли угол поворота лимбов (β) относительно нулевого азимута. На основании полученных данных определяли истинные углы падения, простирания трещин и границ пластов как функции от данных инклинометрии скважины и от углов поворота лимбов относительно нулевого азимута (β) и наклона образованной плоскости к оси керна .
Недостатком известного способа являются высокая трудоемкость и низкая точность и эффективность
Данный недостаток обусловлен тем, что трудоемкое перемещение тележки вручную по рельсовым направляющим вдоль ложа с керном, по мере продвижения которой проводили с помощью шкал измерения на рельсовых направляющих и определяли расстояние (глубину вскрытия) пересечения керна трещинами и границами пластов от начала керна, когда стрелки измерительных шкал выставляли против трещины или границы пластов, занимает очень много времени, присутствуют большие погрешности, влияющие на точность и эффективность.
Задачей заявляемого изобретения «Способ определения угла наклона и направления падения трещин в керновом материале» является повышение эффективности и точности определения угла наклона и падения трещин на керновом материале посредством получения качественного цифрового изображения развертки поверхности кернового материала.
Техническим результатом предлагаемого изобретения «Способ определения угла наклона и направления падения трещин в керновом материале» является повышение эффективности, точности эксплуатационных и технических качеств.
Поставленный результат достигается тем, что в известном способе определения угла наклона и направления падения трещин в керновом материале, который выкладывают на неподвижный лоток, вдоль которого перемещают устройство, определяющее расстояние пересечения кернового материала трещинами, согласно изобретению первоначально у образцов кернового материала проводят оценку первичного состояния, после чего керновый материал состыковывают с образованием керновой колонки и маркером наносят условную линию Z-Z вдоль всей длины керновой колонки, затем керновый материал моют, промытый керновый материал сушат в течение 6-10 часов при комнатной температуре, после чего помещают керновую колонку размером кратным метру, на неподвижный лоток, затем с помощью персонального компьютера с соответствующим программным обеспечением устанавливают параметры съемки, как то: светочувствительность, используемый источник освещения, выдержку, диафрагму, длину сканирующего участка, сторону сканирования, качество сканирования, информацию об объекте сканирования, после этого последовательно производят сканирование (фотографирование) в автоматическом режиме всех участков равной длины, сканирование участков «L» первой стороны «А» по дуге «Н» керновой колонки от 0 до 180° +2-3° и после того, как сканировали первый участок «L1» по всей дуге «Н» керновой колонки от 0 до 180° +2-3° первой стороны «А» кернового материала, сканирующий блок продвигают вперед и вновь повторяют операцию сканирования на участке «L2» по всей дуге «Н» керновой колонки от 0 до 180° +2-3°) первой стороны «А» кернового материала, и так повторяют сканирование до конца стороны «А» керновой колонки по всей длине «L», затем сканирующий блок возвращают на исходную позицию, керновую колонку накрывают вторым фиксирующим лотком и производят поворот фиксирующих лотков с керновой колонкой на 180° относительно условной стороны «А» и в настройках программного обеспечения выбирают съемку керновой колонки на стороне «Б», которую устанавливают на месте уже отсканированной стороны «А», далее сканируют сторону «Б» аналогично процессу сканирования стороны «А», т.е. получают снимки сторон «А» и «Б» керновой колонки, которые помещают в общую базу данных исследуемого кернового материала и сшивают в один снимок, являющийся плоской разверткой всей отсканированной поверхности керновой колонки, далее, посредством использования программного обеспечения, на плоской развертке сторон «А» и «Б» отмечают выявленные трещины, после чего по координатам выявленных трещин рассчитывают углы наклона и направление падения этих трещин относительно условной линии Z-Z вдоль всей длины керновой колонки.
Между отличительными признаками и достигаемым техническим результатом существует следующая причинно-следственная связь.
В отличие от аналогов и прототипа использование в предлагаемом изобретении «Способ определения угла наклона и направления падения трещин в керновом материале» образцов кернового материала, у которого проводят оценку первичного состояния, а затем этот керновый материал состыковывают с образованием керновой колонки и маркером наносят условную линию Z-Z вдоль всей длины керновой колонки, относительно которой определяют азимут падения трещины как угол между условной линией Z-Z и концом проекции вектора направления трещины на плоскость, перпендикулярную оси керна, отложенный по часовой стрелке. Далее керновый материал моют проточной водой, после чего промытый керновый материал сушат в течение 6-10 часов при комнатной температуре, что позволяет выявить все трещины в керновом материале и направления их падения, что повышает достоверность наличия трещин, а также эффективность исследования кернового материала. Размещение керновой колонки размером, кратным метру, на неподвижном лотке, повышает удобство работы с керновым материалом, что в свою очередь повышает производительность и, одновременно, качество исследовательских работ. Использование персонального компьютера с соответствующим программным обеспечением, устанавливающего четкие параметры съемки, как то: светочувствительность, используемый источник освещения, выдержку, диафрагму, длину сканирующего участка, сторону сканирования, качество сканирования, информацию об объекте сканирования, позволяет в отличие от объектов-аналогов и объекта-прототипа получать высококачественное цифровое изображение в дневном и ультрафиолетовом свете, по результатам обработки которого определяется угол наклона трещин в керновом материале. Проведение в автоматическом режиме поочередного сканирования участков «L» первой стороны «А» по дуге «Н» керновой колонки от 0 до 180° +2-3°) позволяет не только быстро сканировать участки, но и, одновременно, делать определенные допуски для склеивания снимков кернового материала сторон «А» и «Б» и выведения четкой картины исследуемого кернового материала по цилиндрической образующей боковой стороны керновой колонки. Последовательное сканирование первого участка «L1» по всей дуге «Н» керновой колонки от 0 до 180° +2-3° первой стороны «А» кернового материала, а затем второго и последующих участков по всей дуге «Н» керновой колонки от 0 до 180° +2-3° первой стороны «А» по всей длине «L» керновой колонки до конца стороны «А» керновой колонки позволяет получать высококачественное цифровое изображение в дневном и ультрафиолетовом свете каждого участка и, при необходимости, исследовать структуру кернового материала в определенных координатах. Возвращение сканирующего блока на исходную позицию, когда керновую колонку, накрыв вторым фиксирующим лотком, поворачивают с фиксирующими лотками и с керновой колонкой на 180° относительно условной стороны «А» и в настройках программного обеспечения выбирают съемку керновой колонки на стороне «Б», которую устанавливают на месте уже отсканированной стороны «А», позволяет аналогично стороне «А» отснять сторону «Б» и произвести наложение границ без сдвига, т.е. получают снимки сторон «А» и «Б» керновой колонки, которые помещают в общую базу данных исследуемого кернового материала и сшивают в один снимок, являющийся плоской разверткой цифрового изображения всей отсканированной поверхности керновой колонки, это позволяет повысить технические качества, снизить погрешность результатов, а также повысить эффективность способа. Использование программного обеспечения на плоской развертке сторон «А» и «Б» поверхности керновой колонки позволит четко отметить выявленные трещины и далее, по координатам выявленных трещин, точно рассчитать углы наклона и направление падения этих трещин относительно условной линии Z-Z вдоль всей длины керновой колонки.
Проведенный заявителем анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации и выявление источников, содержащих сведения об аналогах заявленного изобретения «Способ определения угла наклона и направления падения трещин в керновом материале», позволил установить, что заявитель не обнаружил источник, характеризующийся признаками, тождественными всем существенным признакам заявленного технического решения. По имеющимся у заявителя сведениям, совокупность существенных признаков заявляемого изобретения «Способ определения угла наклона и направления падения трещин в керновом материале» не известна из уровня техники, что позволяет сделать вывод о соответствии заявляемого изобретения «Способ определения угла наклона и направления падения трещин в керновом материале» критерию "новизна". Определение из перечня выявленных аналогов прототипа как наиболее близкого по совокупности признаков аналога позволило выявить совокупность существенных, по отношению к усматриваемому заявителем техническому результату, отличительных признаков в заявляемом изобретении «Способ определения угла наклона и направления падения трещин в керновом материале», изложенных в формуле изобретения. Следовательно, заявляемое изобретение «Способ определения угла наклона и направления падения трещин в керновом материале» соответствует критерию "новизна".
Для проверки соответствия заявляемого изобретения «Способ определения угла наклона и направления падения трещин в керновом материале» критерию "изобретательский уровень" заявитель провел дополнительный поиск известных решений, чтобы выявить совокупность признаков, совпадающих с отличительными от прототипа признаками заявляемого изобретения «Способ определения угла наклона и направления падения трещин в керновом материале». Результаты поиска показали, что заявляемое изобретение «Способ определения угла наклона и направления падения трещин в керновом материале» не вытекает для специалиста явным образом из известного уровня техники, поскольку из уровня техники, определенного заявителем, не выявлено влияние предусматриваемых существенными признаками заявленного изобретения «Способ определения угла наклона и направления падения трещин в керновом материале» преобразований для достижения технического результата. Следовательно, заявленное изобретение «Способ определения угла наклона и направления падения трещин в керновом материале» соответствует критерию "изобретательский уровень".
Таким образом, изложенные сведения свидетельствуют о выполнении при использовании в заявленном изобретении «Способ определения угла наклона и направления падения трещин в керновом материале» совокупности условий в том виде, как заявляемое изобретение «Способ определения угла наклона и направления падения трещин в керновом материале» охарактеризовано в формуле «Способ определения угла наклона и направления падения трещин в керновом материале» при осуществлении изобретения способны обеспечить достижение усматриваемого заявителем технического результата, а именно получение высококачественного цифрового изображения в дневном и ультрафиолетовом свете, по результатам обработки которого определяется угол наклона и направления падения трещин в керновом материале. Кроме того, использование предлагаемого устройства для осуществления способа определения угла наклона и направления падения трещин в керновом материале обеспечивает возможность сканирования керновой колонки с диаметром от 30 до 120 мм с автоматическим контролем диаметра, т.е. повышение эксплуатационных и технических качеств с учетом простоты конструкции и высокой эффективности работы установки, а также дополнительных технических результатов в виде повышения эксплуатационных возможностей, в частности произведение сканирования (фотографирования) в автоматическом режиме всех участков равной длины керновой колонки, расположенной на лотке, следовательно, заявленное изобретение «Способ определения угла наклона и направления падения трещин в керновом материале» соответствует критерию "промышленная применимость".
Совокупность существенных признаков, характеризующих сущность изобретения «Способ определения угла наклона и направления падения трещин в керновом материале» может быть многократно использована в технологичном и одновременно нетрудоемком и точном процессе определения угла наклона и направления падения трещин в керновом материале с получением технического результата, заключающегося в высококачественном цифровом изображении в дневном и ультрафиолетовом свете, по результатам обработки которого определяется угол наклона, кроме того, обеспечение возможности сканирования керновой колонки с диаметром от 30 до 120 мм с автоматическим контролем диаметра.
Сущность заявляемого изобретения «Способ определения угла наклона и направления падения трещин в керновом материале» поясняется примером конкретного выполнения, схемами, где:
- на фиг. 1 изображено устройство со сканирующим блоком для осуществления способа определения угла наклона и направления падения трещин в керновом материале;
- на фиг. 2 изображены сканирующий и поворотный блоки для определения угла наклона и направления падения трещин в керновом материале;
- на фиг. 3 изображен керновый материал, подготовленный к сборке в керновую колонку;
- на фиг. 4 изображена керновая колонка, собранная из кернового материала по фиг. 3;
- на фиг. 5 изображен керновый материал (часть керновой колонки) с условной линией Z-Z вдоль его длины;
- на фиг. 6. изображен вид по стрелке «В» фиг. 5 с направлением трещины и азимута ее падения;
- на фиг. 7 изображен вид отсканированной стороны «А» керновой колонки;
- на фиг. 8 изображен вид отсканированной стороны «Б» керновой колонки;
- на фиг. 9 изображен вид отсканированных сторон «А» и «Б» и условной линии Z-Z вдоль всей длины керновой колонки в программном обеспечении в виде плоской развертки поверхности кернового материала.
Способ определения угла наклона и направления падения трещин в керновом материале осуществляли с помощью устройства, имеющего основание, выполненное в виде рамы 1, с направляющими 2? по которым перемещается сканирующий блок 3 вдоль направления секции кернового материала - керновой колонки 4. Длина керновой колонки 4 кратна метру. Керновая колонка 4 закреплена на неподвижно установленном лотке 5 для кернового материала, закрепленном на ложементах 6 рамы 1. Перемещение сканирующего блока 3 по направляющим 2 осуществляется с помощью сервопривода 7. На перемещающемся по направляющим 2 рамы 1 сканирующем блоке 3 в плоскости, перпендикулярной центральной оси С-С керновой колонки 4, закрепляется поворотный блок 8, перемещающийся по образующей окружности цилиндра керновой колонки 4, центр вращения которой совпадает с центральной осью С-С керновой колонки 4. Перемещение упомянутого поворотного блока 8 осуществляется сервоприводом 9. Поворотный блок 8 включает в себя следующие элементы: цифровую фотокамеру 10 со сменным объективом 11, осветительный блок дневного света и ультрафиолетового света 12 с длиной волны 400 нм, лазерный измеритель расстояния 13 (дальномер), защитный экран 14. Управление сервоприводами 7 и 9, блоками освещения 12, цифровой фотокамерой 10, лазерным измерителем расстояния 13 производится посредством персонального компьютера с соответствующим программным обеспечением (на схеме не показан).
Способ определения угла наклона и направления падения трещин в керновом материале осуществляется следующим образом.
Первоначально у образцов кернового материала, поступившего с месторождений в лабораторию, проводили оценку первичного состояния. Затем образцы кернового материала, прошедшие оценку первичного состояния, состыковывали с образованием керновой колонки 4 и маркером наносили условную линию Z-Z вдоль всей длины керновой колонки 4. После этого производили мойку кернового материала - керновой колонки 4 - проточной водой с применением щетки и губки. Промытый керновый материал в течение восьми часов сушили при комнатной температуре, а затем помещали керновую колонку 4 размером, кратным метру, на неподвижный лоток 5 для кернового материала устройства определения угла наклона и направления падения трещин в керновом материале. Далее с помощью персонального компьютера с соответствующим программным обеспечением устанавливали параметры съемки, как то: светочувствительность, используемый источник освещения, выдержку, диафрагму, длину сканирующего участка, сторону сканирования, качество сканирования, информацию об объекте сканирования. После этого последовательно производили сканирование (фотографирование) в автоматическом режиме всех участков равной длины «L=5 см», первой стороны «А» керновой колонки (условно сторону «А» по дуге керновой колонки от 0 до 180° +2-3°, т.е. сканировали по очереди участки длиной «L1+L2+…+L20=Lп» керновой колонки и длиной дуги «h1+h2+…+h12=Н», после того, как сканировали первый участок «L1» по всей длине дуги «Н» первой стороны «А» кернового материала, камеру продвигали вперед и вновь повторяли операцию сканирования на участке «L2», и так повторяли сканирование до конца участка «L20» метра. После того как завершали сканирование стороны «А», сканирующий блок 3 возвращали в исходную позицию. Полученные снимки автоматически, используя программное обеспечение, обрабатывали с учетом координат их съемки. Снимки сшивали в единое изображение (фиг. 3), при этом масштаб единого изображения соответствовал масштабу кернового материала (керновой колонки). Затем керновую колонку 4 накрывали вторым фиксирующим лотком 5 и производили разворот фиксирующих лотков с керновой колонкой 4 на 180° относительно условной стороны «А». После этого в настройках программного обеспечения выбирали съемку керновой колонки 4 на стороне «Б», которую установили на месте уже отсканированной стороны «А», и сканировали сторону «Б» аналогично процессу сканирования стороны «А». Таким образом, получали два снимка сторон «А» и «Б» керновой колонки 4, которые помещали в общую базу данных указанного исследуемого объекта - кернового материала. Снимки сторон «А» и «Б» сшивали в один снимок, являющийся плоской разверткой поверхности кернового материала (фиг. 4). В последующем, посредством использования программного обеспечения, на плоской развертке сторон «А» и «Б» поверхности кернового материала (фиг. 4) отмечали выявленные трещины и далее, по координатам выявленных трещин, рассчитывали углы наклона и направление падения этих трещин относительно условной линии Z-Z вдоль всей длины керновой колонки. Развернутое изображение трещин представляло синусоиды (в случае горизонтальных трещин). Для вертикальных трещин определяли только угол наклона, т.е. отношение высоты амплитуды к диаметру керновой колонки.
где < - угол наклона;
А - высота амплитуды;
d - диаметр керновой колонки.
Для определения направления падения трещины на схеме кернового материала фиг. 2 за ноль принимали изображение условной линии Z-Z вдоль всей длины керновой колонки 4, при котором направлением падения являлся градус от условной линии до минимальной точки трещины по часовой стрелке, согласно Фиг. 2, при этом в программном обеспечении указывали: генетический тип и подтип трещин; генетическую разновидность трещин; морфологические и генетические свойства трещин. Для стилолитовых швов указывали: тип стилолитов (по форме); амплитуду (высоту выступов в см); ориентировку к напластованию; соотношение стилолитов в слое (стилолитовая сеть); соотношения стилолитов и трещин; состав вещества заполнителя.
Применение предлагаемого изобретения «Способ определения угла наклона и направления падения трещин в керновом материале» позволяет точно определить угол наклона и падения трещин на керновом материале посредством получения цифрового изображения развертки поверхности керна при сохранении простоты конструкции, повысить эксплуатационные и технические качества, а также повысить эффективность работы устройства, реализующего способ.
Claims (5)
1. Способ определения угла наклона и направления падения трещин в керновом материале, который выкладывают на неподвижный лоток, вдоль которого перемещают устройство, определяющее расстояние пересечения кернового материала трещинами, отличающийся тем, что первоначально у образцов кернового материала проводят оценку первичного состояния, после чего керновый материал состыковывают с образованием керновой колонки и маркером наносят условную линию Z-Z вдоль всей длины керновой колонки, затем керновый материал моют, сушат, после чего помещают керновую колонку на неподвижный лоток, затем с помощью персонального компьютера с соответствующим программным обеспечением устанавливают параметры съемки, после этого последовательно производят сканирование участков «L» первой стороны «А» по дуге «Н» керновой колонки от 0 до 180°+2-3° и после того, как отсканируют первый участок «L1» по всей дуге «Н» керновой колонки от 0 до 180°+2-3° первой стороны «А» кернового материала, сканирующий блок продвигают вперед и вновь повторяют операцию сканирования на участке «L2» по всей дуге «Н» керновой колонки от 0 до 180°+2-3° первой стороны «А» кернового материала и так повторяют сканирование до конца стороны «А» керновой колонки по всей длине «L», затем сканирующий блок возвращают на исходную позицию, керновую колонку накрывают вторым фиксирующим лотком и производят поворот фиксирующих лотков с керновой колонкой на 180° относительно условной стороны «А» и в настройках программного обеспечения выбирают съемку керновой колонки на стороне «Б», которую устанавливают на месте уже отсканированной стороны «А», далее сканируют сторону «Б» аналогично процессу сканирования стороны «А», т.е. получают снимки сторон «А» и «Б» керновой колонки, которые помещают в общую базу данных исследуемого кернового материала и сшивают в один снимок, являющийся плоской разверткой всей отсканированной поверхности керновой колонки, далее, посредством использования программного обеспечения, на плоской развертке сторон «А» и «Б» отмечают выявленные трещины, после чего по координатам выявленных трещин рассчитывают углы наклона и направление падения этих трещин относительно условной линии Z-Z вдоль всей длины керновой колонки.
2. Способ по п. 1, отличающийся тем, что промытый керновый материал сушат в течение 6-10 часов при комнатной температуре.
3. Способ по п. 1, отличающийся тем, что на неподвижный лоток укладывают керновую колонку размером, кратным метру.
4. Способ по п. 1, отличающийся тем, что в качестве параметров съемки устанавливают светочувствительность, используемый источник освещения, выдержку, диафрагму, длину сканирующего участка, сторону сканирования, качество сканирования, информацию об объекте сканирования.
5. Способ по п. 1, отличающийся тем, что сканирование (фотографирование) всех участков равной длины производят в автоматическом режиме.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015119882/03A RU2599997C1 (ru) | 2015-05-26 | 2015-05-26 | Способ определения угла наклона и направления падения трещин в керновом материале |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015119882/03A RU2599997C1 (ru) | 2015-05-26 | 2015-05-26 | Способ определения угла наклона и направления падения трещин в керновом материале |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2599997C1 true RU2599997C1 (ru) | 2016-10-20 |
Family
ID=57138423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015119882/03A RU2599997C1 (ru) | 2015-05-26 | 2015-05-26 | Способ определения угла наклона и направления падения трещин в керновом материале |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2599997C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108766175A (zh) * | 2018-06-22 | 2018-11-06 | 东华理工大学 | 岩芯及裂隙古地磁重定向演示模型装置 |
CN117404072A (zh) * | 2023-12-15 | 2024-01-16 | 山东新云鹏电气有限公司 | 一种基于人工智能的钻场管理系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU794211A1 (ru) * | 1979-02-15 | 1981-01-07 | Донецкий Ордена Трудового Красногознамени Политехнический Институт | Кернометр |
RU98103464A (ru) * | 1996-05-31 | 2000-01-10 | Елф Эксплорасьон Продюксьон | Метод автоматического определения стратификационных слоев в породе |
WO2009146154A1 (en) * | 2008-04-16 | 2009-12-03 | Schlumberger Canada Limited | Apparatus for continuous measurement of heterogeneity of geomaterials |
US7869565B2 (en) * | 2004-05-12 | 2011-01-11 | Schlumberger Technology Corporation | Classification method for sedimentary rocks |
CN103528953A (zh) * | 2013-10-22 | 2014-01-22 | 天津普达软件技术有限公司 | 一种岩心图像采集系统的镜头对焦方法 |
RU139738U1 (ru) * | 2013-08-20 | 2014-04-20 | Общество с ограниченной ответственностью "РН-КрасноярскНИПИнефть" | Устройство для определения углов падения и простирания трещин и границ пластов на керне |
-
2015
- 2015-05-26 RU RU2015119882/03A patent/RU2599997C1/ru active IP Right Revival
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU794211A1 (ru) * | 1979-02-15 | 1981-01-07 | Донецкий Ордена Трудового Красногознамени Политехнический Институт | Кернометр |
RU98103464A (ru) * | 1996-05-31 | 2000-01-10 | Елф Эксплорасьон Продюксьон | Метод автоматического определения стратификационных слоев в породе |
US7869565B2 (en) * | 2004-05-12 | 2011-01-11 | Schlumberger Technology Corporation | Classification method for sedimentary rocks |
WO2009146154A1 (en) * | 2008-04-16 | 2009-12-03 | Schlumberger Canada Limited | Apparatus for continuous measurement of heterogeneity of geomaterials |
RU139738U1 (ru) * | 2013-08-20 | 2014-04-20 | Общество с ограниченной ответственностью "РН-КрасноярскНИПИнефть" | Устройство для определения углов падения и простирания трещин и границ пластов на керне |
CN103528953A (zh) * | 2013-10-22 | 2014-01-22 | 天津普达软件技术有限公司 | 一种岩心图像采集系统的镜头对焦方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108766175A (zh) * | 2018-06-22 | 2018-11-06 | 东华理工大学 | 岩芯及裂隙古地磁重定向演示模型装置 |
CN108766175B (zh) * | 2018-06-22 | 2023-05-23 | 东华理工大学 | 岩芯及裂隙古地磁重定向演示模型装置 |
CN117404072A (zh) * | 2023-12-15 | 2024-01-16 | 山东新云鹏电气有限公司 | 一种基于人工智能的钻场管理系统 |
CN117404072B (zh) * | 2023-12-15 | 2024-02-23 | 山东新云鹏电气有限公司 | 一种基于人工智能的钻场管理系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Peña-Villasenín et al. | Professional SfM and TLS vs a simple SfM photogrammetry for 3D modelling of rock art and radiance scaling shading in engraving detection | |
Dai et al. | Comparison of image-based and time-of-flight-based technologies for three-dimensional reconstruction of infrastructure | |
Andrews | Measured and drawn: techniques and practice for the metric survey of historic buildings | |
Bevilacqua et al. | Reconstruction of lost architectural volumes by integration of photogrammetry from archive imagery with 3D models of the status quo | |
Pulcrano et al. | 3D cameras acquisitions for the documentation of cultural heritage | |
RU2599997C1 (ru) | Способ определения угла наклона и направления падения трещин в керновом материале | |
Lianheng et al. | A practical photogrammetric workflow in the field for the construction of a 3D rock joint surface database | |
Perfetti et al. | Fisheye Photogrammetry to Survey Narrow Spaces in Architecture and a Hypogea Environment | |
Balletti et al. | Geomatics techniques for the enhancement and preservation of cultural heritage | |
Barrile et al. | Comparison between techniques for generating 3D models of cultural heritage | |
Ippoliti et al. | Structure from motion systems for architectural heritage. A survey of the internal loggia courtyard of Palazzo Dei Capitani, Ascoli Piceno, Italy | |
Musicco et al. | Accuracy evaluation of smartphone-based videogrammetry for Cultural Heritage documentation process | |
Barrile et al. | 3D models of Cultural Heritage | |
Lipecki et al. | Inventory of the geometric condition of inanimate nature reserve Crystal Caves in “Wieliczka” Salt Mine | |
Calantropio et al. | Use and evaluation of a short range small quadcopter and a portable imaging laser for built heritage 3D documentation | |
Incekara et al. | Comparative analyses of the point cloud produced by using close-range photogrammetry and terrestrial laser scanning for rock surface | |
CN109031411B (zh) | 基于垂直地震剖面数据的高斯束偏移成像方法及系统 | |
Salonia et al. | 3D survey technologies for reconstruction, analysis and diagnosis in the conservation process of cultural heritage | |
RU167662U1 (ru) | Устройство для определения угла наклона и направления падения трещин в керновом материале | |
Nannei et al. | Photogrammetry for quick survey in emergency conditions: the case of Villa Galvagnina | |
Gabara et al. | Accuracy study of close range 3D object reconstruction based on point clouds | |
Doria et al. | Techniques for mosaics documentation through photogrammetry data acquisition. The Byzantine mosaics of the nativity church | |
Karakus | Analysis of the Methods Used in Documentation of Historical Structures with Examples | |
Buatik et al. | 3D model-based image registration for change detection in historical structures via unmanned aerial vehicle | |
Starovoytov et al. | Technology of photogrammetrical imaging and processing of the sample surface aimed to porosity definition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20210527 |
|
NF4A | Reinstatement of patent |
Effective date: 20220321 |