RU2576292C2 - Способ обработки поверхности для повышения степени черноты - Google Patents
Способ обработки поверхности для повышения степени черноты Download PDFInfo
- Publication number
- RU2576292C2 RU2576292C2 RU2014108273/02A RU2014108273A RU2576292C2 RU 2576292 C2 RU2576292 C2 RU 2576292C2 RU 2014108273/02 A RU2014108273/02 A RU 2014108273/02A RU 2014108273 A RU2014108273 A RU 2014108273A RU 2576292 C2 RU2576292 C2 RU 2576292C2
- Authority
- RU
- Russia
- Prior art keywords
- microcraters
- microrelief
- radiation
- energy
- treated surface
- Prior art date
Links
Images
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
Abstract
Изобретение относится к способу обработки поверхности для повышения степени ее черноты перед нанесением основного покрытия и может быть использовано при производстве светопоглащающих элементов объективов, гелиотермических преобразователей. Выбирают зону обработки на поверхности изделия. Обрабатывают с помощью энергетического облучения и получают на обрабатываемой поверхности микрорельеф. После чего перемещают зону обработки и многократно повторяют операции. Используют энергетическое облучение в виде абляции. Получают рельеф в виде отдельно стоящих микрократеров, расположенных на расстоянии друг от друга, не превышающем 1,5 диаметра микрократера. Необходимую глубину микрократера формируют разовым воздействием энергетического облучения заданной длительности и мощности облучения. 3 ил., 1пр.
Description
Изобретение относится к способу предварительной подготовки поверхности перед нанесением основного покрытия и может быть использовано при производстве светопоглащающих элементов объективов, гелиотермических преобразователей.
Известен способ лазерного гравирования (патент РФ №2080971 C1, МПК: В23К 26/00, опубл. 10.06.1997), согласно которому поток лазерного излучения модулируют по времени, сфокусированный лазерный пучок направляют на обрабатываемую поверхность заготовки, осуществляют его сканирование по обрабатываемой поверхности для получения заданного контура, причем выбирают скорость перемещения лазерного луча такой, чтобы за один проход удалялся слой материала, глубина которого соответствует требуемой точности формирования контура и профиля элемента рисунка, формируют требуемый профиль элемента рисунка путем повторения процедуры сканирования, при удалении материала из глубинной зоны пространства между элементами рисунка повышают мощность лазерного излучения и увеличивают скорость перемещения лазерного пучка, управление процессом обработки осуществляют с помощью ЭВМ. Формирование рельефа поверхности осуществляется испарением части материала изделия под действием концентрированного лазерного излучения. При этом плотность излучения лазера должна быть такой, чтобы обеспечить удаление слоя материала, не разрушая близлежащие участки, но у данного способа высокие абсолютные значения температуры и температурные градиенты, достигающие в зоне обработки 106 К/см и выше, ведущие к пластическим деформациям материала, а после выравнивания температуры имеющие следствием остаточные механические напряжения в окрестности зоны обработки. У хрупких материалов эти напряжения могут превзойти предел прочности, что ведет к появлению трещин и разрушению изделия. Кроме этого, при уносе материала испарением появляются погрешности обработки за счет неполного уноса или возврата части материала в зону обработки, что снижает качество обработанной поверхности.
Известен способ изготовления селективной поверхностной структуры на изделиях для эффективного поглощения солнечного излучения (патент РФ №2109229 C1, МПК: F24J 2/48, F24J 2/26, опубл. 20.04.1998), согласно которому на поверхности изделия формируется система близкорасположенных микровыступов высотой до 5 мкм и поперечными размерами 1-1,5 мкм, состоящих из еще более мелких выступов. Микровыступы создавали на поверхности металла путем нагрева и ионной бомбардировки с одновременным осаждением, например методом катодного распыления атомов одного или двух иных металлов. Коэффициент поглощения слоя достигал до 95%. Собственное излучение снижалось до 2-15%. Оптические характеристики слоя практически не изменяются при углах 0-60° от нормали. Поглощающий слой, выполненный описанным способом на поверхности меди, не разрушается при термоциклировании путем нагрева в вакууме от комнатной температуры до температуры 700°C. Для формирования светопоглощающей структуры согласно данному способу необходимо бомбардировать обрабатываемую поверхность потоком атомов и ионов испаренные с отдельно расположенных мишеней, для получения качественной структуры необходимо использовать подложку с высокой чистотой поверхности. Точное согласование обрабатываемых зон на поверхности металла является технологически сложным в реализации. Для изготовления по представленному способу необходимо использовать камеры ионного испарения, это существенно ограничивает площадь обрабатываемого изделия. Формируемая по данному способу структура состоит из микровыступов высотой до 5 мкм и поперечными размерами 1-3 мкм, последующее нанесение покрытия на поверхность, обработанную по данной технологии, невозможно, так как приведет к уничтожению сформированного рельефа. Неизбежное при эксплуатации загрязнение также приводит к ухудшению поглощающей способности и существенному снижению коэффициента черноты. Механическое воздействие на поверхностный слой приведет к неизбежному разрушению микрорельефа.
Наиболее близким к изобретению является способ формирования микрорельефа поверхности изделий (патент РФ №2248266 C2, МПК: B23K 26/18, B23K 15/00, B23K 15/02, опубл. 20.03.2005). В определенном месте образца концентрированным источником тепла создается зона расплава заданных размеров, управляя параметрами термовоздействия, перемещают зону расплава в определенную точку образца, где подвергают ее затвердеванию, прекращая действие концентрированного источника тепла, для формирования сложного рельефа поверхности перечисленные действия повторяют многократно, управляя процессом обработки при помощи ЭВМ. В предложенном способе обработка не сопровождается испарением материала изделия. Для плавления поверхностного слоя достаточно использовать концентрированные источники тепла с удельной плотностью энергии в фокусе 102…104 Вт/см2. Дополнительно применяют подогрев образца перед обработкой до температуры, равной 0,7…0,9 от температуры плавления материала изделия, и отжиг остаточных напряжений после обработки. Описанный способ формирования микрорельефа поверхности основан на использовании эффекта массопереноса, возникающего при плавлении поверхностного слоя изделия концентрированными источниками тепла, и применим для материалов, изменяющих свою плотность при переходе в жидкое состояние. В результате обработки поверхности по данному способу получают микрорельеф формой и габаритами, определяемыми плотностью обрабатываемого материала и площадью обрабатываемой поверхности, однако при использовании данного способа формирования микрорельефа впадины имеют небольшую глубину, либо невысокое выступание наплыва, получаемый микрорельеф не является ярко выраженным и имеет низкие характеристики светорассеяния. Номенклатура материалов, допустимых к обработке данным способом, существенно ограничена использованием эффекта массопереноса.
Задачей изобретения является создание способа обработки поверхности для повышения степени черноты.
Технический результат изобретения заключается в повышении поглощающей способности поверхностного слоя изделия, снижении доли зеркальной составляющей отраженного излучения и увеличении эффективности преобразования лучистой энергии в тепловую.
Это достигается тем, что способ обработки поверхности для повышения степени черноты путем формирования микрорельефа, при котором выбирают зону обработки на поверхности изделия, обрабатывают с помощью энергетического облучения и получают на обрабатываемой поверхности микрорельеф, после чего перемещают зону обработки и многократно повторяют операции, в отличие от известного используют энергетическое облучение в виде абляции, при котором высвобожденное вещество испаряется с обрабатываемой поверхности, получают микрорельеф в форме микрократера, а необходимую глубину микрократера формируют путем разового воздействия энергетического облучения за счет длительности и мощности облучения, при этом зону обработки перемещают с шагом L, величина которого не превышает 1,5 диаметра микрократера.
На фиг. 1 представлен профиль поверхности, обрабатываемого изделия. На фиг. 2 представлен вариант распределения микрократеров на поверхности обрабатываемого изделия. На фиг. 3 представлен вариант исполнения микропрофиля поверхности наклоненными микрократерами.
Способ обработки поверхности для повышения степени черноты заключается в том, что поток энергетического облучения направляют в зону обработки на поверхности изделия, получают микрократер. При этом используют энергетическое облучение в виде абляции. Энергетическое облучение имеет различную природу происхождения, наиболее распространенными и применимыми считаются лазерное, электроннолучевое и тепловое излучения. Абляция - процесс уноса вещества с поверхности материала под воздействием энергетического облучения. Высвобожденное вещество испаряется. Необходимую глубину микрократера формируют путем разового воздействия энергетического облучения за счет комбинации определенной величины длительности и мощности облучения. После этого зону обработки перемещают и многократно повторяют операции. Микрорельеф поверхности за счет крупных габаритов не вызывает пространственного разложения отраженного излучения в спектральном диапазоне видимого излучения, соотношение диаметра и глубины микрократеров выбирается в зависимости от укрывной способности и толщины покрытия, плотности материала обрабатываемой поверхности. В качестве материала поверхности может быть использован любой материал, поддающийся точной механической обработке. Микрократеры создаются на поверхности путем лазерной абляции обрабатываемой поверхности в задаваемых близкорасположенных точках, отстоящих одна от другой на расстояние с шагом L, не превышающим 1,.5 диаметра микрократера. Лазерная абляция является экологически чистым способом формирования микрорельефа поверхности, в качестве отходов при которой наблюдается мелкодисперсный порошок окислов обрабатываемого материала, который может быть легко осажден на фильтрах тонкой очистки вытяжной системой местной вентиляции. При создании одного микрократера на обрабатываемую поверхность энергетическое облучение оказывает разовое воздействие. Разовое воздействие - это импульсное либо беспрерывное по времени воздействие без ограничения его длительности. Микрорельеф является частью структуры материала и не претерпевает изменений при воздействиях вплоть до уровней, приводящих к фазовым переходам материала.
На фиг. 1 представлен профиль поверхности обрабатываемого изделия, состоящий из микрократера созданного в поверхностном слое изделия в разрезе. Микрократер 1 получен на поверхности изделия 2 методом абляции при энергетическом воздействии по нормали к обрабатываемой поверхности.
На фиг. 2 представлен вариант распределения микрократеров 1 по поверхности обрабатываемого изделия 2, где микрократеры 1 расположены на поверхности обрабатываемого изделия 2 с шагом L, величина которого не превышает 1,5 диаметра микрократера 1.
На фиг. 3 представлен вариант исполнения микропрофиля поверхности наклоненными микрократерами 1. Используя наклон оси энергетического облучения относительно нормали к обрабатываемой поверхности 2, можно создавать микрократеры 1 с измененным профилем и заданной ориентацией по обрабатываемой поверхности 2. Таким образом, можно обрабатывать поверхность при постоянном и одинаковом наклоне оси источника энергетического облучения к нормали обрабатываемой поверхности 2, либо при переменном наклоне оси источника энергетического облучения, либо таким образом, что величина наклона оси источника обеспечивает постоянное прохождение оси источника через определенную точку пространства, находящуюся выше источника относительно обрабатываемой поверхности 2. Наиболее эффективным изменение показателя отражения наблюдается в пределах от 0 до 60° наклона оси энергетического излучения от нормали к обрабатываемой поверхности 2.
Пример реализации способа. Металлические, например алюминиевые, изделия механической обработкой зачищались до чистоты поверхности выше величины высоты неровностей 5 Rz. После очистки обрабатываемая поверхность помещалась в точку фокуса лазерного 3-координатного ЧПУ станка, на изделие направлялся поток сфокусированного когерентного излучения, испаряющий металл на заданную глубину, формируя один микрократер за одно воздействие, распределение микрократеров по обрабатываемой поверхности обеспечивается за счет смещения точки фокусировки, коническая форма микрократеров определяется величиной перетяжки объектива станка. Время создания структуры на поверхности площадью 100 см2 составляло 2-3 ч. Обработанная поверхность представляла собой микрорельеф, состоящий из микрократеров глубиной 35-40 мкм и диаметром 18-22 мкм. Микрократеры имели бугристую структуру, поверхность их не была гладкой, а слагалась из шероховатых ступеней, образованных несовершенством внутренней структуры металла. Коэффициент поглощения необработанной детали достигал 10-15%, после нанесения черного покрытия эта величина составляла 90-95%, предварительно обработанная поверхность поглощала 50-55% с нанесенным покрытием 97-99%, что позволяет улучшить коэффициент светопоглощения изделия более чем в 2 раза, снижая зеркальную составляющую отраженного излучения до нефиксируемой величины.
Структура поверхностных микрократеров, их средние размеры и расстояния между ними легко варьируются выбором параметров лазерного ЧПУ станка. Микрократеры по форме и соотношению глубина-диаметр формируют микросветоловушки, обуславливая тем самым значительное повышение светопоглощения покрытия, наносимого поверх сформированного микрорельефа, в результате использования данного способа световые лучи претерпевают многочисленные переотражения внутри сформированного микрорельефа, таким образом, позволяя покрытию поглотить световое излучение с большей эффективностью. Индикатриса - диаграмма отображающая зависимость показателя отражения от направления излучения. Форма микрократеров определяет характер индикатрисы отраженного излучения, позволяя управляемо менять направление максимума. В результате большая часть лучистой энергии претерпевает переход в тепловую, увеличивается степень черноты покрытия.
Форма микрократеров не изменяется при длительном нагреве до температур, составляющих предельные эксплуатационные температуры выбранного материла, в случае выбора металла в качестве материала изделия, микрорельеф испытывает упрочнение вследствие кратковременного высокотемпературного воздействия, что повышает предельную температуру эксплуатации обрабатываемой поверхности.
Положительный эффект от предлагаемого технического решения заключается в повышении поглощающей способности поверхностного слоя изделия и снижении доли зеркальной составляющей отраженного излучения за счет повышения диффузной составляющей отраженного излучения и формирования индикатрисы отраженного излучения с управляемым направлением максимума. При этом обрабатываемая поверхность представляет собой систему близкорасположенных микрократеров, имеющих клиновидную форму профиля глубиной до 60 мкм и диаметром 10-25 мкм, сформированных путем удаления материала из обрабатываемой поверхности. Собственная степень черноты обработанной поверхности относительно необработанной увеличилась не менее чем в 1,5-2 раза. Таким образом, предварительная обработка поверхности по предложенному способу позволяет улучшить коэффициент светопоглощения изделия более чем в 2 раза, снижая зеркальную составляющую отраженного излучения до нефиксируемой величины.
Claims (1)
- Способ обработки поверхности изделия путем формирования микрорельефа, включающий выбор зоны обработки на поверхности изделия, обработку с помощью энергетического облучения и получение на обрабатываемой поверхности микрорельефа, после чего перемещают зону обработки и многократно повторяют упомянутые операции, отличающийся тем, что используют энергетическое облучение в виде абляции, при котором высвобожденное вещество испаряется с обрабатываемой поверхности, и получают микрорельеф в виде отдельно стоящих микрократеров, расположенных на расстоянии друг от друга, не превышающем 1,5 диаметра микрократера, причем заданную глубину микрократера формируют разовым воздействием энергетического облучения заданной длительности и мощности облучения.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014108273/02A RU2576292C2 (ru) | 2014-03-05 | 2014-03-05 | Способ обработки поверхности для повышения степени черноты |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014108273/02A RU2576292C2 (ru) | 2014-03-05 | 2014-03-05 | Способ обработки поверхности для повышения степени черноты |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2014108273A RU2014108273A (ru) | 2015-09-10 |
RU2576292C2 true RU2576292C2 (ru) | 2016-02-27 |
Family
ID=54073216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014108273/02A RU2576292C2 (ru) | 2014-03-05 | 2014-03-05 | Способ обработки поверхности для повышения степени черноты |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2576292C2 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2764777C1 (ru) * | 2021-01-26 | 2022-01-21 | Федеральное государственное бюджетное учреждение науки Институт электрофизики и электроэнергетики Российской академии наук (ИЭЭ РАН) | Способ обработки поверхности цветного металла путем формирования микрорельефа |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2081201C1 (ru) * | 1993-12-10 | 1997-06-10 | ФДС "Керамик" | Способ обработки изделий из титановых деформированных сплавов |
RU2103412C1 (ru) * | 1996-12-17 | 1998-01-27 | Йелстаун Корпорейшн НВ | Способ отделки изделий из древесины |
RU2109229C1 (ru) * | 1996-07-25 | 1998-04-20 | Беграмбеков Леон Богданович | Способ изготовления селективной поверхностной структуры на изделиях для эффективного поглощения солнечного излучения |
RU2420379C1 (ru) * | 2009-12-28 | 2011-06-10 | Сергей Юрьевич Моссаковский | Способ нанесения волнистой фактуры на поверхность |
-
2014
- 2014-03-05 RU RU2014108273/02A patent/RU2576292C2/ru active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2081201C1 (ru) * | 1993-12-10 | 1997-06-10 | ФДС "Керамик" | Способ обработки изделий из титановых деформированных сплавов |
RU2109229C1 (ru) * | 1996-07-25 | 1998-04-20 | Беграмбеков Леон Богданович | Способ изготовления селективной поверхностной структуры на изделиях для эффективного поглощения солнечного излучения |
RU2103412C1 (ru) * | 1996-12-17 | 1998-01-27 | Йелстаун Корпорейшн НВ | Способ отделки изделий из древесины |
RU2420379C1 (ru) * | 2009-12-28 | 2011-06-10 | Сергей Юрьевич Моссаковский | Способ нанесения волнистой фактуры на поверхность |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2764777C1 (ru) * | 2021-01-26 | 2022-01-21 | Федеральное государственное бюджетное учреждение науки Институт электрофизики и электроэнергетики Российской академии наук (ИЭЭ РАН) | Способ обработки поверхности цветного металла путем формирования микрорельефа |
Also Published As
Publication number | Publication date |
---|---|
RU2014108273A (ru) | 2015-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kawabata et al. | Two-dimensional laser-induced periodic surface structures formed on crystalline silicon by GHz burst mode femtosecond laser pulses | |
Zayarny et al. | Nanoscale boiling during single-shot femtosecond laser ablation of thin gold films | |
TWI505893B (zh) | 以高能量射線加工材料之方法 | |
WO2014058606A1 (en) | Method and apparatus for machining a workpiece | |
KR20180055797A (ko) | 특정 출력 밀도 및/또는 특정 펄스 지속시간을 갖는 레이저를 이용한, 표면의 레이저 흑색화, 장치 및, 그의 방법 | |
CN111801602A (zh) | 使用激光减少透明固体的反射、采用透明固体的涂层和设备 | |
Fiorucci et al. | Surface modification of Ti6Al4V by nanosecond laser ablation for biomedical applications | |
Smausz et al. | Study on the effect of ambient gas on nanostructure formation on metal surfaces during femtosecond laser ablation for fabrication of low-reflective surfaces | |
Mahdieh et al. | Crater geometry characterization of Al targets irradiated by single pulse and pulse trains of Nd: YAG laser in ambient air and water | |
Senegačnik et al. | Influence of processing parameters on characteristics of laser-induced periodic surface structures on steel and titanium | |
US5118917A (en) | Method of micro-working the surface of a workpiece while using a laser beam | |
Pavelyev et al. | Fabrication of high-effective silicon diffractive optics for the terahertz range by femtosecond laser ablation | |
RU2576292C2 (ru) | Способ обработки поверхности для повышения степени черноты | |
Amoako | Femtosecond laser structuring of materials: A review | |
Lloyd et al. | Laser-assisted generation of self-assembled microstructures on stainless steel | |
EP2000558B1 (en) | Method and apparatus for manufacturing purely refractive optical structures | |
RU2522919C1 (ru) | Способ формирования микроструктурированного слоя нитрида титана | |
CN111168233A (zh) | 皮秒激光诱导光学玻璃表面周期性结构的方法 | |
Wang et al. | Damage mechanism and morphology characteristics of chromium film in femtosecond laser rear-side ablation | |
Chkalov et al. | Femtosecond laser-induced formation of low-dimensional thin-films elements | |
JP2022176161A (ja) | 固体構造の加工装置及び加工方法 | |
KR101425190B1 (ko) | 레이저 어블레이션을 이용한 금형 표면 마이크로 구조물 형성방법 | |
Kishimura et al. | Micromosaic formation in laser-irradiated Si probed by picosecond time-resolved x-ray diffraction | |
Latif et al. | IR and UV irradiations on ion bombarded polycrystalline silver | |
Gedvilas et al. | Formation of gratings by self-organization of the chromium thin film on the glass substrate under irradiation with laser pulses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
QA4A | Patent open for licensing |
Effective date: 20200124 |