RU2599669C1 - Tubular rectangular silencer - Google Patents
Tubular rectangular silencer Download PDFInfo
- Publication number
- RU2599669C1 RU2599669C1 RU2015136123/06A RU2015136123A RU2599669C1 RU 2599669 C1 RU2599669 C1 RU 2599669C1 RU 2015136123/06 A RU2015136123/06 A RU 2015136123/06A RU 2015136123 A RU2015136123 A RU 2015136123A RU 2599669 C1 RU2599669 C1 RU 2599669C1
- Authority
- RU
- Russia
- Prior art keywords
- sound
- silencer
- values
- lies
- rectangular
- Prior art date
Links
- 230000003584 silencer Effects 0.000 title claims abstract description 25
- 239000006096 absorbing agent Substances 0.000 claims abstract description 28
- -1 basalt wool P-75 Substances 0.000 claims abstract description 15
- 239000011490 mineral wool Substances 0.000 claims abstract description 13
- 239000011491 glass wool Substances 0.000 claims abstract description 9
- 239000012780 transparent material Substances 0.000 claims abstract description 8
- 210000002268 wool Anatomy 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims description 19
- 239000011358 absorbing material Substances 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract 1
- 230000030279 gene silencing Effects 0.000 abstract 1
- 239000011521 glass Substances 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 230000001629 suppression Effects 0.000 abstract 1
- 238000013016 damping Methods 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 6
- 239000011152 fibreglass Substances 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000013521 mastic Substances 0.000 description 2
- 239000006262 metallic foam Substances 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 229910000048 titanium hydride Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N1/00—Silencing apparatus characterised by method of silencing
- F01N1/003—Silencing apparatus characterised by method of silencing by using dead chambers communicating with gas flow passages
- F01N1/006—Silencing apparatus characterised by method of silencing by using dead chambers communicating with gas flow passages comprising at least one perforated tube extending from inlet to outlet of the silencer
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Building Environments (AREA)
Abstract
Description
Изобретение относится к технике глушения шума.The invention relates to a technique for damping noise.
Наиболее близким решением по технической сущности является глушитель шума по Патенту РФ №2306431, F01N 1/00, содержащий цилиндрический корпус, впускной и выпускной патрубки и звукопоглотитель (прототип).The closest solution in technical essence is a silencer according to RF Patent No. 2306431,
Недостатком его является сравнительно невысокая эффективность шумоглушения.Its disadvantage is the relatively low efficiency of sound attenuation.
Технический результат - повышение эффективности шумоглушения.The technical result is an increase in the efficiency of sound attenuation.
Это достигается тем, что в трубчатом прямоугольном глушителе шума, содержащим корпус прямоугольного сечения, жестко соединенный с торцевым впускным и выпускным патрубками, звукопоглотитель, расположенный между корпусом и перфорированным элементом, и акустически прозрачный материал, расположенный между перфорированным элементом и звукопоглотителем, отношение длин сторон прямоугольного внешнего сечения корпуса глушителя B/H лежит в оптимальном интервале величин: B/H=1,0…1,5; а отношение длин сторон прямоугольного внутреннего сечения корпуса глушителя B/H лежит в оптимальном интервале величин: b/h=1,0…2,0; а отношение разности длин сторон прямоугольного внешнего и внутреннего сечений корпуса глушителя к его длине лежит в оптимальном интервале величин: (В-H)/L=(b-h)/L=0,2…0,42; а отношение длин l патрубков к длине L глушителя лежит в оптимальном интервале величин: l/L=0,051…0,104; а отношение длин сторон осевой разметки крепежных отверстий на фланцах патрубков лежит в оптимальном интервале величин: d/t=0,5…1,5; а отношение площади свободного сечения F к длине глушителя L лежит в оптимальном интервале величин: F/L=0,02…0,34; а звукопоглотитель выполнен из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «Повиден».This is achieved by the fact that in a tubular rectangular silencer containing a rectangular housing, rigidly connected to the end inlet and outlet pipes, a sound absorber located between the body and the perforated element, and an acoustically transparent material located between the perforated element and the sound absorber, the ratio of the lengths of the sides of the rectangular the external cross section of the muffler housing B / H lies in the optimal range of values: B / H = 1.0 ... 1.5; and the ratio of the lengths of the sides of the rectangular internal section of the silencer body B / H lies in the optimal range of values: b / h = 1.0 ... 2.0; and the ratio of the difference in the lengths of the sides of the rectangular external and internal sections of the silencer body to its length lies in the optimal range of values: (B-H) / L = (b-h) / L = 0.2 ... 0.42; and the ratio of the lengths l of the pipes to the length L of the silencer lies in the optimal range of values: l / L = 0.051 ... 0.104; and the ratio of the lengths of the sides of the axial marking of the mounting holes on the flanges of the nozzles lies in the optimal range of values: d / t = 0.5 ... 1.5; and the ratio of the free cross-sectional area F to the length of the silencer L lies in the optimal range of values: F / L = 0.02 ... 0.34; and the sound absorber is made of rockwool basalt mineral wool or URSA mineral wool or P-75 basalt wool or glass wool lined with glass wool or foamed polymer, such as polyethylene or polypropylene, the sound absorbing element throughout it is lined with an acoustically transparent material, for example, fiberglass type EZ-100 or polymer type "Poviden."
На фиг. 1 представлен фронтальный разрез предлагаемого глушителя шума, на фиг. 2 - профильная проекция, на фиг. 3 - вариант выполнения звукопоглотителя 2.In FIG. 1 shows a frontal section of the proposed silencer, FIG. 2 is a profile projection, in FIG. 3 - embodiment of the sound absorber 2.
Трубчатый прямоугольный глушитель шума содержит корпус 3 прямоугольного сечения, жестко соединенный с торцевым впускным 4 и выпускным 5 патрубками, звукопоглотитель 2, расположенный между корпусом и перфорированным элементом 1, и акустически прозрачный материал 6, расположенный между перфорированным элементом 1 и звукопоглотителем 2. При этом: отношение длин сторон прямоугольного внешнего сечения корпуса глушителя B/H лежит в оптимальном интервале величин: B/H=1,0…1,5; а отношение длин сторон прямоугольного внутреннего сечения корпуса глушителя B/H лежит в оптимальном интервале величин: b/h=1,0…2,0; отношение разности длин сторон прямоугольного внешнего и внутреннего сечений корпуса глушителя к его длине лежит в оптимальном интервале величин: (В-H)/L=(b-h)/L=0,2…0,42; отношение длин l патрубков к длине L глушителя лежит в оптимальном интервале величин: l/L=0,051…0,104; отношение длин сторон осевой разметки крепежных отверстий на фланцах патрубков лежит в оптимальном интервале величин: d/t=0,5…1,5; отношение площади свободного сечения F к длине глушителя L лежит в оптимальном интервале величин: F/L=0,02…0,34.A rectangular tubular silencer comprises a
Корпус 3 и патрубки 4 и 5 выполнены из конструкционных материалов, с нанесенным на их поверхности с одной или двух сторон слоя мягкого вибродемпфирующего материала, например мастики ВД-17, или материала типа «Герлен-Д», при этом соотношение между толщинами материала и вибродемпфирующего покрытия лежит в оптимальном интервале величин: 1/(2,5…3,5).The
Звукопоглотитель 2 выполнен из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «Повиден».
Звукопоглотитель 2 выполнен на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа.
Звукопоглотитель 2 выполнен из жесткого пористого шумопоглощающего материала, например пеноалюминия или металлокерамики, или металлопоролона, или камня-ракушечника со степенью пористости, находящейся в диапазоне оптимальных величин: 30…45%. Звукопоглотитель выполнен в виде крошки из твердых вибродемпфирующих материалов, например эластомера, полиуретана, или пластиката типа «Агат», «Антивибрит», «Швим», причем размер фракций крошки лежит в оптимальном интервале величин: 0,3…2,5 мм.
Трубчатый прямоугольный глушитель шума работает следующим образом.A tubular rectangular silencer operates as follows.
Звуковые волны вместе с турбулентным потоком сжатого воздуха поступают в полость глушителя и взаимодействуют со звукопоглотителем 2. Конструкция глушителя шума проста в изготовлении и обслуживании. Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора, о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя 2. Коэффициент перфорации перфорированного элемента 1 принимается равным или более 0,25. Для предотвращения высыпания мягкого звукопоглотителя предусмотрен акустически прозрачный материал 6, например стеклоткань типа ЭЗ-100, расположенная между звукопоглотителем 2 и перфорированным элементом 1.Sound waves, together with a turbulent stream of compressed air, enter the silencer cavity and interact with sound absorber 2. The design of the noise silencer is simple to manufacture and maintain. The transition of sound energy into thermal energy (dissipation, energy dissipation) occurs in the pores of the sound absorber, which are the Helmholtz resonator model, where energy losses occur due to friction of the mass of air in the resonator neck oscillating with the excitation frequency against the wall of the neck itself, which has the form branched pore network of the sound absorber 2. The perforation coefficient of the
Возможен вариант выполнения звукопоглотителя 2 в виде звукопоглощающего элемента прямоугольного сечения (фиг. 3), стенки которого выполнены в виде жесткой 5 и перфорированной 8 стенок, между которыми расположены два слоя: звукоотражающий слой 6, прилегающий к жесткой стенке 5, и звукопоглощающий слой 7, прилегающий к перфорированной стенке 8. При этом слой звукоотражающего материала выполнен сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, а перфорированная стенка имеет следующие параметры перфорации: диаметр отверстий - 3÷7 мм, процент перфорации 10%÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности. В качестве звукопоглощающего материала слоя 7 может быть применена минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена. Поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух (например, «Acutex T») или покрывается воздухопроницаемыми тканями или неткаными материалами, например «Лутрасилом».A possible embodiment of the sound absorber 2 in the form of a sound-absorbing element of rectangular cross section (Fig. 3), the walls of which are made in the form of a rigid 5 and perforated 8 walls, between which there are two layers: a sound-reflecting layer 6 adjacent to the
В качестве звукопоглощающего материала может быть использован пористый шумопоглощающий материал, например пеноалюминий или металлокерамика или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%, или металлопоролон, или материал в виде спрессованной крошки из твердых вибродемпфирующих материалов, например эластомера, полиуретана, или пластиката типа «Агат», «Антивибрит», «Швим», причем размер фракций крошки лежит в оптимальном интервале величин: 0,3…2,5 мм, а также могут быть использованы пористые минеральные штучные материалы, например пемза, вермикулит, каолин, шлаки с цементом или другим вяжущим, или синтетические волокна, при этом поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух, например, типа Acutex T или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом.As the sound-absorbing material, a porous sound-absorbing material can be used, for example, foam aluminum or cermets or a shell rock with a porosity degree in the range of optimal values: 30–45%, or metal foam, or a material in the form of pressed chips from solid vibration-damping materials, for example, elastomer , polyurethane, or plastic compound such as "Agate", "Anti-Vibrate", "Shvim", moreover, the size of the fractions of the crumbs lies in the optimal range of values: 0.3 ... 2.5 mm, and poros can also be used mineral piece materials, such as pumice, vermiculite, kaolin, slag with cement or other binder, or synthetic fibers, while the surface of the fibrous absorbers is treated with special porous paints that allow air to pass through, for example, Acutex T or coated with breathable fabrics or non-woven materials, for example Lutrasil.
Перфорированная стенка 8 может быть выполнена из конструкционных материалов, с нанесенным на их поверхности с одной или двух сторон слоя мягкого вибродемпфирующего материала, например мастики ВД-17, или материала типа «Герлен-Д», при этом соотношение между толщинами материала и вибродемпфирующего покрытия лежит в оптимальном интервале величин: 1/(2,5…3,5).The perforated wall 8 can be made of structural materials, with a layer of soft vibration-damping material, for example, VD-17 mastic, or “Gerlen-D” type material deposited on one or two sides of the surface, and the ratio between the thicknesses of the material and the vibration-damping coating lies in the optimal range of values: 1 / (2.5 ... 3.5).
Перфорированная стенка 8 может быть выполнена из твердых, декоративных вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим», причем внутренняя поверхность перфорированной поверхности, обращенная в сторону звукопоглощающей конструкции, облицована акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден», или неткаными материалами, например «лутрасилом».The perforated wall 8 can be made of solid, decorative vibration-damping materials, for example, Agate, Anti-Vibrate, Shvim plastic compounds, the inner surface of the perforated surface facing the sound-absorbing structure, lined with an acoustically transparent material, such as fiberglass type EZ- 100 or with a “see-through” polymer, or with non-woven materials, for example, “lutrasil”.
Звукопоглощающий элемент (фиг. 3) работает следующим образом.Sound-absorbing element (Fig. 3) works as follows.
Звуковая энергия от оборудования, находящегося в помещении, или другого излучающего интенсивный шум объекта, пройдя через перфорированную стенку 8 попадает на слой 7 из мягкого звукопоглощающего материала, где происходит ее поглощение, а затем на слой 6 из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, снова направляя их на звукопоглощающий материал для вторичного поглощения и рассеяния звуковой энергии. В волокнистых поглотителях рассеяние энергии колебания воздуха и превращение ее в тепло происходит на нескольких физических уровнях. Во-первых, вследствие вязкости воздуха, а его очень много в межволоконном пространстве, колебание частиц воздуха внутри поглотителя приводит к трению. Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца".Sound energy from equipment located in the room, or other object emitting intense noise, passing through the perforated wall 8 enters the layer 7 of soft sound-absorbing material, where it is absorbed, and then to layer 6 of the sound-reflecting material of a complex profile, consisting of uniformly distributed hollow tetrahedra, allowing to reflect sound waves incident in all directions, again directing them to sound-absorbing material for secondary absorption and dissipation of sound energy. In fibrous absorbers, the dissipation of the energy of air vibrations and its transformation into heat occurs at several physical levels. Firstly, due to the viscosity of the air, and there is a lot of it in the interfiber space, the oscillation of air particles inside the absorber leads to friction. The transition of sound energy into heat (dissipation, energy dissipation) occurs in the pores of a sound absorber, which are a model of Helmholtz resonators.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015136123/06A RU2599669C1 (en) | 2015-08-26 | 2015-08-26 | Tubular rectangular silencer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015136123/06A RU2599669C1 (en) | 2015-08-26 | 2015-08-26 | Tubular rectangular silencer |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2599669C1 true RU2599669C1 (en) | 2016-10-10 |
Family
ID=57127710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015136123/06A RU2599669C1 (en) | 2015-08-26 | 2015-08-26 | Tubular rectangular silencer |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2599669C1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108039167A (en) * | 2018-01-16 | 2018-05-15 | 江苏华东正大空调设备有限公司 | A kind of array type silencer and its processing method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1196877B (en) * | 1964-04-18 | 1965-07-15 | Costa S Vasiljevic Dipl Ing Dr | Component based on the resonator principle for creating sound-absorbing surfaces or channels |
US3263771A (en) * | 1964-05-21 | 1966-08-02 | Seifert Kurt | Sound absorbing pipe lining having packing with different densities |
RU2306431C2 (en) * | 2005-12-15 | 2007-09-20 | Олег Савельевич Кочетов | Tubular rectangular muffler |
RU2389881C1 (en) * | 2009-01-15 | 2010-05-20 | Олег Савельевич Кочетов | Tubular noise suppressor to channel fans |
RU2392532C1 (en) * | 2009-01-15 | 2010-06-20 | Олег Савельевич Кочетов | Tubular rectangular noise suppressor by kochetov |
-
2015
- 2015-08-26 RU RU2015136123/06A patent/RU2599669C1/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1196877B (en) * | 1964-04-18 | 1965-07-15 | Costa S Vasiljevic Dipl Ing Dr | Component based on the resonator principle for creating sound-absorbing surfaces or channels |
US3263771A (en) * | 1964-05-21 | 1966-08-02 | Seifert Kurt | Sound absorbing pipe lining having packing with different densities |
RU2306431C2 (en) * | 2005-12-15 | 2007-09-20 | Олег Савельевич Кочетов | Tubular rectangular muffler |
RU2389881C1 (en) * | 2009-01-15 | 2010-05-20 | Олег Савельевич Кочетов | Tubular noise suppressor to channel fans |
RU2392532C1 (en) * | 2009-01-15 | 2010-06-20 | Олег Савельевич Кочетов | Tubular rectangular noise suppressor by kochetov |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108039167A (en) * | 2018-01-16 | 2018-05-15 | 江苏华东正大空调设备有限公司 | A kind of array type silencer and its processing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2600210C1 (en) | Tubular noise suppressor | |
RU2389882C1 (en) | Tubular noise suppressor | |
RU2306430C2 (en) | Tubular muffler | |
RU2599216C1 (en) | Multi-section silencer | |
RU2603854C1 (en) | Combined kochetov noise suppressor | |
RU2599669C1 (en) | Tubular rectangular silencer | |
RU2298697C1 (en) | The tubular noise muffler usable in duct fan devices | |
RU2605992C1 (en) | Noise silencer of ejection type | |
RU2606021C1 (en) | Combined noise silencer | |
RU2623584C2 (en) | Plate noise suppressor to channel fans | |
RU2641984C1 (en) | Tubular noise suppressor | |
RU2599214C1 (en) | Plate-type noise suppressor with unified plates | |
RU2594908C1 (en) | Tubular noise suppressor for channel fans | |
RU2389881C1 (en) | Tubular noise suppressor to channel fans | |
RU2627483C2 (en) | Chamber vacuum cleaner noise suppressor | |
RU2626290C1 (en) | Noise suppressor for axial fan | |
RU2627482C2 (en) | Noise suppressor for textile wastes disposal system | |
RU2637592C2 (en) | Tubular rectangular noise silencer | |
RU2627485C2 (en) | Combined noise suppressor | |
RU2604970C1 (en) | Noise silencer for system of processing textile wastes | |
RU2587515C1 (en) | Kochetov element for compressor stations silencer | |
RU2622998C2 (en) | Shop vacuum cleaner reactive noise suppressor | |
RU2641985C1 (en) | Gas flow noise suppressor | |
RU2604263C2 (en) | Element of kochetov noise suppressor | |
RU2626279C1 (en) | Tubular combined noise suppressor |