[go: up one dir, main page]

RU2596260C2 - Способ получения водородсодержащего газа из природного газа и реактор для осуществления этого способа - Google Patents

Способ получения водородсодержащего газа из природного газа и реактор для осуществления этого способа Download PDF

Info

Publication number
RU2596260C2
RU2596260C2 RU2014110691/05A RU2014110691A RU2596260C2 RU 2596260 C2 RU2596260 C2 RU 2596260C2 RU 2014110691/05 A RU2014110691/05 A RU 2014110691/05A RU 2014110691 A RU2014110691 A RU 2014110691A RU 2596260 C2 RU2596260 C2 RU 2596260C2
Authority
RU
Russia
Prior art keywords
hydrogen
containing gas
gas
oxygen
natural gas
Prior art date
Application number
RU2014110691/05A
Other languages
English (en)
Other versions
RU2014110691A (ru
Inventor
Владимир Зальманович Мордкович
Игорь Владимирович Деревич
Вадим Сергеевич Ермолаев
Илья Сергеевич Ермолаев
Эдуард Борисович Митберг
Игорь Григорьевич Соломоник
Петр Иванович Кульчаковский
Original Assignee
"Инфра Карбон Лимитед"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by "Инфра Карбон Лимитед" filed Critical "Инфра Карбон Лимитед"
Priority to RU2014110691/05A priority Critical patent/RU2596260C2/ru
Priority to US15/125,197 priority patent/US20170073226A1/en
Priority to EP15766035.8A priority patent/EP3121147A4/en
Priority to PCT/RU2015/000160 priority patent/WO2015142225A1/ru
Publication of RU2014110691A publication Critical patent/RU2014110691A/ru
Application granted granted Critical
Publication of RU2596260C2 publication Critical patent/RU2596260C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/005Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor carried out at high temperatures, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0292Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds with stationary packing material in the bed, e.g. bricks, wire rings, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00185Fingers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00327Controlling the temperature by direct heat exchange
    • B01J2208/00336Controlling the temperature by direct heat exchange adding a temperature modifying medium to the reactants
    • B01J2208/00353Non-cryogenic fluids
    • B01J2208/00362Liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00513Controlling the temperature using inert heat absorbing solids in the bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00628Controlling the composition of the reactive mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0255Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a non-catalytic partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0883Methods of cooling by indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1276Mixing of different feed components
    • C01B2203/1282Mixing of different feed components using static mixers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

Изобретение относится к области газохимии и может быть использовано для получения водородсодержащего газа на основе смеси CO и H2 (синтез-газа) из природного газа и иных углеводородных газов. Способ получения водородсодержащего газа включает смешивание природного газа с кислородом, парциальное окисление природного газа кислородом при температуре от 1300 до 1700°C с получением водородсодержащего газа и охлаждение потока полученного водородсодержащего газа до температуры ниже 550°C со скоростью более 100000°C/с. Реактор для получения водородсодержащего газа содержит расположенные последовательно по ходу технологического процесса средство подачи природного газа и кислорода, зону смешивания природного газа с кислородом, зону проведения реакции путем парциального окисления природного газа кислородом и зону охлаждения потока полученного водородсодержащего газа, при этом зона охлаждения снабжена охлаждаемым телом вращения, расположенным с обеспечением его обтекания водородсодержащим газом вдоль оси тела вращения для обеспечения интенсивного охлаждения потока водородсодержащего газа посредством его контакта с телом вращения. Изобретение обеспечивает подавление побочных реакций, приводящих к образованию сажи при проведении процесса с высокой производительностью, а также обеспечение несложной конструкции реактора при его компактных габаритах. 2 н. и 6 з.п. ф-лы, 1 ил., 1 табл., 10 пр.

Description

Изобретение относится к области газохимии и может быть использовано для получения водородсодержащего газа на основе смеси CO и H2 (синтез-газа) из природного газа и иных углеводородных газов.
В промышленности процессы получения водородсодержащего газа из природного газа применяются с начала XX века и основаны на частичном окислении метана кислородом, водяным паром или углекислотой. Также известны различные комбинации этих процессов (пароуглекислотная конверсия, автотермический риформинг).
Наиболее перспективным на данный момент является процесс парциального окисления, так как он позволяет получить синтез-газ с соотношением, необходимым для проведения ряда крупнотоннажных процессов, таких как синтез метанола или синтез Фишера - Тропша. По большей части процессы, принадлежащие к существующему уровню техники, требуют применения катализатора. Так, для процесса парциального окисления такими катализаторами являются системы Ru/Al2O3, Pt/Al2O3, Pd/Al2O3, Ni/Al2O3, Rh/MgO и Rh/ZrO2 (О.В. Крылов. Гетерогенный катализ. - М.: Академкнига, 2004, с. 605 и 606).
Более простой, гомогенный процесс без применения катализатора возможен, но требует проведения реакции при температурах свыше 1300°C, где равновесие смещено в сторону образования CO и H2. Такой некаталитический процесс был разработан в середине прошлого столетия, и представляет собой горение углеводородов в токе окислителя в свободном объеме. К настоящему времени разрабатываются модификации данного процесса, например, включающие применение плазмы (Xing Rao et al. Combustion Dynamics of Plasma-Enhanced Premixed and Nonpremixed Flames, Transactions on plasma science, vol.38, no.12, December 2010, pp.3265-3271), однако, они не нашли применения на практике.
Основными наблюдаемыми реакциями процесса являются следующие:
CH4+1/2O2=CO+2H2
CO+H2=C+H2O
CH4+2O2=CO2+2H2O
H2+1/2O2=H2O
CO+1/2O2=CO2
Из приведенной системы реакций видно, что продуктами процесса, кроме водорода и монооксида углерода, могут быть углерод (сажа), вода и диоксид углерода, которые являются нежелательными побочными продуктами процесса. Из существующих кинетических моделей сажеобразования известно, что характерное время образования сажевых частиц превышает 5 мс (Oleg A. Louchev, Thomas Laude, Yoichiro Sato, and Hisao Kanda. Diffusion-controlled kinetics of carbon nanotube forest growth by chemical vapor deposition. Journal of chemical physics, vol.118, no.16, April 2003, pp.7622-7634).
Основные требования, предъявляемые к процессу генерации водородсодержащего газа и к соответствующему устройству, - высокая производительность реактора при малых габаритах, обеспечение хорошего перемешивания сырьевого газа и газа-окислителя для исключения образования локальных очагов детонации и обеспечения стабилизации пламени, подавление протекания побочных реакций образования углерода, воды и диоксида углерода.
Известно, что проведение процесса термического парциального окисления технологически может быть реализовано в реакторе с охлаждением продуктов реакции за счет конвективного теплообмена, расширения образующихся продуктов реакции и за счет применения капельной завесы (охлаждение водой).
Реакторы, применяющие в качестве способа охлаждения продуктов реакции капельную завесу, являются в настоящее время наиболее перспективными в связи с детальной проработанностью основных конструктивных решений. Такие реакторы содержат последовательно расположенные зону протекания химической реакции (зону горения) и зону охлаждения продуктов горения, которая также является зоной промывки, позволяющей извлекать сажу, образующуюся в ходе побочных реакций. В реакторе одновременно протекают как химические реакции в свободном объеме, так и физические процессы - передача тепла от продуктов реакции к теплоносителю и его испарение, процесс неселективной физической абсорбции, при котором происходит поглощение преимущественно продуктов побочных реакций - сажи, диоксида углерода и т.д.
Одной из основных проблем, с которыми сталкиваются специалисты при разработке реакторов некаталитического высокотемпературного парциального окисления для получения водородсодержащих газов, является протекание побочных реакций сажеобразования как непосредственно в процессе химической реакции в зоне горения, так и при последующем охлаждении продуктов реакции. Если в первом случае протекание реакций сажеобразования имеет место во внешнем слое пламени, характеризующемся пониженными температурами, и, как правило, при проведении парциального окисления углеводородных газов, богатых метаном, эти реакции протекают в незначительной степени из-за пренебрежимо малых времен пребывания реагентов в зоне реакции, то во втором случае, при недостаточно высокой скорости охлаждения продуктов, образуется значительное количество сажевых частиц, которые, накапливаясь в реакторной системе, приводят к уменьшению срока эксплуатации установки, а также изменяют состав получаемого синтез-газа, влияя на соотношение H2/CO. Это связано с тем, что при температурах до 700°C образование сажи возможно, но ограничено кинетически, а при температурах выше 1300°C равновесие реакций образования сажи быстро смещается в сторону реагентов, и только при промежуточных температурах (700-1300°C) вероятность роста сажевых частиц достаточно высока.
Другой проблемой, проявляющейся в подавляющем большинстве реакторов, является сложность конструкции узла охлаждения продуктов, а также необходимость применения особых материалов в связи с высокими температурами реакции (выше 1300°C) и наличием агрессивной корозионно-активной среды. Применение таких особых конструкционных материалов приводит к существенному удорожанию реактора, а также к особым требованиям к его обслуживанию и ремонту, а кроме того, существенно уменьшается ресурс реактора.
Описан способ получения синтез-газа путем некаталитического парциального окисления, известный как SGP (Shell Gasification Process), см. C.J. Kuhre, et al. Partial Oxidation Grows Stronger in U.S., Oil and Gas Journal, vol.69, No.36, Sep. 6, 1971.).
Данный способ включает в себя использование горелки, индивидуально подбираемой для каждого типа окисляемого сырья, проведение процесса окисления в пустотелом цилиндрическом стальном реакторе с использованием футеровки при повышенных давлениях (до 58 атм), и охлаждение продуктов реакции путем теплообмена с водой через стенку во внешнем бойлере особой конструкции, препятствующей зауглероживанию теплообменной поверхности, что обеспечивает отсутствие снижения коэффициента теплопередачи, а также локальных очагов перегрева. Спиральные теплообменные трубы и специально рассчитанная скорость потока продуктов горения позволяют проводить охлаждение синтез-газа с высоким содержанием сажи (до 3% масс.), получаемого для использования в качестве сырья тяжелых топлив, и обеспечивают долгий период работы без остановки на обслуживание аппарата. Основными недостатками указанного способа являются необходимость строгого обеспечения заданного состава сырья для поддержания теплового режима процесса, а также наличие сажи в продуктах реакции.
Известен также способ и устройство для получения синтез-газа из углеводородного сырья и воздуха методом некаталитического парциального окисления по патенту RU 2191743 C2, 2002. Способ получения синтез-газа включает в себя смешивание углеводородного сырья с воздухом, принудительное воспламенение воздушно-углеводородной смеси и парциальное окисление углеводородного сырья кислородом воздуха в реакционной зоне, представляющей собой проточную камеру горения, при этом принудительное воспламенение проводят при отношении кислорода к углеводородному сырью 0,6-0,7 и после прогрева проточной камеры горения это отношение доводят до значения 0,30-0,56. Охлаждение продуктов происходит за счет их расширения, а также за счет конвективного теплообмена во встроенном в реактор рекуперативном теплообменнике, выполненном в виде системы трубчатых нагревателей углеводородного сырья и воздуха. Теплоносителем в данной системе являются продукты реакции горения. Воздух, помимо поступления в трубчатый нагреватель, поступает также в герметичную оболочку камеры сгорания со вставками из жаропрочного материала, например керамики, и создает дополнительную прослойку охлаждения. При такой организации реактора охлаждение продуктов парциального окисления происходит со скоростью не менее 3000°C/с, что, однако, не обеспечивает подавление образования продуктов уплотнения углерода (сажи). Кроме указанного недостатка, связанного с медленным охлаждением, такой реактор сложен в изготовлении и обслуживании. Процесс проводится с использованием в качестве теплоносителя воздуха, что приводит к существенному разбавлению продуктов реакции. Кроме того, процесс характеризуется получением основных продуктов, водорода и монооксида углерода, в соотношении 1,6, что не соответствует требованиям к проведению некоторых каталитических процессов переработки синтез-газа (например, в синтезах метанола или Фишера - Тропша).
Описан способ и устройство получения синтез-газа парциальным окислением углеводородов без использования катализатора в объеме цилиндра двигателя внутреннего сгорания. Способ заключается в том, что предварительно смешанное углеводородное сырье и воздух нагревают до температуры 200-450°C и подают в объем цилиндра двигателя при движении поршня к нижней мертвой точке. При движении поршня к верхней мертвой точке происходит самовоспламенение смеси с достижением температуры 1300-2300°C на период 10-2-10-3 с и охлаждение продуктов за счет расширения при последующем движении поршня к нижней мертвой точке, с последующим выводом продуктов. Описанный цикл повторяют с частотой, превышающей 350 мин-1 (патент RU 2096313 C1, 1997). Основным недостатком данного способа является отсутствие непрерывности процесса вследствие его цикличности, т.е. данный способ невозможно проводить при непрерывном прямом потоке реагентов. Кроме того, данная установка недостаточно надежна и долговечна, так как ее работа связана с движением основных деталей (таких как поршень, кривошип и клапаны), и, как следствие, их износом.
Известен способ и устройство получения синтез-газа некаталитическим парциальным окислением газообразных углеводородов по патенту CN 101245263 B, 2011. В данном способе получаемые продукты, выходя из камеры сгорания в виде сужающегося на конечном участке полого цилиндра с охлаждаемой рубашкой, попадают в зону охлаждения, в которой последовательно проходят сквозь область капельной завесы, затем проходят сквозь слой воды и, проходя через барботажные тарелки, покидают реактор. В данном случае, помимо охлаждения, в реакторе также происходит отмывка продуктов от сажи (ее содержание в получаемом синтез-газе не превышает 1-3 ppm), однако данный способ не способствует подавлению реакций ее образования. Этот способ выбран в качестве наиболее близкого аналога настоящего изобретения.
Необходимо отметить, что в перечисленных известных способах сгорание углеводородов происходит в свободном объеме, что связано с повышенной пожаро- и взрывоопасностью.
Преодолеть изложенные выше недостатки известных технических решений возможно за счет существенного снижения времени охлаждения образующихся в ходе реакции продуктов при одновременном использовании простой и надежной конструкции аппарата.
Технической задачей настоящего изобретения является создание такого способа получения водородсодержащего газа на основе смеси монооксида углерода и водорода (синтез-газа) путем некаталитического высокотемпературного парциального окисления газообразного углеводородного сырья, который обеспечил бы подавление побочных реакций, приводящих к образованию сажи при проведении процесса преимущественно с высокой производительностью. Задачей настоящего изобретения является также создание такого реактора для проведения указанного способа, который имел бы несложную конструкцию при компактных габаритах.
Применительно к способу по настоящему изобретению решение указанной задачи достигается тем, что в способе получения водородсодержащего газа, включающем в себя смешивание природного газа с кислородом, парциальное окисление природного газа кислородом при температуре от 1300 до 1700°C с получением водородсодержащего газа и охлаждение потока полученного водородсодержащего газа, согласно настоящему изобретению охлаждение потока водородсодержащего газа осуществляют до температуры ниже 550°C со скоростью более 100000°C/с.
Указанная скорость охлаждения потока полученного водородсодержащего газа обеспечивает время его охлаждения до температуры ниже 550°C не более 5 мс, что позволяет гарантированно проводить способ без образования сажи как побочного продукта.
Для обеспечения охлаждения с указанной скоростью оно может осуществляться путем контакта потока водородсодержащего газа с охлаждаемым телом вращения. Линейная скорость потока водородсодержащего газа при контакте с охлаждаемым телом вращения составляет преимущественно не менее 40 м/с.
Для интенсификации процесса охлаждения в поток водородсодержащего газа перед его контактом с охлаждаемым телом вращения можно впрыскивать воду в количестве не менее 10 кг воды на 1 кг водородсодержащего синтез-газа.
Для обеспечения пожаро- и взрывобезопасности способа по настоящему изобретению смешивание природного газа с кислородом и парциальное окисление природного газа кислородом можно проводить в пористой среде жаропрочного материала, в качестве которого может быть использован керамический материал.
Вышеуказанные параметры проведения способа по настоящему изобретению основываются на следующем.
Проведение реакции парциального окисления природного газа при температуре от 1300°C до 1700°C обеспечивает подавление реакций образования сажи в зоне протекания реакции горения, не выходя за границы температурной стойкости применяемых материалов.
Как видно из приведенной ниже таблицы, скорость охлаждения синтез-газа взаимосвязана со скоростью потока водородсодержащего газа на выходе из аппарата. Для поддержания скорости охлаждения выше 100000°C/с необходима линейная скорость потока водородсодержащего газа при его контакте с охлаждаемым телом вращения более 40 м/с. Помимо скорости потока водородсодержащего газа, на скорость охлаждения синтез-газа можно, как очевидно из уровня техники, повлиять также путем впрыскивания воды. Однако, как известно из опыта авторов настоящего изобретения, для интенсификации процесса охлаждения в поток водородсодержащего газа перед его контактом с охлаждаемым телом вращения необходимо впрыскивать воду в количестве не менее 10 кг воды на 1 кг водородсодержащего синтез-газа, а меньшее количество впрыскиваемой воды существенно на технический результат не влияет.
Температура охлажденного водородсодержащего газа (ниже 550°C) выбрана за пределами области протекания реакций образования сажи (700°C-1300°C) для предотвращения протекания этих реакций за пределами реактора.
Применительно к устройству по настоящему изобретению решение указанных выше задач достигается тем, что в реакторе для получения водородсодержащего газа (синтез-газа), содержащем расположенные последовательно по ходу технологического процесса средство подачи природного газа и кислорода, зону смешивания природного газа с кислородом, зону проведения реакции путем парциального окисления природного газа кислородом и зону охлаждения потока полученного водородсодержащего газа, согласно настоящему изобретению, зона охлаждения снабжена охлаждаемым телом вращения, расположенным с обеспечением его обтекания водородсодержащим газом вдоль оси тела вращения для обеспечения интенсивного охлаждения потока водородсодержащего газа посредством его контакта с указанным телом вращения.
Охлаждаемое тело вращения имеет преимущественно обтекаемую форму для предотвращения возникновения обратных потоков при скорости потока водородсодержащего газа не менее 40 м/с.
С целью дополнительной интенсификации процесса охлаждения потока водородсодержащего газа реактор по настоящему изобретению может быть снабжен по меньшей мере одной форсункой для впрыскивания воды в зону охлаждения перед телом вращения.
Для обеспечения пожаро- и взрывобезопасности процесса зоны смешивания и проведения реакции в реакторе по настоящему изобретению могут быть заполнены пористым жаропрочным материалом.
На чертеже схематично изображен общий вид примера реактора по настоящему изобретению в продольном разрезе.
В показанном на чертеже варианте реактор для осуществления способа по настоящему изобретению выполнен в виде вертикального аппарата с верхней подачей реагентов и с движением потока газов сверху вниз соответственно. Реактор содержит расположенные последовательно средство подачи природного газа и кислорода, выполненное в виде узла ввода 1, зону смешивания 2 природного газа с кислородом, реакционную зону 3 (зону проведения реакции путем парциального окисления природного газа кислородом) с камерой горения 4 и зону охлаждения 5 потока полученного водородсодержащего газа. Зона смешивания 2 и реакционная зона 3 (за исключением камеры горения 4) заполнены пористым жаропрочным керамическим материалом. Зона охлаждения 5 содержит первую по ходу течения продуктов реакции полую часть 6, ничем не заполненную, и вторую по ходу течения продуктов реакции часть 7, в которой установлено охлаждаемое тело вращения 8. Первая часть 6 зоны охлаждения 5 снабжена одной или несколькими форсунками 9 для впрыска воды.
Способ по настоящему изобретению осуществляют в предложенном реакторе следующим образом.
Природный газ и кислород, проходя через узел ввода 1, попадают в зону смешения 2, заполненную пористым керамическим материалом, после чего смесь поступает в камеру горения 4, где воспламеняется от искры или от раскаленного тела, например платиновой нити, и поступает в реакционную зону 3, в которой происходит образование водородсодержащего газа (синтез-газа). Далее, в первой части 6 зоны охлаждения 5 синтез-газ, смешиваясь с вводимой через форсунки 9 водой, поступает во вторую часть 7 зоны охлаждения 5, где синтез-газ контактирует с охлаждаемым телом вращения 8, обтекая его вдоль оси 10 по всей окружности тела вращения 8, за счет чего тепло химической реакции отводится путем конвективного теплообмена синтез-газа с охлаждающим агентом, например водой, через стенку охлаждаемого тела вращения 8, внутри которого теплоноситель частично испаряется, поглощая таким образом переданное тепло за счет теплоты испарения.
Как показали многочисленные исследования авторов настоящего изобретения, результаты которых частично приведены в представленной ниже таблице, добиться поддержания оптимального режима работы реактора, когда не происходит образования побочных продуктов, возможно за счет охлаждения получаемого синтез-газа за время, не превышающее 5 мс, которое обеспечивается скоростью охлаждения потока синтез-газа более 100000°C/с. Конструктивно данный режим может быть реализован в реакторе при скорости горячего водородсодержащего газа, поступающего в зону обтекания охлаждаемого тела вращения при скорости не ниже 40 м/с.
По сравнению с известными аналогами при равной производительности реактора достигается подавление протекания побочных реакций и, как следствие, обеспечивается образование более чистого продукта с соотношением ближе к стехиометрическому, что подтверждается нижеприведенными примерами осуществления способа по настоящему изобретению.
Далее приводятся примеры осуществления некаталитического способа получения водородсодержащего газа путем парциального окисления природного газа кислородом с использованием реактора по настоящему изобретению при различных режимах. Примеры 3, 4 и 8 соответствуют способу по настоящему изобретению, а примеры 1, 2, 5-7, 9, 10 приведены в качестве сравнения. Во всех примерах подачу реагентов в реактор осуществляли при атмосферном давлении, а плотность получаемого синтез-газа составляла 0,065 кг/м3.
Пример 1
В проточный реактор с внутренним диаметром 25 мм, зона смешивания и реакционная зона которого заполнены керамической засыпкой, например шарообразными частицами высокотемпературного корунда, подавали кислород и углеводородный газ (метан) в соотношении, близком к стехиометрическому при атмосферном давлении. Полученный в результате реакции горения синтез-газ при температуре выше 1300°C и массовом расходе 0,0001 кг/с смешивали с подаваемой через форсунку водой в количестве 0,0011 кг/с и подавали на охлаждаемое тело вращения диаметром 20 мм при температуре окружающей среды, которая была ниже 30°C. На выходе из реактора скорость синтез-газа составила 12,8 м/с. При этом синтез-газ охладился до температуры ниже 550°C за 18 мс, что не дало требуемого результата, так как при этом времени охлаждения образовалась сажа.
Другие примеры осуществления способа аналогичны примеру 1, за исключением того, что в примере 5 массовый расход синтез-газа соответствует сверхзвуковому течению, что неизбежно приводит к разрушению деталей реактора и не позволяет проводить процесс получения синтез-газа, примеры 6-8 соответствуют проведению реакции без добавления воды (капельной завесы) в зону охлаждения, в примере 9 температура реакции лежит в области протекания реакции сажеобразования, а в примере 10 температура в реакторе выше предела температурной стойкости применяемого материала, что приводит к разрушению реактора.
Как видно из приведенных примеров, осуществление способа согласно настоящему изобретению (примеры 3, 4 и 8) позволяет решить поставленную техническую задачу, а именно обеспечить получение синтез-газа путем некаталитического высокотемпературного парциального окисления газообразного углеводородного сырья с подавлением побочных реакций.
При сравнении примеров 3, 4 и 6, 7 видно, что добавление воды значительно интенсифицирует процесс охлаждения водородсодержащего газа, позволяя в примерах 3-4 исключить образование сажи.
Примеры 1, 2 и 6, 7 показывают, что при выборе неоптимального массового расхода сырья может не достигаться необходимая скорость потока продуктов реакции, необязательно разбавленных водой, перед контактом с охлаждаемым телом вращения, что приведет к повышенному времени пребывания в зоне обтекания охлаждаемого тела вращения до достижения температуры менее 550°C и созданию условий для протекания побочных реакций, в том числе сопровождающихся сажеобразованием. В частности, в этих примерах не достигается требуемая скорость синтез-газа на выходе из аппарата, как и скорость охлаждения получаемого газа, что приводит к образованию сажи.
Figure 00000001
Figure 00000002

Claims (10)

1. Способ получения водородсодержащего газа, включающий в себя смешивание природного газа с кислородом, парциальное окисление природного газа кислородом при температуре от 1300 до 1700°C с получением водородсодержащего газа и охлаждение потока полученного водородсодержащего газа, отличающийся тем, что охлаждение потока водородсодержащего газа осуществляют до температуры ниже 550°C со скоростью более 100000°C/с.
2. Способ по п. 1, отличающийся тем, что охлаждение потока водородсодержащего газа осуществляют путем его контакта с охлаждаемым телом вращения.
3. Способ по п. 2, отличающийся тем, что линейная скорость потока водородсодержащего газа при контакте с охлаждаемым телом вращения составляет не менее 40 м/с.
4. Способ по п. 2, отличающийся тем, что в поток водородсодержащего газа перед его контактом с охлаждаемым телом вращения впрыскивают воду в количестве не менее 10 кг воды на 1 кг водородсодержащего синтез-газа.
5. Способ по п. 1, отличающийся тем, что смешивание природного газа с кислородом и парциальное окисление природного газа кислородом проводят в пористой среде жаропрочного материала.
6. Способ по п. 5, отличающийся тем, что в качестве жаропрочного материала используют керамический материал.
7. Реактор для получения водородсодержащего газа, содержащий расположенные последовательно по ходу технологического процесса средство подачи природного газа и кислорода, зону смешивания природного газа с кислородом, зону проведения реакции путем парциального окисления природного газа кислородом и зону охлаждения потока полученного водородсодержащего газа, отличающийся тем, что зона охлаждения снабжена охлаждаемым телом вращения, расположенным с обеспечением его обтекания водородсодержащим газом вдоль оси тела вращения для обеспечения интенсивного охлаждения потока водородсодержащего газа посредством его контакта с указанным телом вращения.
8. Реактор по п. 7, отличающийся тем, что охлаждаемое тело вращения имеет обтекаемую форму.
9. Реактор по п. 7, отличающийся тем, что он снабжен по меньшей мере одной форсункой для впрыскивания воды в зону охлаждения перед телом вращения.
10. Реактор по п. 7, отличающийся тем, что зоны смешивания и проведения реакции заполнены пористым жаропрочным материалом.
RU2014110691/05A 2014-03-20 2014-03-20 Способ получения водородсодержащего газа из природного газа и реактор для осуществления этого способа RU2596260C2 (ru)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2014110691/05A RU2596260C2 (ru) 2014-03-20 2014-03-20 Способ получения водородсодержащего газа из природного газа и реактор для осуществления этого способа
US15/125,197 US20170073226A1 (en) 2014-03-20 2015-03-19 Method for producing hydrogen-containing gas and reactor for implementing said method
EP15766035.8A EP3121147A4 (en) 2014-03-20 2015-03-19 Method for producing hydrogen-containing gas, and reactor for implementing said method
PCT/RU2015/000160 WO2015142225A1 (ru) 2014-03-20 2015-03-19 Способ получения водородосодержащего газа и реактор для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014110691/05A RU2596260C2 (ru) 2014-03-20 2014-03-20 Способ получения водородсодержащего газа из природного газа и реактор для осуществления этого способа

Publications (2)

Publication Number Publication Date
RU2014110691A RU2014110691A (ru) 2015-09-27
RU2596260C2 true RU2596260C2 (ru) 2016-09-10

Family

ID=54145038

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014110691/05A RU2596260C2 (ru) 2014-03-20 2014-03-20 Способ получения водородсодержащего газа из природного газа и реактор для осуществления этого способа

Country Status (4)

Country Link
US (1) US20170073226A1 (ru)
EP (1) EP3121147A4 (ru)
RU (1) RU2596260C2 (ru)
WO (1) WO2015142225A1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2096313C1 (ru) * 1996-08-13 1997-11-20 Экспериментальный комплекс "Новые энергетические технологии" Объединенного института высоких температур РАН Способ получения синтез-газа
RU2191743C2 (ru) * 2000-09-26 2002-10-27 Плаченов Борис Тихонович Способ получения синтез-газа и устройство для его осуществления
RU2198838C1 (ru) * 2002-01-29 2003-02-20 Писаренко Елена Витальевна Способ получения метанола
RU2228901C2 (ru) * 2002-01-09 2004-05-20 Институт нефтехимического синтеза им. А.В. Топчиева РАН Способ получения синтез-газа
CN101245263A (zh) * 2008-01-27 2008-08-20 中国石油化工集团公司 劣质原料非催化部分氧化气化炉

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU924491A1 (ru) * 1980-02-21 1982-04-30 Производственное Объединение По Проектированию,Наладке,Модернизации И Ремонту Энергетического Оборудования "Центроэнергоцветмет" Устройство дл охлаждени отход щих газов промышленных печей
US5861441A (en) * 1996-02-13 1999-01-19 Marathon Oil Company Combusting a hydrocarbon gas to produce a reformed gas
US20020020113A1 (en) * 1997-12-01 2002-02-21 The Board Of Trustees Of The University Of Superadiabatic generation of hydrogen and hydrocarbons
US7510793B2 (en) * 2004-08-05 2009-03-31 Rolls-Royce Fuel Cell Systems (Us) Inc. Post-reformer treatment of reformate gas
RU2631431C2 (ru) * 2012-09-05 2017-09-22 Басф Се Способ получения ацетилена и синтез-газа

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2096313C1 (ru) * 1996-08-13 1997-11-20 Экспериментальный комплекс "Новые энергетические технологии" Объединенного института высоких температур РАН Способ получения синтез-газа
RU2191743C2 (ru) * 2000-09-26 2002-10-27 Плаченов Борис Тихонович Способ получения синтез-газа и устройство для его осуществления
RU2228901C2 (ru) * 2002-01-09 2004-05-20 Институт нефтехимического синтеза им. А.В. Топчиева РАН Способ получения синтез-газа
RU2198838C1 (ru) * 2002-01-29 2003-02-20 Писаренко Елена Витальевна Способ получения метанола
CN101245263A (zh) * 2008-01-27 2008-08-20 中国石油化工集团公司 劣质原料非催化部分氧化气化炉

Also Published As

Publication number Publication date
WO2015142225A1 (ru) 2015-09-24
EP3121147A4 (en) 2017-11-08
RU2014110691A (ru) 2015-09-27
EP3121147A1 (en) 2017-01-25
US20170073226A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
CN113164906B (zh) 用于产生一种或多种产物的方法和反应器
US4071330A (en) Steam reforming process and apparatus therefor
US20160340187A1 (en) Steam methane reforming reactor with hydrogen selective membrane
JP2022109061A (ja) アンモニア分解装置
US20090100752A1 (en) Device for converting carbonaceous matter into synthesis gas and associated methods
RU2320531C2 (ru) Способ получения синтез-газа при горении и устройство для его осуществления
RU2346737C2 (ru) Теплоизолированный высокотемпературный реактор
CN112607705A (zh) 一种水蒸气甲烷重整制氢装置及工艺
CN102556965B (zh) 一种液态碳氢燃料催化重整冷却高温部件的方法
EP1996679A1 (en) A method of converting coal into fuels
Levikhin et al. High-temperature reactor for hydrogen production by partial oxidation of hydrocarbons
JP2008214165A (ja) 可燃ガス混合方法及び混合器
WO2009154512A2 (ru) Способ получения синтез-газа и устройство для его осуществления
US10370605B2 (en) Coaxial gasifier for enhanced hydrogen production
KR102379772B1 (ko) 수소 함유 가스를 수득하기 위한 장치 및 방법
US4069005A (en) Method and apparatus for producing heat
RU2548410C2 (ru) Способ и устройство для получения синтез-газа
RU2596260C2 (ru) Способ получения водородсодержащего газа из природного газа и реактор для осуществления этого способа
Arutyunov et al. A generator of synthesis gas and hydrogen based on a radiation burner
US7815875B2 (en) Device for converting gaseous streams
US2697032A (en) Acetylene gas producer
JPS649358B2 (ru)
RU2615768C1 (ru) Реактор для каталитической паровой и пароуглекислотной конверсии углеводородов
RU191712U1 (ru) Устройство получения синтез-газа
RU2412109C1 (ru) Способ одностадийного получения синтез-газа при горении и устройство для его осуществления

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20201211