RU2571245C1 - Способ упрочняющей обработки стали 20х13 - Google Patents
Способ упрочняющей обработки стали 20х13 Download PDFInfo
- Publication number
- RU2571245C1 RU2571245C1 RU2014130588/02A RU2014130588A RU2571245C1 RU 2571245 C1 RU2571245 C1 RU 2571245C1 RU 2014130588/02 A RU2014130588/02 A RU 2014130588/02A RU 2014130588 A RU2014130588 A RU 2014130588A RU 2571245 C1 RU2571245 C1 RU 2571245C1
- Authority
- RU
- Russia
- Prior art keywords
- steel
- electron
- electron beam
- pulses
- energy density
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 59
- 239000010959 steel Substances 0.000 title claims abstract description 59
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229910052786 argon Inorganic materials 0.000 claims abstract description 16
- 238000010894 electron beam technology Methods 0.000 claims description 42
- 238000000034 method Methods 0.000 claims description 20
- 230000009471 action Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 7
- 230000007246 mechanism Effects 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 238000005272 metallurgy Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000002344 surface layer Substances 0.000 description 30
- 230000015572 biosynthetic process Effects 0.000 description 24
- 229910000734 martensite Inorganic materials 0.000 description 24
- 210000004027 cell Anatomy 0.000 description 20
- 238000002425 crystallisation Methods 0.000 description 20
- 230000008025 crystallization Effects 0.000 description 20
- 239000002245 particle Substances 0.000 description 17
- 239000013078 crystal Substances 0.000 description 15
- 239000010410 layer Substances 0.000 description 15
- 238000002844 melting Methods 0.000 description 14
- 230000008018 melting Effects 0.000 description 13
- 238000001953 recrystallisation Methods 0.000 description 9
- 230000009466 transformation Effects 0.000 description 8
- 239000011229 interlayer Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- 239000011651 chromium Substances 0.000 description 6
- 239000012634 fragment Substances 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 229910001069 Ti alloy Inorganic materials 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 229910003470 tongbaite Inorganic materials 0.000 description 3
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910000604 Ferrochrome Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 2
- 244000309464 bull Species 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000016507 interphase Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical class [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000003121 nonmonotonic effect Effects 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
Images
Landscapes
- Welding Or Cutting Using Electron Beams (AREA)
Abstract
Изобретение относится к упрочняющей обработке детали из стали с использованием концентрированных потоков энергии. Для повышения ресурса работы деталей машин и механизмов, работающих в условиях многоциклового усталостного разрушения, способ включает получение поверхностных слоев с градиентной многофазной структурой путем импульсно-периодического воздействия на поверхность детали из стали 20X13 сильноточным электронным пучком с энергией электронов 10-30 кэВ в среде аргона с остаточным давлением 0,02-0,03 Па, поглощаемой плотностью энергии 10-30 Дж/см, длительностью импульсов 50-100 мкс и количеством импульсов 1-3. 3 пр., 3 ил.
Description
Изобретение относится к упрочняющей обработке металлов с использованием концентрированных потоков энергии, в частности, к получению на стали 20X13 поверхностных слоев с градиентной многофазной структурой, которые могут быть использованы для повышения ресурса работы деталей машин и механизмов, работающих в условиях многоциклового усталостного разрушения.
Известен способ [1] нанесения покрытий на основе карбида титана на титановые сплавы, включающий приготовление смеси сплава титана и структурно-свободного углерода в форме графита с последующим высокотемпературным реагированием, смесь сплава титана и графита готовят в едином технологическом процессе путем электрического взрыва углеграфитовых волокон, формирования из продуктов взрыва импульсной многофазной плазменной струи, содержащей частицы углеграфитовых волокон, оплавления ею упрочняемой поверхности титанового сплава в режиме, когда поглощаемая плотность мощности составляет 4,5…6,5 ГВт/м2, внесения в расплав частиц углеграфитовых волокон и последующей самозакалки расплава при теплоотводе в объем основы, а высокотемпературное реагирование компонентов смеси осуществляют путем импульсно-периодического воздействия на упрочняемую поверхность после электровзрывного науглероживания сильноточным электронным пучком в режиме, когда поглощаемая поверхностью плотность энергии составляет 40…60 Дж/см2, длительность импульсов - 150…200 мкс, количество импульсов - 10…30.
Недостатком способа является его многостадийный характер, что ограничивает его производительность, а также невозможность формирования на стали 20X13 поверхностных слоев с градиентной многофазной структурой.
Наиболее близким к заявляемому является способ [2] электронно-пучкового упрочнения твердосплавного инструмента или изделия, преимущественно из твердого сплава на основе карбида титана с никельхромовой связкой, включающий облучение рабочей поверхности инструмента или изделия импульсным сильноточным электронным пучком с энергией электронов 10…30 кэВ при длительности импульсов облучения 150-200 мкс и количеством импульсов 10…30, отличающийся тем, что упомянутое облучение проводят в азотсодержащей плазме газового разряда при давлении азота 0,02…0,03 Па с плотностью энергии в электронном пучке, составляющей 50…70 Дж/см2.
Недостатком способа является его многостадийный характер, что ограничивает его производительность, а также невозможность формирования на стали 20X13 поверхностных слоев с градиентной многофазной структурой.
Задачей заявляемого изобретения является получение на стали 20X13 поверхностных слоев с градиентной многофазной структурой, обладающих высоким значением многоциклового усталостного разрушения.
Поставленная задача реализуется способом упрочняющей обработки стали 20X13. Способ включает воздействие на поверхность детали импульсным сильноточным электронным пучком с энергией электронов 10…30 кэВ в среде аргона с остаточным давлением 0,02…0,03 Па, отличающийся тем, что упомянутое воздействие на поверхность детали проводят с поглощаемой плотностью энергии в электронном пучке, составляющей 10…30 Дж/см2, длительностью импульсов 50…100 мкс и количеством импульсов 1…3.
Преимущество заявляемого способа по сравнению с прототипом заключается в формировании на стали 20X13 поверхностного слоя с градиентной многофазной структурой, что делает возможным осуществление локального упрочнения поверхности деталей из стали 20X13 в местах их наибольшего разрушения в условиях эксплуатации.
Способ поясняется чертежом, где на фиг. 1 представлена зависимость (а) средних продольных (кривая 1), поперечных (кривая 2) размеров зерен и коэффициента неравноосности (кривая 3) зерен от плотности энергии пучка электронов; б - линейная корреляция, связывающая продольные (L) и поперечные (D) средние размеры зерен, на фиг. 2 - зависимость (а) средних продольных (кривая 1), поперечных (кривая 2) размеров зерен и коэффициента неравноосности (кривая 3) зерен от плотности энергии пучка электронов; б - линейная корреляция, связывающая продольные (L) и поперечные (D) средние размеры зерен, на фиг. 3 - зависимость количества циклов до разрушения N стали 20X13 от плотности энергии пучка электронов Es.
Анализ зависимости параметров структуры стали 20X13 от плотности энергии пучка электронов показал, что средние размеры зерен существенным образом зависят от плотности энергии пучка электронов: структура с максимальным средним значением размеров зерен формируется в поверхностном слое стали, облученной электронным пучком с плотностью энергии пучка электронов ES=25 Дж/см2 (фиг. 1, а). Мелкозеренная структура поверхностного слоя стали формируется при двух режимах электронно-пучковой обработки: при обработке электронным пучком в режиме (ES=10 Дж/см2) и в режиме интенсивного плавления поверхностного слоя (ES=30 Дж/см2), соответствующем толщине расплавленного слоя 8…10 мкм (фиг. 2, а). Формирующаяся в стали зеренная структура характеризуется продольными и поперечными размерами, которые изменяются с увеличением плотности энергии пучка электронов коррелированным образом (фиг. 1, б; фиг. 2, б).
Выявленное немонотонное изменение средних размеров зерен стали 20X13, обработанной электронным пучком, обусловлено следующими обстоятельствами. В сталях ферритного класса рекристаллизация сопровождается полиморфными превращениями. В этом случае процесс разбивается условно на две стадии: 1) зарождение и рост кристаллитов (зерен) новой фазы до их столкновения и 2) рост одних зерен (кристаллитов) новой фазы путем поглощения других зерен этой же фазы (так называемая стадия собирательной рекристаллизации). Первая стадия представляет собой фазовую перекристаллизацию, вторая - структурную рекристаллизацию.
В случаях, когда полиморфное превращение сопровождается значительным объемным эффектом вследствие разницы в удельных объемах старой и новой фаз (в стали данная ситуация реализуется при исходной мартенситной структуре), исходная и вновь образующаяся фазы испытывают фазовый наклеп. Последний (фазовый наклеп) часто приводит к тому, что после завершения фазовой перекристаллизации в материале протекает первичная рекристаллизация, которая, по своей сути, относится к динамической рекристаллизации, т.е. к процессу преобразования зеренной структуры материала, при котором деформация и термическое воздействие совмещены во времени.
При обработке стали электронным пучком с плотностью энергии пучка электронов ≥15 Дж/см2 наблюдается плавление поверхностного слоя, и зеренная структура поверхностного слоя формируется в результате кристаллизации и последующего высокоскоростного охлаждения стали. При малой толщине расплавленного слоя (ES=15…25 Дж/см2) формируется структура, наследующая зеренную структуру исходного состояния стали. Вновь сформировать ультрамелкозернистую структуру в поверхностном слое стали удается при толщине расплавленного слоя 8…10 мкм (ES~30 Дж/см2).
Сравнительный анализ состояния поверхностного слоя стали 20X13, подвергнутой электронно-пучковой обработке, осуществляли методами сканирующей электронной микроскопии. Установлено, что после обработки стали при энергии электронов 10 кэВ в среде аргона с остаточном давлении 0,02 Па, поглощаемой плотности энергии 10 Дж/см2, длительности импульсов 50 мкс и количестве импульсов 1, соответствующей режиму начального плавления (исчезают дефекты поверхности - неровности, царапины, вмятины, внесенные при механической полировке), на поверхности стали формируется слой, средний размер зерен которого составляет ~3,0 мкм. В стали исходного состояния (перед облучением) средний размер зерен 16,1 мкм. Электронно-пучковая обработка сопровождается процессом динамической рекристаллизации, приводящим к существенному измельчению зеренной структуры стали. Одновременно с уменьшением размера зерен, электронно-пучковая обработка приводит к образованию на поверхности стали микрократеров. Причиной кратерообразования выступают легкоплавкие включения (к примеру, сульфиды железа), присутствующие в стали и испаряющиеся при электронно-пучковой обработке. На дне кратера выявляется структура дендритной кристаллизации; в отдельных случаях обнаруживаются микротрещины.
Электронно-пучковая обработка поверхности стали при энергии электронов 20 кэВ в среде аргона с остаточном давлении 0,025 Па, поглощаемой плотности энергии 20 Дж/см2, длительности импульсов 75 мкс и количестве импульсов 2, соответствующей режиму плавления поверхностного слоя толщиной ~5 мкм, приводит к формированию в объеме зерен структуры ячеистой кристаллизации. Ячейки имеют округлую форму, средний размер ячеек 0,25 мкм.
Высокоскоростное охлаждение стали сопровождается формированием на поверхности облучения микротрещин, что свидетельствует о релаксации термических напряжений, формирующихся в материале. В подповерхностном слое стали протекает мартенситное превращение, о чем свидетельствует характерный микрорельеф, выявляемый на поверхности облучения. Данный режим обработки также сопровождается кратерообразованием. Однако, по сравнению с обработкой электронным пучком при плотности энергии пучка электронов ES=10 Дж/см2, количество микрократеров незначительно снижается, берега кратеров становятся пологими, снижается глубина кратеров. Это указывает на заплывание кратеров расплавом на стадии охлаждения материала.
Увеличение плотности энергии пучка электронов до 30 кэВ в среде аргона при остаточном давлении 0,03 Па, поглощаемой плотности энергии 30 Дж/см2, длительности импульсов 100 мкс и количестве импульсов 3 не приводит к существенным изменениям структуры поверхности обработки. Как и после обработки при ES=20 Дж/см2, формируется структура ячеистой кристаллизации с близким размеров ячеек. Выявляются микротрещины, количество которых на поверхности облучения практически не изменяется (по сравнению с обработкой при ES=20 Дж/см2). На поверхности облучения формируется рельеф нескольких масштабных уровней. К первому из них отнесем макрорельеф (масштаб ~100…150 мкм), образующийся в результате формирования и последующего оплывания кратеров. Ко второму отнесем микрорельеф, формирующийся в результате мартенситного превращения при высокоскоростной закалке стали (масштаб ~5…10 мкм). К третьему следует отнести рельеф, формируемый на уровне зерен поверхностного слоя и структуры ячеистой кристаллизации (масштаб ~0,25…5 мкм).
Контроль модификации фазового состава стали 20X13 выполняли методами дифракционной электронной микроскопии. Были установлены следующие факты. Электронно-пучковая обработка при энергии электронов 10 кэВ в среде аргона при остаточном давлении 0,02 Па, поглощаемой плотности энергии 10 Дж/см2, длительности импульсов 50 мкс и количестве импульсов 1 сопровождается преобразованием структуры стали преимущественно в температурной области существования α-фазы. В отдельных случаях на поверхности облучения наблюдается α⇒γ⇒α превращение с формированием мартенсита пластинчатой морфологии и областей остаточного аустенита. В слое толщиной ~5 мкм проявляется эффект контактного плавления, имеющий место вдоль межфазной границы раздела частица карбидной фазы (карбид типа M23C6) / матрица и приводящий к формированию областей со структурой ячеистой кристаллизации. Фазовый состав данных областей: ячейки кристаллизации сформированы α-фазой, прослойки, их разделяющие, - карбидом типа Cr7C3 (возможно присутствие частиц исходного карбида типа M23C6). В слое, расположенном на глубине ~20 мкм, фазовый состав стали подобен исходному.
Электронно-пучковая обработка при энергии электронов 20 кэВ в среде аргона при остаточном давлении 0,025 Па, поглощаемой плотности энергии 20 Дж/см2, длительности импульсов 75 мкс и количестве импульсов 2 приводит к плавлению поверхностного слоя толщиной ~5 мкм. Высокоскоростная кристаллизация данного слоя сопровождается формированием ячеек кристаллизации: объем ячеек представлен α-фазой, прослойки, их разделяющие, - карбидом хрома Cr7C3 (реже, карбидом железа Fe3C). На глубине ~5 мкм наряду со структурой ячеистой кристаллизации присутствуют зерна, содержащие хаотически распределенные наноразмерные частицы карбида Cr3C2. В объеме зерен и субзерен выявляются кристаллы ε-мартенсита. На глубине 20 мкм протекает перезакалка стали с образованием α-мартенсита пакетного типа, размеры кристаллов которого в 3…4 раза меньше размеров кристаллов мартенсита, формирующихся при закалке данной стали в масло. По границам кристаллов мартенсита присутствуют прослойки остаточного аустенита.
Электронно-пучковая обработка энергии электронов 30 кэВ в среде аргона при остаточном давлении 0,03 Па, поглощаемой плотности энергии 30 Дж/см2, длительности импульсов 100 мкс и количестве импульсов 3 приводит к плавлению поверхностного слоя толщиной ~8-10 мкм. Высокоскоростная кристаллизация данного слоя приводит к формированию ячеистой структуры. Объем ячеек представлен α-фазой, прослойками, разделяющими ячейки, - соединением состава σ-FeCr и карбидом хрома типа M23C6. В малом количестве присутствуют зерна α-фазы, в которых прошла закалка стали с формированием кристаллов мартенсита; по границам кристаллов мартенсита присутствует γ-фаза в виде прослоек или островков. В слое, расположенном на глубине ~20 мкм, формируется многофазная структура, представленная островками γ-фазы (формирование γ-фазы осуществляется в результате обратного α⇒γ превращения), частицами Cr15Fe9, расположенными по границам ячеек, образовавшихся в результате контактного плавления системы карбид типа M23C6 / матрица, и частицами исходной карбидной фазы типа M23C6.
Контроль модификации внутризеренной структуры (субструктуры) стали 20X13 выполняли методами просвечивающей электронной микроскопии. Были установлены следующие факты. Облучение поверхности стали электронным пучком при энергии электронов 10 кэВ в среде аргона при остаточном давлении 0,02 Па, поглощаемой плотности энергии 10 Дж/см2, длительности импульсов 50 мкс и количестве импульсов 1 приводит к протеканию в поверхностном слое толщиной ~5 мкм процесса рекристаллизации, в результате чего средний размер зерен уменьшается более чем в 5 раз и составляет 3,0 мкм. В объеме наиболее крупных зерен наблюдается субзеренная структура. В объеме зерен и субзерен выявляется сетчатая дислокационная субструктура и субструктура дислокационного хаоса, скалярная плотность дислокаций <ρ>~5·1010 см-2. Следовательно, при данном режиме облучения исходная мартенситная структура поверхностного слоя полностью разрушается.
В отдельных зернах фиксируется протекание процесса перезакалки стали с формированием мартенсита пластинчатой морфологии и областей остаточного аустенита. В кристаллах мартенсита присутствует сетчатая дислокационная субструктура (<ρ>~10·1010 см-2); в областях остаточного аустенита - структура дислокационного хаоса (<ρ>~1,8·1010 см-2).
В поверхностном слое толщиной ~5 мкм выявлен эффект контактного плавления, имеющего место вдоль межфазной границы раздела частица карбидной фазы - матрица. Размеры областей на поверхности облучения составляют 500…600 нм, области имеют округлую форму. Области фрагментированы, размеры фрагментов 100…150 нм. По границам фрагментов наблюдаются прослойки второй фазы толщиной 10…15 нм. На глубине ~5 мкм размеры областей увеличиваются до ~1 мкм; размеры фрагментов (ячеек кристаллизация), до 200 нм. Прослойки, разделяющие фрагменты, сформированы частицами карбида типа M23C6 или Cr7C3.
На глубине ~20 мкм фиксируется мартенситная структура исходного состояния и присутствуют глобулярные частицы карбидной фазы. Выявляется большое количество изгибных экстинкционных контуров различной толщины и формы. Источниками внутренних напряжений (концентраторами напряжений), приводящих к изгибу-кручению кристаллической решетки стали, являются внутрифазные границы (границы раздела зерен, кристаллов и пакетов мартенсита) и межфазные границы (границы раздела карбид / матрица). Поля напряжений формируются и в частицах карбидной фазы. Релаксация полей напряжений частиц карбидной фазы сопровождается формированием микротрещин вдоль границы раздела карбид / матрица и деформацией прилегающих к частице объемов α-фазы. В последнем случае вокруг частицы формируется фрагментированная субструктура с размерами фрагментов, изменяющимися в пределах 40…60 нм.
Облучение поверхности стали электронным пучком при энергии электронов 20 кэВ в среде аргона с остаточном давлении 0,025 Па, поглощаемой плотности энергии 20 Дж/см2, длительности импульсов 75 мкс и количестве импульсов 2 приводит к плавлению поверхностного слоя, формированию зеренной структуры двух масштабных уровней - крупных зерен (средний размер 43,3 мкм) и мелких зерен (6,2 мкм), расположенных вдоль границ крупных. В слое толщиной ~5 мкм в зернах формируется структура ячеистой кристаллизации (средний размер ячеек 0,25 мкм). В объеме зерен, субзерен и ячеек кристаллизации выявляется субструктура дислокационного хаоса или сетчатая дислокационная субструктура. Скалярная плотность дислокаций в структуре дислокационного хаоса ~2,5·1010 см-2; в сетчатой субструктуре ~7,1·1010 см-2. В объеме зерен и субзерен выявляются пластины ε-мартенсита. Слой, расположенный на глубине ~5 мкм, характеризуется присутствием большого количества изгибных экстинкционных контуров. Источниками кривизны-кручения кристаллической решетки стали являются границы раздела зерен и субзерен, границы кристаллов ε-мартенсита, частицы карбида хрома.
На глубине ~20 мкм обнаруживается структура, сформировавшаяся в результате частичной перезакалки стали: наряду с зернами, содержащими мартенситную структуру пакетного типа, обнаруживается зеренно-субзеренная структура. Субзерна формируются преимущественно вдоль границ зерен; размеры субзерен изменяются в пределах от 200 нм до 500 нм. В объеме зерен и субзерен выявляется сетчатая дислокационная субструктура, либо дислокации, распределенные хаотически; скалярная плотность дислокаций ~5,4·1010 см-2. Поперечные размеры кристаллов мартенсита изменяются в пределах от 50 нм до 100 нм. Это в 3…4 раза меньше поперечных размеров кристаллов мартенсита, формирующихся при закалке стали 23X13 в масло. В объеме кристаллов мартенсита выявляется сетчатая дислокационная субструктура; скалярная плотность дислокаций ~10·1010 см-2.
Облучение поверхности стали электронным пучком при энергии электронов 30 кэВ в среде аргона при остаточном давлении 0,03 Па, поглощаемой плотности энергии 30 Дж/см2, длительности импульсов 100 мкс и количестве импульсов 3 приводит к формированию в слое толщиной ~5 мкм ячеек кристаллизации; размеры ячеек изменяются в пределах от 150 нм до 400 нм. Ячейки кристаллизации разделены прослойками второй фазы (σ-FeCr или M23C6), толщина которых изменяется в пределах 20…40 нм. В объеме ячеек кристаллизации выявляется дислокационная субструктура сетчатого типа. Скалярная плотность дислокаций составляет ~4,5·1010 см-2. По мере удаления от поверхности облучения ячейки кристаллизации исчезают; наблюдается формирование зеренно-субзеренной структуры. В объеме зерен и субзерен выявляется дислокационная субструктура сетчатого типа. Скалярная плотность дислокаций составляет ~7,0·1010 см-2. В объеме зерен и субзерен присутствуют частицы округлой формы размером 20…40 нм. В отдельных зернах наблюдается мартенситная структура пакетного типа. В объеме кристаллов мартенсита выявляется сетчатая дислокационная субструктура; скалярная плотность дислокаций ~10·1010 см-2.
На расстоянии ~20 мкм от поверхности облучения фиксируется образование субзеренной структуры, очевидно, в результате протекания процесса термического преобразования мартенситной структуры исходного состояния. Размеры субзерен изменяются в пределах от 1 мкм до 2 мкм. В объеме субзерен выявляется дислокационная субструктура сетчатого типа, скалярная плотность дислокаций ~5·1010 см-2. Присутствие в стали частиц карбида M23C6 привело к контактному плавлению с образованием ячеек кристаллизации. Размеры объемов со структурой ячеистой кристаллизации изменяются в пределах от 0,5 мкм до 1,0 мкм; размеры ячеек изменяются в пределах от 80 нм до 200 нм. Ячейки разделены тонкими (20…30 нм) прослойками соединения Cr15Fe9.
Импульсно-периодическое воздействие на поверхность стали 20X13 сильноточным электронным пучком с энергией электронов 10…30 кэВ в среде аргона при остаточном давлении 0,02…0,03 Па, поглощаемой плотности энергии 10…30 Дж/см2, длительности импульсов 50…100 мкс и количестве импульсов 1…3 приводит к формированию поверхностных слоев с градиентной многофазной структурой. Толщина поверхностного слоя достигает 5…10 мкм. Указанный режим является оптимальным, поскольку при энергии электронов ниже 10 кэВ в среде аргона с остаточном давлением ниже 0,02, поглощаемой плотности энергии ниже 10 Дж/см2, длительности импульсов ниже 50 мкс и количестве импульсов менее 1 не происходит формирование поверхностных слоев на стали 20X13 с градиентной многофазной структурой. При энергии электронов выше 30 кэВ в среде аргона при остаточном давлении выше 0,03, поглощаемой плотности энергии выше 30 Дж/см2, длительности импульсов выше 100 мкс и количестве импульсов более 3 происходит формирование рельефа поверхности и интенсивное испарение стали 20X13.
Исследования показали, что после формирования поверхностных слоев на стали 20X13 заявляемым способом ее усталостная долговечность увеличивается в ~2 раза.
Примеры конкретного осуществления способа:
Пример 1.
Электронно-пучковой обработки подвергали лицевую поверхность образца стали 20X13 для испытаний в условиях усталостного нагружения площадью 2 см2. Поверхностный слой с градиентной многофазной структурой формировали путем импульсно-периодического воздействия на поверхность стали сильноточным электронным пучком с энергией электронов 10 кэВ в среде аргона при остаточном давлении 0,02 Па, поглощаемой плотности энергии 10 Дж/см2, длительности импульсов 50 мкс и количестве импульсов 1.
Получили поверхностный слой с градиентной многофазной структурой. Усталостная долговечность образца увеличилась в 1,4 раза.
Пример 2.
Электронно-пучковой обработки подвергали лицевую поверхность образца стали 20X13 для испытаний в условиях усталостного нагружения площадью 2 см. Поверхностный слой с градиентной многофазной структурой формировали путем импульсно-периодического воздействия на поверхность стали сильноточным электронным пучком с энергией электронов 20 кэВ в среде аргона при остаточном давлении 0,025 Па, поглощаемой плотности энергии 20 Дж/см2, длительности импульсов 75 мкс и количестве импульсов 2.
Получили поверхностный слой с градиентной многофазной структурой. Усталостная долговечность образца увеличилась в 1,6 раза.
Пример 3.
Электронно-пучковой обработки подвергали лицевую поверхность образца стали 20X13 для испытаний в условиях усталостного нагружения площадью 2 см2. Поверхностный слой с градиентной многофазной структурой формировали путем импульсно-периодического воздействия на поверхность стали сильноточным электронным пучком с энергией электронов 30 кэВ в среде аргона с остаточном давлении 0,03 Па, поглощаемой плотности энергии 30 Дж/см2, длительности импульсов 100 мкс и количестве импульсов 3.
Получили поверхностный слой с градиентной многофазной структурой. Усталостная долговечность образца увеличилась в 1,8 раза.
Источники информации
1. Патент РФ №2470090 на изобретение «Способ нанесения покрытий на основе карбида титана на титановые сплавы» / Романов Д.А., Бащенко Л.П., Будовских Е.А. и др.; заявл. 07.04.2011; опубл. 20.12.2012, Бюл. №35. 7 с.
2. Патент РФ №2457261 на изобретение «Способ электронно-пучкового упрочнения твердосплавного инструмента или изделия» / Овчаренко В.Е., Иванов Ю.Ф., Моховиков А.А. и др.; заявл. 14.06.2011; опубл. 27.07.2012, Бюл. №21. 9 с.
Claims (1)
- Способ упрочняющей обработки детали из стали 20X13, включающий воздействие на поверхность детали импульсным сильноточным электронным пучком с энергией электронов 10-30 кэВ в среде аргона с остаточным давлением 0,02-0,03 Па, отличающийся тем, что упомянутое воздействие на поверхность детали проводят с поглощаемой плотностью энергии 10-30 Дж/см2, длительностью импульсов 50-100 мкс и количеством импульсов 1-3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014130588/02A RU2571245C1 (ru) | 2014-07-22 | 2014-07-22 | Способ упрочняющей обработки стали 20х13 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014130588/02A RU2571245C1 (ru) | 2014-07-22 | 2014-07-22 | Способ упрочняющей обработки стали 20х13 |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2571245C1 true RU2571245C1 (ru) | 2015-12-20 |
Family
ID=54871295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014130588/02A RU2571245C1 (ru) | 2014-07-22 | 2014-07-22 | Способ упрочняющей обработки стали 20х13 |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2571245C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2749008C1 (ru) * | 2020-08-31 | 2021-06-02 | Публичное Акционерное Общество "Новолипецкий металлургический комбинат" | Способ поверхностного упрочнения дисперсионно-твердеющих сталей |
RU2762446C1 (ru) * | 2021-06-04 | 2021-12-21 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет", ФГБОУ ВО "СибГИУ" | Способ обработки поверхностного слоя силумина ак5м2 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2118381C1 (ru) * | 1997-04-14 | 1998-08-27 | Институт сильноточной электроники СО РАН | Способ упрочнения твердосплавного инструмента |
RU2125615C1 (ru) * | 1998-03-24 | 1999-01-27 | Институт сильноточной электроники СО РАН | Способ поверхностной обработки изделий из конструкционных сплавов |
US7537664B2 (en) * | 2002-11-08 | 2009-05-26 | Howmedica Osteonics Corp. | Laser-produced porous surface |
RU2457261C1 (ru) * | 2011-06-14 | 2012-07-27 | Федеральное государственное бюджетное учреждение науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук (ИФПМ СО РАН) | Способ электронно-пучкового упрочнения твердосплавного инструмента или изделия |
RU2462516C2 (ru) * | 2010-11-13 | 2012-09-27 | Федеральное государственное унитарное предприятие "Научно-исследовательский институт электрофизической аппаратуры им. Д.В. Ефремова" | Способ поверхностной обработки изделий из жаропрочных сплавов |
RU2494154C1 (ru) * | 2012-03-12 | 2013-09-27 | Федеральное государственное бюджетное учреждение науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук (ИФПМ СО РАН) | Способ обработки изделий из высокоуглеродистых легированных сплавов |
-
2014
- 2014-07-22 RU RU2014130588/02A patent/RU2571245C1/ru not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2118381C1 (ru) * | 1997-04-14 | 1998-08-27 | Институт сильноточной электроники СО РАН | Способ упрочнения твердосплавного инструмента |
RU2125615C1 (ru) * | 1998-03-24 | 1999-01-27 | Институт сильноточной электроники СО РАН | Способ поверхностной обработки изделий из конструкционных сплавов |
US7537664B2 (en) * | 2002-11-08 | 2009-05-26 | Howmedica Osteonics Corp. | Laser-produced porous surface |
RU2462516C2 (ru) * | 2010-11-13 | 2012-09-27 | Федеральное государственное унитарное предприятие "Научно-исследовательский институт электрофизической аппаратуры им. Д.В. Ефремова" | Способ поверхностной обработки изделий из жаропрочных сплавов |
RU2457261C1 (ru) * | 2011-06-14 | 2012-07-27 | Федеральное государственное бюджетное учреждение науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук (ИФПМ СО РАН) | Способ электронно-пучкового упрочнения твердосплавного инструмента или изделия |
RU2494154C1 (ru) * | 2012-03-12 | 2013-09-27 | Федеральное государственное бюджетное учреждение науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук (ИФПМ СО РАН) | Способ обработки изделий из высокоуглеродистых легированных сплавов |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2749008C1 (ru) * | 2020-08-31 | 2021-06-02 | Публичное Акционерное Общество "Новолипецкий металлургический комбинат" | Способ поверхностного упрочнения дисперсионно-твердеющих сталей |
RU2762446C1 (ru) * | 2021-06-04 | 2021-12-21 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет", ФГБОУ ВО "СибГИУ" | Способ обработки поверхностного слоя силумина ак5м2 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Munther et al. | Laser shock peening and its effects on microstructure and properties of additively manufactured metal alloys: a review | |
Lesyk et al. | Influence of combined laser heat treatment and ultrasonic impact treatment on microstructure and corrosion behavior of AISI 1045 steel | |
Jing et al. | Investigation of microstructure and mechanical properties evolution in 7050 aluminum alloy and 316L stainless steel treated by laser shock peening | |
Zhao et al. | Effect of shot peening on the fatigue properties of nickel-based superalloy GH4169 at high temperature | |
CN1985019B (zh) | 在钛合金中制备耐磨和耐疲劳的边缘层的方法及其所制备的构件 | |
RU2571245C1 (ru) | Способ упрочняющей обработки стали 20х13 | |
Wang et al. | Erosion-corrosion behaviour of shot peening treated nickel-aluminium bronze in simulated sand-containing seawater | |
Luo et al. | Effect of laser shock peening on plasma nitriding microstructure and properties of H13 steel | |
Mazlan et al. | A comparative review of effect of ultrasonic shot peening on LCF behavior of the alloys | |
Zhang et al. | Mechanical properties and strengthening mechanisms of Ti-6Al-4V treated by electro-pulsing assisted laser shock peening | |
Yang et al. | Recent Progress in Ultrasonic Surface Rolling: A Comprehensive Overview | |
Zhang et al. | Experimental investigation on the deformation behavior of an isotropic 304L austenitic steel manufactured by laser powder bed fusion with hot isostatic pressing | |
Cao et al. | Correlation between X-Ray diffraction pattern and microstructure of surface of E690 high-strength steel induced by laser-shock processing | |
RU2616740C2 (ru) | Способ электронно-лучевой обработки изделия из технического титана ВТ1-0 | |
Cao et al. | Spinodal decomposition in surface nanocrystallization induced by laser-shock processing of E690 high-strength steel: An experimental study | |
RU2281194C1 (ru) | Способ восстановления эксплуатационных свойств деталей машин | |
Ganta et al. | Influence of post-processing methods on the fatigue performance of materials produced by selective laser melting (SLM) | |
Adu-Gyamfi et al. | Effects of laser shock peening on mechanical properties and surface morphology of AA2024 alloy | |
Avinash et al. | Effect of laser shock peening as a pretreatment on ion nitriding of precipitation hardened stainless steel | |
Ghera et al. | Improvement of Cavitation Erosion Resistance of a Low Alloyed Steel 16MnCr5 Through Work Hardening | |
Rozmus-Górnikowska et al. | Characterization of Inconel 625 surface layer modified by laser shock processing | |
Pandey et al. | Shot peening and its impact on fatigue life of engineering components | |
US11885001B2 (en) | Manufacturing method of metal member with residual stress | |
Xiong et al. | Microstructure evolution and microhardness of ultrafine-grained high carbon steel during multiple laser shock processing | |
Chen et al. | Effect of laser/ultrasonic shock peening on the microstructure and mechanical properties of nickel-based superalloys prepared by Powder Bed Fusion Laser Beam (PBF-LB) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20170723 |