[go: up one dir, main page]

RU2571147C1 - Способ конверсии метана - Google Patents

Способ конверсии метана Download PDF

Info

Publication number
RU2571147C1
RU2571147C1 RU2014123392/05A RU2014123392A RU2571147C1 RU 2571147 C1 RU2571147 C1 RU 2571147C1 RU 2014123392/05 A RU2014123392/05 A RU 2014123392/05A RU 2014123392 A RU2014123392 A RU 2014123392A RU 2571147 C1 RU2571147 C1 RU 2571147C1
Authority
RU
Russia
Prior art keywords
methane
containing gas
gas
hydrogen
oxygen
Prior art date
Application number
RU2014123392/05A
Other languages
English (en)
Inventor
Анатолий Яковлевич Столяревский
Original Assignee
Федеральное государственное бюджетное учреждение Национальный исследовательский центр "Курчатовский институт"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение Национальный исследовательский центр "Курчатовский институт" filed Critical Федеральное государственное бюджетное учреждение Национальный исследовательский центр "Курчатовский институт"
Priority to RU2014123392/05A priority Critical patent/RU2571147C1/ru
Application granted granted Critical
Publication of RU2571147C1 publication Critical patent/RU2571147C1/ru

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к способу получения водорода, водород-метановой смеси, синтез-газа, содержащего в основном H2 и CO, для производства водорода, спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша и может быть использовано в химической промышленности для переработки углеводородных газов, а также в технологиях применения водород-метановой смеси. Способ конверсии метана с получением водородсодержащего газа, в котором в качестве источника сырья используют метансодержащий газ, проводят его адиабатическое окисление в каталитической реакции парциального окисления водяным паром и кислородсодержащим газом, перед смешением с метансодержащим газом и кислородсодержащим газом проводят электрический перегрев водяного пара до температуры 750-950°С. Получение водяного пара производят в нагревающем теплообменнике за счет отвода тепла от продуктов парциального окисления метансодержащего газа к конденсату, образующемуся при охлаждении продуктов парциального окисления метансодержащего газа. Изобретение позволяет повысить эффективность конверсии метана и других низжих алканов и термодинамическую эффективность способа, снизить металлоемкость, а также уменьшить содержание балластных газов (азот, аргон) в продуцируемом газе. 8 з.п. ф-лы, 1 ил., 1 табл.

Description

Изобретение относится к способу получения водородсодержащего газа, водорода, водород-метановой смеси, синтез-газа, содержащего в основном H2 и CO, для производства водорода, спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша и может быть использовано в химической промышленности для переработки углеводородных газов, а также в технологиях применения водород-метановой смеси.
Известен способ получения синтез-газа, содержащего в основном H2 и CO, для производства спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша, описанный в патенте RU №2228901, дата публ. 2004.05.20, МПК C01B 3/38. Известный способ получения синтез-газа с заданным соотношением H2/CO в диапазоне от 1,0 до 2,0 включает две стадии: стадию А) парциального окисления и стадию Б) конверсии остаточного метана с продуктами стадии А) на катализаторе. Стадию А) парциального окисления проводят в две ступени: а) некаталитического парциального окисления природного газа кислородом с получением в продуктах реакции неравновесного содержания H2O и CH4 при мольном соотношении кислорода и метана, примерно равном 0,76-0,84, б) конверсии продуктов реакции ступени а) с корректирующими добавками CO2 и H2O или H2O и CH4 с получением газовой смеси, которая проходит конверсию остаточного метана водяным паром на катализаторе. Способ позволяет производить синтез-газ с составом, который отвечает заданному соотношению CO/H2. Способ можно использовать для получения водорода, а также исходного сырья для дальнейших процессов синтеза спиртов, диметилового эфира, аммиака или других крупнотоннажных химических продуктов.
Однако описанный способ обладает рядом недостатков, к которым можно отнести функциональные и экономические ограничения применения способа, связанные с необходимостью подачи больших расходов кислорода (превышающих по массе расход конвертируемого природного газа), производство которого требует больших энергетических (до 1000 кВт·ч/т) и капитальных затрат (до 1500 дол. США/кг·ч-1). Серьезной проблемой также является сажеобразование, резко снижающее активность катализаторов.
Известен способ получения водородсодержащего газа из углеводородного сырья, водяных паров, воздуха, который включает компримирование и очистку сырья от соединений серы, паровую и паровоздушную каталитическую конверсию метана, конверсию оксида углерода, очистку полученной азотоводородной смеси от кислородсодержащих соединений, компримирование, использование неочищенного от соединений серы сырья в качестве топлива, утилизацию тепла дымовых газов и выделение их в окружающую среду и отличается тем, что часть сырья, равную 0,001-0,048 от количества углеводородного сырья, прошедшего очистку от соединений серы, сжигают в смеси с компримированным воздухом, а полученные дымовые газы в количестве 0,0146-1,685 от количества воздуха, направляемого на паровоздушную каталитическую конверсию метана, подают на паровоздушную каталитическую конверсию метана (патент RU 2196733, дата публ. 20.01.2003 - прототип).
К недостаткам способа следует отнести высокие капитальные затраты и металлоемкость процесса, сниженная эффективность использования сырья, низкая термодинамическая эффективность способа, связанная с затратами на компримирование воздуха, низкая степень конверсии метана и высокое содержание балластных газов (азот, аргон) в продуцируемом газе.
Цель настоящего изобретения состоит в том, чтобы создать новый способ, позволяющий повысить эффективность конверсии метана и других низших алканов и термодинамическую эффективность способа, снизить капитальные затраты и металлоемкость, уменьшить содержание балластных газов (азот, аргон) в продуцируемом газе.
Поставленная задача решается тем, что
в способе конверсии метана с получением водородсодержащего газа, в котором в качестве источника сырья используют метансодержащий газ, проводят его адиабатическое окисление в каталитической реакции парциального окисления водяным паром и кислородсодержащим газом, перед смешением с метансодержащим газом и кислородсодержащим газом проводят электрический перегрев водяного пара до температуры 750-950°С.
Кроме того,
- получение водяного пара производят в нагревающем теплообменнике за счет отвода тепла от продуктов парциального окисления метансодержащего газа к конденсату, образующемуся при охлаждении продуктов парциального окисления метансодержащего газа,
- в качестве кислородсодержащего газа используют кислород, который получают путем электролиза конденсата, образующегося при охлаждении продуктов парциального окисления метансодержащего газа,
- при перегреве водяного пара в качестве нагревающего элемента используют дуговой или высокочастотный плазматрон или элементы, нагреваемые за счет электрического сопротивления,
- проводят получение водяного пара за счет охлаждения водородсодержащего газа,
- в реакторе адиабатического окисления метансодержащего газа водяным паром и кислородсодержащим газом поддерживают температуру в диапазоне от 500°С до 800°С,
- метансодержащий газ содержит низшие алканы, включая метан,
- давление метансодержащего газа выбирают в диапазоне от 0.1 до 9.0 МПа,
- температуру перегрева водяного пара увеличивают при уменьшении нагрузки в электрической сети,
- парциальное окисление кислородсодержащим газом ведут в реакторе парциального окисления в присутствии катализатора окисления, выбранного из ряда никель, рутений, родий, палладий, иридий, нанесенных на огнеупорные оксиды, такие как кордиерит, муллит, оксид хрома, титанат алюминия, шпинели, диоксид циркония и оксид алюминия,
- объемное содержание водяного пара перед адиабатической реакцией поддерживают в диапазоне, от 4 до 12 раз большем, чем объемное содержание метана в метансодержащем газе,
- после отделения конденсата от продуктов парциального окисления метансодержащего газа получают синтез-газ, который направляют на синтез метанола или моторного топлива.
На чертеже дана схема реализации способа, где 1 - метансодержащий газ, 2 - смеситель, 3 - кислород, 4 - перегретый водяной пар, 5 - пароперегреватель, 6 - поток реакционного газа, 7 - реактор, 8 - катализаторная насадка, 9 - нагретый синтез-газ, 10 - теплообменник, 11 - влажный синтез-газ, 12 - питательная вода, 13 - водяной пар, 14 - сепаратор, 15 - конденсат, 16 - синтез-газ, 17 - нагревающий элемент, 18 - подвод электроэнергии, 19 - подвод электроэнергии к электролизеру, 20 - электролизер, 21 - кислород, 22 - емкость кислорода, 23 - водород, 24 - емкость водорода, 25 - товарный водород, 26 - кислородсодержащий газ.
Примером реализации изобретения служит способ конверсии метансодержащего газа, описанный ниже. В излагаемом примере осуществления изобретения в качестве метансодержащего газа 1 применяется природный газ - метан, что позволяет охарактеризовать особенности реализации изобретения применительно к процессам переработки природного и попутного газов.
Общий поток метансодержащего газа 1 с давлением 3.0 МПа подвергают очистке от соединений серы (если они содержатся в виде примесей в природном газе) в пересчете на серу до массовой концентрации серы менее 0.5 мг/нм3, смешивают в смесителе 2 с перегретым потоком водяного пара высокого давления 4, а также с кислородсодержащим газом 3, в качестве которого может применяться воздух или кислород, и полученную реакционную парогазовую смесь 6 подают в адиабатический реактор конверсии 7, в котором на катализаторной насадке 8 проводят конверсию парогазовой смеси с образованием нагретого синтез-газа 9, который потом могут направить на каталитическую конверсию монооксида углерода с последующим выводом из синтез-газа 9 диоксида углерода, используемого как товарный продукт или для захоронения в соответствии с Киотскими соглашениями. В последнем случае технология не имеет выброса парниковых газов.
После отделения конденсата 15 от продуктов парциального окисления метансодержащего газа 11 получают синтез-газ 16, который направляют на синтез метанола или моторного топлива в установке синтеза.
Перед смешением с метансодержащим газом 1 и кислородсодержащим газом 3 проводят электрический перегрев водяного пара до температуры 750-950°С, в качестве нагревающего элемента 17 используют дуговой или высокочастотный плазматрон или элементы, нагреваемые за счет электрического сопротивления, при подводе электроэнергии 18.
В реакторе парциального окисления 7 реакцию ведут в зернистом слое в присутствии катализатора окисления, выбранного из ряда никель, рутений, родий, палладий, иридий, нанесенных на огнеупорные оксиды, такие как кордиерит, муллит, оксид хрома, титанат алюминия, шпинели, диоксид циркония и оксид алюминия.
В качестве кислородсодержащего газа 26 используют сжатый воздух или выхлопные газы газовой турбины высокого давления, а также кислород 3, который подают из емкости кислорода 22.
Объемное содержание водяного пара 4 перед адиабатической реакцией поддерживают в диапазоне, от 4 до 12 раз большем, чем объемное содержание метана в метансодержащем газе 1. При снижении отношения пар/газ ниже 2 снижается эффективность процесса и растут капитальные затраты, что связано либо с необходимостью увеличить поток рециркуляции газов в связи с низкой степенью конверсии при указанной ниже температуре нагрева потока, либо с необходимостью увеличить температуру нагрева потока свыше 1000-1200°С, что заставит использовать более дорогие материалы для теплообменника. Повышение отношения пар-газ свыше 8 также вызовет снижение эффективности процесса в связи с необходимостью производить избыточный водяной пар.
В адиабатическом реакторе 7, соответственно, поддерживают температуру в диапазоне ориентировочно от 500°С до 800°С. Насадка катализатора адиабатического реактора конверсии 8 содержит в качестве активных компонентов металл, выбранный из группы родий, никель, платина, иридий, палладий, железо, кобальт, рений, рутений, медь, цинк, железо, их смеси или соединения. В качестве катализатора адиабатического реактора конверсии 8 предпочтительно использовать никелевый катализатор типа НИАП-03-01 или катализаторы марки KATALCO 25-4Q и KATALCO 57-4Q компании Johnson Matthey. Состав катализатора с изменением содержания платиноидов, а также металлов, влияющих на кинетику окисления оксида углерода водяным паром (реакция сдвига), позволит управлять содержанием водорода в конечном продукте.
В метансодержащем газе 1 содержатся низшие алканы, включая метан, что позволяет использовать для получения продукта легкие углеводороды различного типа: попутные газы, газы коксования, газ угольных пластов, продукты ферментации сельскохозяйственных или муниципальных отходов и газообразные потоки нефтепереработки, что расширяет сферу применения предложенного способа. Давление потоков выбирают в диапазоне ориентировочно от 0.1 до 9.0 МПа, что позволяет уменьшить размеры аппаратов, снизить газодинамические потери и затраты на компримирование.
Из синтез-газа 16 в узле выделения водорода (не показан) могут выделять водород с помощью мембранной диффузии, короткоцикловой адсорбции или высокотемпературного электрохимического фильтра с протонной проводимостью. Задачи извлечения и концентрирования водорода в циклах нефте- и газоперерабатывающих производств успешно решаются с помощью мембранных и адсорбционных водородных установок. В частности, адсорбционные установки ГРАСИС, работающие на сверхкоротком цикле, предназначены для производства высокочистого водорода из газовых потоков и позволяют получать водород с чистотой до 99,9995% при минимальном падении давления в процессе разделения.
Дополнительные потоки водорода 23 производят в электролизере 20 за счет подвода электроэнергии 19, которую можно получать из электрической сети в периоды провала ее нагрузки. Производимый в этом процессе кислород 21 накапливают в емкости кислорода 22.
В таблице «Материальный баланс процесса» представлены расчеты процесса, выполненные по типовой методике (Комарькова С.В., МГОУ, М., 2010).
Figure 00000001
Figure 00000002
Figure 00000003
Коррекцию температуры и состава газов в реакторе парциального окисления 7 могут проводить путем изменения расхода парогазовой смеси 6 и соотношения ее компонентов. В то же время температуру перегрева водяного пара увеличивают при уменьшении нагрузки в электрической сети, что позволяет достичь снижения экономических затрат за счет использования дешевой «провальной» электроэнергии, а также снижения расхода кислорода и/или воздуха, а следовательно, и снижения затрат на получение кислорода и снижения содержания балластных азота и воздуха в синтез-газе, что, в свою очередь, позволяет снизить капитальные затраты и расходы на компримирование газовых потоков. Таким образом, в предложенном изобретении удалось снизить капитальные затраты и металлоемкость производства водородсодержащего газа, повысить коэффициент конверсии низших алканов и термодинамическую эффективность способа, снизить содержание балластных газов (азот, аргон) в продуцируемом газе.
Полученные продукты - водородсодержащий газ и его производные (водород, метановодородная смесь) могут затем использовать в химической промышленности и металлургии, для переработки углеводородов, а также в системах аккумулирования и транспорта энергии и как топливо в транспортных и стационарных энергоустановках.

Claims (9)

1. Способ конверсии метана с получением водородсодержащего газа, в котором в качестве источника сырья используют метансодержащий газ, проводят его адиабатическое окисление в каталитической реакции парциального окисления водяным паром и кислородсодержащим газом, отличающийся тем, что перед смешением с метансодержащим газом и кислородсодержащим газом проводят электрический перегрев водяного пара до температуры 750-950°C, давление метансодержащего газа выбирают в диапазоне от 0.1 до 9.0 МПа, а объемное содержание водяного пара перед адиабатической реакцией поддерживают в диапазоне, от 4 до 12 раз большем, чем объемное содержание метана в метансодержащем газе.
2. Способ по п. 1, отличающийся тем, что получение водяного пара производят в нагревающем теплообменнике за счет отвода тепла от продуктов парциального окисления метансодержащего газа к конденсату, образующемуся при охлаждении продуктов парциального окисления метансодержащего газа.
3. Способ по п. 1 или 2, отличающийся тем, что в качестве кислородсодержащего газа используют кислород, который получают путем электролиза конденсата, образующегося при охлаждении продуктов парциального окисления метансодержащего газа.
4. Способ по п. 1 или 2, отличающийся тем, что при перегреве водяного пара в качестве нагревающего элемента используют дуговой или высокочастотный плазматрон или элементы, нагреваемые за счет электрического сопротивления.
5. Способ по п. 1 или 2, отличающийся тем, что проводят получение водяного пара за счет охлаждения водородсодержащего газа.
6. Способ по п. 1 или 2, отличающийся тем, что в реакторе адиабатического окисления метансодержащего газа водяным паром и кислородсодержащим газом поддерживают температуру в диапазоне от 500°C до 800°C.
7. Способ по п. 1 или 2, отличающийся тем, что метансодержащий газ содержит низшие алканы, включая метан.
8. Способ по п. 1 или 2, отличающийся тем, что температуру перегрева водяного пара увеличивают при уменьшении нагрузки в электрической сети.
9. Способ по п. 1 или 2, отличающийся тем, что после отделения конденсата от продуктов парциального окисления метансодержащего газа получают синтез-газ, который направляют на синтез метанола или моторного топлива.
RU2014123392/05A 2014-06-09 2014-06-09 Способ конверсии метана RU2571147C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014123392/05A RU2571147C1 (ru) 2014-06-09 2014-06-09 Способ конверсии метана

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014123392/05A RU2571147C1 (ru) 2014-06-09 2014-06-09 Способ конверсии метана

Publications (1)

Publication Number Publication Date
RU2571147C1 true RU2571147C1 (ru) 2015-12-20

Family

ID=54871264

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014123392/05A RU2571147C1 (ru) 2014-06-09 2014-06-09 Способ конверсии метана

Country Status (1)

Country Link
RU (1) RU2571147C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2664063C1 (ru) * 2017-08-08 2018-08-14 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Способ переработки природного/попутного газа в синтез-газ автотермическим риформингом
RU2694033C1 (ru) * 2018-03-26 2019-07-08 Акционерное общество "НИИЭФА им. Д.В. Ефремова" (АО "НИИЭФА") Способ и устройство для выделения водорода из метана
RU2730829C1 (ru) * 2020-02-20 2020-08-26 Анатолий Яковлевич Столяревский Способ получения метано-водородной смеси
RU2755267C1 (ru) * 2020-04-28 2021-09-14 Общество с ограниченной ответственностью "Газпром трансгаз Томск" (ООО "Газпром трансгаз Томск") Устройство для получения метано-водородного топлива из углеводородного газа
RU2769311C1 (ru) * 2020-10-15 2022-03-30 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Способ получения водородсодержащего газа

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2117627C1 (ru) * 1997-11-28 1998-08-20 Сосна Михаил Хаймович Способ получения метанола
RU2123471C1 (ru) * 1993-06-18 1998-12-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ каталитического частичного окисления углеводородов
RU2196733C1 (ru) * 2001-05-23 2003-01-20 Московский государственный университет инженерной экологии Способ получения аммиака
WO2003045841A1 (en) * 2001-11-29 2003-06-05 Wisconsin Alumni Research Foundation Low-temperature hydrogen production from oxygenated hydrocarbons
WO2011034891A1 (en) * 2009-09-16 2011-03-24 Greatpoint Energy, Inc. Two-mode process for hydrogen production
EP2586743A1 (en) * 2001-11-29 2013-05-01 Wisconsin Alumni Research Foundation Low-temperature hydrogen production from oxygenated hydrocarbons

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2123471C1 (ru) * 1993-06-18 1998-12-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ каталитического частичного окисления углеводородов
RU2117627C1 (ru) * 1997-11-28 1998-08-20 Сосна Михаил Хаймович Способ получения метанола
RU2196733C1 (ru) * 2001-05-23 2003-01-20 Московский государственный университет инженерной экологии Способ получения аммиака
WO2003045841A1 (en) * 2001-11-29 2003-06-05 Wisconsin Alumni Research Foundation Low-temperature hydrogen production from oxygenated hydrocarbons
EP2586743A1 (en) * 2001-11-29 2013-05-01 Wisconsin Alumni Research Foundation Low-temperature hydrogen production from oxygenated hydrocarbons
WO2011034891A1 (en) * 2009-09-16 2011-03-24 Greatpoint Energy, Inc. Two-mode process for hydrogen production

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2664063C1 (ru) * 2017-08-08 2018-08-14 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Способ переработки природного/попутного газа в синтез-газ автотермическим риформингом
RU2694033C1 (ru) * 2018-03-26 2019-07-08 Акционерное общество "НИИЭФА им. Д.В. Ефремова" (АО "НИИЭФА") Способ и устройство для выделения водорода из метана
RU2730829C1 (ru) * 2020-02-20 2020-08-26 Анатолий Яковлевич Столяревский Способ получения метано-водородной смеси
WO2021167491A1 (ru) * 2020-02-20 2021-08-26 Анатолий Яковлевич СТОЛЯРЕВСКИЙ Способ получения метано-водородной смеси
DE112021000181T5 (de) 2020-02-20 2022-09-29 Anatoly Yakovlevich Stolyarevsky Verfahren zur herstellung eines methan-wasserstoff-gemisches
RU2755267C1 (ru) * 2020-04-28 2021-09-14 Общество с ограниченной ответственностью "Газпром трансгаз Томск" (ООО "Газпром трансгаз Томск") Устройство для получения метано-водородного топлива из углеводородного газа
RU2769311C1 (ru) * 2020-10-15 2022-03-30 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Способ получения водородсодержащего газа

Similar Documents

Publication Publication Date Title
Nikolaidis et al. A comparative overview of hydrogen production processes
US11492254B2 (en) Hydrogen production with membrane reformer
JP2024524089A (ja) Nox除去を有するグリーン水素のためのアンモニア分解
RU2571147C1 (ru) Способ конверсии метана
US8945488B2 (en) Gas-to-liquid technology
CA3112531A1 (en) Process for the production of methanol from gaseous hydrocarbons
CN113165883A (zh) 用于将二氧化碳转化为一氧化碳的方法及反应器
JP2008528423A (ja) 二酸化炭素放出の少ない合成ガス製造方法
EP3419929B1 (en) Carbon monoxide production process optimized by soec
RU2011101927A (ru) Устройство и способы обработки водорода и моноксида углерода
US20170145330A1 (en) Method and system for converting flare gas
Trangwachirachai et al. Recent progress on ammonia cracking technologies for scalable hydrogen production
CA3195610A1 (en) Syngas stage for chemical synthesis plant
RU2520482C1 (ru) Способ получения водорода и водород-метановой смеси
RU2530066C1 (ru) Способ получения водородсодержащего газа
Bernardo et al. Evaluation of membrane reactor with hydrogen-selective membrane in methane steam reforming
RU2396204C2 (ru) Способ получения синтез-газа и продуктов органического синтеза из диоксида углерода и воды
RU2478078C1 (ru) Способ получения метановодородной смеси
RU2730829C1 (ru) Способ получения метано-водородной смеси
US9334454B2 (en) Method for producing synthesis natural gas using straw gas
WO2022104015A1 (en) Methods and systems for converting carbon oxides to olefins
RU2571149C1 (ru) Реактор конверсии метана
JPH04261130A (ja) 核熱を利用したメタノール製造方法
Iaquaniello et al. Integrated membrane systems for ultrapure hydrogen production
Niamboonnum et al. Thermal Self-Sufficient Operation of Hydrogen Production from Used Vegetable Oil

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20161031

MM4A The patent is invalid due to non-payment of fees

Effective date: 20170610