[go: up one dir, main page]

RU2570650C1 - Способ получения олигомеров альфа-олефина c6, c8 или c10 - Google Patents

Способ получения олигомеров альфа-олефина c6, c8 или c10 Download PDF

Info

Publication number
RU2570650C1
RU2570650C1 RU2015106557/04A RU2015106557A RU2570650C1 RU 2570650 C1 RU2570650 C1 RU 2570650C1 RU 2015106557/04 A RU2015106557/04 A RU 2015106557/04A RU 2015106557 A RU2015106557 A RU 2015106557A RU 2570650 C1 RU2570650 C1 RU 2570650C1
Authority
RU
Russia
Prior art keywords
olefin
alpha
temperature
mol
oligomerization
Prior art date
Application number
RU2015106557/04A
Other languages
English (en)
Inventor
Игорь Ашотович Арутюнов
Александр Викторович Кулик
Светлана Николаевна Потапова
Дмитрий Викторович Светиков
Владислав Алиханович Тускаев
Светлана Черменовна Гагиева
Дмитрий Альбертович Курмаев
Николай Александрович Колосов
Original Assignee
Открытое акционерное общество "Нефтяная компания "Роснефть"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Нефтяная компания "Роснефть" filed Critical Открытое акционерное общество "Нефтяная компания "Роснефть"
Priority to RU2015106557/04A priority Critical patent/RU2570650C1/ru
Application granted granted Critical
Publication of RU2570650C1 publication Critical patent/RU2570650C1/ru

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к способу получения олигомеров альфа-олефина С6, C8 или С10, предусматривающему подготовку олефинового сырья, стадию олигомеризации в присутствии инертного растворителя и постметаллоценовой каталитической системы, содержащей координационное соединение алкоголята металла 5 группы Периодической системы с органическим полидентатным лигандом и сокатализатор. Способ характеризуется тем, что стадию олигомеризации ведут при температуре от 25 до 80°C, соотношении альфа-олефин:растворитель, равном 1:1-3:1, в присутствии реактиватора - этилтрихлорацетата в концентрации 10-20 моль/мл3. При этом каталитическая система содержит координационное соединение алкоголята ванадия в концентрации 0,1-1,0 моль/мл3, а в качестве сокатализатора - диэтилалюминий хлорид или сесквиэтилалюминий хлорид в концентрации 20-50 моль/мл3. Изобретение обеспечивает повышение каталитической активности и селективности катализатора в отношении образования целевого продукта с преимущественным содержанием тримеров. 2 з.п. ф-лы, 2 табл., 9 пр.

Description

Изобретение относится к способу получения олигомеров в процессе олигомеризации альфа-олефинов (гексена-1, октена-1 или децена-1), пригодных в качестве основ синтетических базовых масел и может быть использовано в нефтехимической промышленности.
Известные способы получения олигомеров альфа-олефинов, пригодных в качестве основ синтетических базовых полиальфаолефиновых масел, различаются между собой различными типами применяемых катализаторов.
Наиболее широко известными из них являются катализаторы катионной полимеризации.
К очевидным недостаткам известных способов олигомеризации альфа-олефинов в присутствии комплексов BF3 или AlCl3 с различными соединениями можно отнести:
- использование достаточно токсичных и коррозионно-активных химических реагентов из класса галогенидов бора и алюминия, в результате чего увеличиваются затраты на утилизацию отходов производства, охрану труда, износ оборудования;
- низкую производительность каталитических систем;
- низкую селективность процесса, в результате чего снижается выход масляной фракции, увеличиваются удельные расходы сырья и катализатора.
Использование цеолитных катализаторов приводит к образованию олигомеров, в составе которых преобладают димеры (от 60 до 90 мас. %).
Между тем известно, что выделяемые из продуктов реакции тримеры альфа-олефинов после гидрирования характеризуются уникальным комплексом физических свойств - высоким индексом вязкости, низкой температурой застывания, высокой температурой вспышки и низкой испаряемостью (Таблица 1). Такое сочетание свойств обеспечивает возможность их использования в качестве основ синтетических базовых масел.
Таким образом, тримеры альфа-олефинов являются предпочтительным продуктом олигомеризации, который может использоваться в качестве высококачественных основ синтетических базовых масел.
Figure 00000001
Высокие требования к качеству основ синтетических полиальфаолефиновых базовых масел диктуют необходимость поиска новых каталитических систем, селективных в отношении образования преимущественно тримеров альфа-олефинов. Постметаллоценовые каталитические системы на основе комплексных соединений переходных металлов и сокатализаторов в виде алюминийорганических соединений, являются одним из активно развивающихся направлений синтеза высокомолекулярных соединений. Это вызвано, с одной стороны, необходимостью создания нового поколения высокоэффективных и стереоспецифичных катализаторов олигомеризации олефинов, сочетающих в себе достоинства гомогенных и классических гетерогенных катализаторов, а с другой, требованиями рынка к новым типам олигомерных соединений с заданным комплексом полезных свойств. К постметаллоценовым каталитическим системам циглеровского типа относятся каталитические системы, содержащие не менее двух компонентов и обеспечивающие, после формирования каталитически активных центров, проведение процесса олиго- или полимеризации олефиновых углеводородов.
Основой системы служит комплексное соединение переходного металла, второй компонент - активатор или сокатализатор (в общем случае эту роль исполняет металлорганическое соединение непереходного металла, например метилалюмоксан, или слабокоординирующееся основание типа фенилборатов).
В отличие от металлоценов постметаллоценовые катализаторы могут быть активированы не только МАО, но и «стандартными» в классическом катализе Циглера-Натта алюминийорганическими активаторами, такими как ТЭА, ТИБА, ДЭАХ и т.п. При этом они способны работать в низких концентрациях, образовывать активные центры моноцентрового типа, катализировать процессы олигомеризации как низших, так и высших олефиновых углеводородов.
Данный тип катализаторов с наибольшей эффективностью может быть использован для получения известных и новых олигомерных материалов с улучшенными свойствами, к примеру основ синтетических базовых масел. Образующиеся олигомеры могут иметь молекулярную массу от 200 до 400 г/моль и выше. Однако использование постметаллоценовых каталитических систем для этих целей мало изучено.
Известен способ получения С2060 олигомеров α-олефинов, в качестве которых преимущественно используется октен-1 и децен-1 в присутствии двухкомпонентной каталитической системы, содержащей алюминийалкилгалогенид и галоидорганическое соединение. В качестве алюминийалкилгалогенида используют этилалюминийсесквихлорид или диэтилалюминийхлорид. Галоидорганическим соединением является трет-бутилхлорид, алкилхлорид или бензилхлорид. Олигомеризацию проводят при температуре 100-150°C. Выход олигомерного продукта составляет ~56%, средняя молекулярная масса - 490-506. US 4952739, 28.08.1990.
Недостатком данного способа является низкий (менее 20 мас. %) выход целевых тримеров децена-1.
Известен способ получения олигомеров альфа-олефинов гексена-1 и децена-1 в присутствии каталитической системы, включающей соединение хрома (3+), 1,3,5-трис(циклоалкил)-1,3,5-триазоциклогексан и активатор - триалкилалюминий или алкилалюмоксан. Процесс олигомеризации проводится в инертной атмосфере при температуре 20-110°C. US 2005/0256357 A1, 17.10.2005, WO 0058319 A1, 05.10.2000.
Недостатком данного способа является плохая растворимость прекурсора катализатора - комплекса хрома с 1,3,5-триазоциклогексановым лигандом, вследствие чего в структуру лиганда приходится вводить длинноцепочечные алкильные или циклоалкилалкильные радикалы, что увеличивает себестоимость прекурсора катализатора.
Другим недостатком является низкая стабильность комплекса, легкость его диссоциации в присутствии полярных растворителей и некоторых реагентов, что в целом определяет плохую воспроизводимость результатов олигомеризации, полученных на подобных системах.
Известен способ получения олигомеров α-олефинов C8-C14 в присутствии каталитической системы, включающей BF3, протонный промотор (вода, спирт, или их смесь), и модификатор (1,3-диоксалан или 1,3-диоксан) при температуре от 20 до 60°C, давлении от 0,03 до 0,70 МПа. Соотношение модификатор/промотор составляет 0,5-2 моль/моль. Время реакции составляет 90-120 минут. Состав полученного продукта следующий: С20 - 62,0%, С30 - 28,7%, С40 - 5,6%, С50 - 0,5%. US 5744676 А, 28.04.1998.
Недостатком данного способа получения олигомеров альфа-олефинов является низкий выход целевого продукта (тримера) и использование токсичной и коррозионно-активной каталитической системы на основе комплекса бора.
Известен способ олигомеризации α-олефинов С1024 в присутствии деалюминированного цеолита Y с соотношением SiO2/Al2O3 от 6,5 до 60 для получения олигомеров, пригодных для использования в качестве основ синтетических базовых масел.
Катализатор готовят методом влажной пропитки носителя - цеолита Y, водным раствором солей металлов, в качестве которых используют катионы металлов групп III В, IV В, VI В, VII В. Количество металла составляет 10 мас. %. Мономер и катализатор загружают в трехгорлую колбу, снабженную термометром, устройством для перемешивания, колбонагревателем и водяным холодильником. Смесь нагревают при интенсивном перемешивании до температуры 160-180°C и выдерживают в течение 4-5 ч. Полученный продукт охлаждают до комнатной температуры, фильтруют и фракционируют с целью отгонки непрореагировавшего сырья. Основным продуктом процесса олигомеризации являются димеры (от 55,0 до 69,4 мас. %). Содержание целевого продукта (тримеров) незначительно и не превышает 18,5 мас. %. US 5120891 А, 09.06.1992.
Недостатками указанного способа получения олигомеров альфа-олефинов являются низкая активность и коксуемость катализатора в процессе олигомеризации, а также низкий выход целевого продукта.
Известен способ получения олигомеров в процессе олигомеризации гексена-1 и децена-1 с применением металлоценового катализатора nBuCp2ZrCl2 и активатора метилалюмоксана (МАО) с мольным отношением Al/Zr 200. Процесс проводят при температуре 70-90°C. Основным продуктом процесса являются димеры (от 60 до 71%). Димеры подвергают дальнейшей полимеризации с использованием катализаторов AlCl3 на носителе, EtAlCl2 на носителе и EtAlCl2, нанесенного на силикагелевый носитель с целью получения более высокомолекулярного продукта. Kissin Y.V., Schwab F.С.Post-oligomerization of a-olefin oligomer: a route to single-component and multicomponent synthetic lubricating oils. Journal of Applied Polymer Science. 2009, n. 111, p.273-280.
Недостатком данного способа получения олигомеров альфа-олефинов является низкий выход целевого продукта и многоступенчатый процесс его получения, что увеличивает себестоимость продукции.
Наиболее близким по технической сущности является способ получения олигомеров альфа-олефинов С316 в присутствии инертного растворителя, где в качестве катализатора используют металлоценовый катализатор бис(циклопентадиенил) цирконий дихлорид в сочетании с сокатализатором-метилалюмоксаном (МАО). Процесс олигомеризации проводят следующим образом. Перед началом эксперимента колбу с магнитной мешалкой тщательно вакуумируют после продувки аргоном в течение 30 мин. Затем в колбу подают раствор тетрадецена-1 (осушен 5А молекулярными ситами) и 10 мл сухого толуола, осушенного над калием, и нагревают смесь до температуры эксперимента. При температуре 40°C добавляют 4 мл 3,3 М концентрированного сокатализатора-метиалюмоксана в толуоле и перемешивают в течение 15 мин. Далее добавляют 4 мл 6,2×10-3 М раствора катализатора - дихлорида бис (циклопентадиенил) циркония в толуоле. Температуру реакции поддерживают термостатом с шагом ±1°C. Процесс ведут при перемешивании и постоянной температуре на протяжении 1 ч. Для прекращения реакции в колбу добавляют 50 мл 10%-ного водного раствора HCl и конечную смесь перемешивают в течение 2 ч. Затем от продукта отделяют органический слой и дважды промывают 50 мл дистиллированной воды. Раствор толуола впоследствии удаляют из органического слоя при помощи роторного испарителя. Анализ продуктовой смеси с помощью высокотемпературной имитированной дистилляции показал выход олигомеров на уровне 66%. Олигомеры состояли из ~42% димеров, 26% тримеров, 15% тетрамеров, 8% пентамеров и 9% высших олигомеров. US 7129197 В2, 31.10.2006.
Недостатком данного способа получения олигомеров альфа-олефинов является низкое содержание целевого продукта - тримеров тетрадецена и использование металлоценовых катализаторов и алюмоксанов, являющихся дорогостоящими химическими соединениями, что значительно увеличивает себестоимость продукции.
Также недостатком является чрезвычайно высокая чувствительность катализаторов к кислороду и влаге, что в результате существенно ограничивает их промышленное применение.
Технической задачей данного изобретения является повышение конверсии альфа-олефинов С6, С8 и С10 и выхода целевого продукта (тримера) путем реализации разработанного способа получения олигомеров альфа-олефинов олигомеризацией альфа-олефинов С6, С8 или С10 в присутствии постметаллоценовой каталитической системы.
Технический результат, достигаемый от реализации изобретения, заключается в обеспечении высокой каталитической активности и селективности катализатора в отношении образования целевого продукта.
Техническая задача решается тем, что при получении олигомеров альфа-олефинов С6, C8 или С10 стадию олигомеризации ведут при температуре от 25 до 80°C, соотношении альфа-олефин:растворитель, равном 1:1-3:1, в присутствии реактиватора - этилтрихлорацетата в концентрации 10-20 моль/мл, при этом каталитическая система содержит координационное соединение алкоголята ванадия в концентрации 0,1-1,0 моль/мл, а в качестве сокатализатора -иэтилалюминий хлорид или сесквиэтилалюминий хлорид в концентрации 20-50 моль/мл3.
Указанные отличительные признаки существенны.
Для получения олигомеров альфа-олефинов С6, C8 или С10 стадию олигомеризации проводят в реакторе периодического действия. Перед началом эксперимента реактор нагревают до температуры 200°C и продувают аргоном в течение 30 мин. Далее вакуумируют и охлаждают до комнатной температуры. После охлаждения реактора, в противотоке аргона в него подают раствор мономера в растворителе и рассчитанное количество сокатализатора - диэтилалюминийхлорида и нагревают смесь до температуры эксперимента. Далее добавляют раствор катализатора в толуоле и реактиватор - этилтрихлорацетат. Реактор герметизируют и наполняют аргоном до небольшого избыточного давления. Началом процесса олигомеризации считают момент ввода катализатора. Процесс ведут при перемешивании и постоянной температуре на протяжении 2-4 ч. Затем к полученной смеси добавляют изопропиловый спирт и 1М раствор соляной кислоты для дезактивации непрореагировавших алюминийорганических соединений, после чего продукт выгружают из реактора, и на делительной воронке отделяют органический слой. Органический слой промывают несколько раз дистиллированной водой до нейтральной реакции, высушивают над безводным сульфатом натрия, фильтруют и фракционируют на роторном испарителе с целью отгонки непрореагировавшего сырья и толуола. Остаток фракционируют в вакууме.
В процессе олигомеризации альфа-олефина С6, C8 или С10 были достигнуты высокие показатели процесса: конверсия альфа-олефина ≥78%, выход целевого продукта (тримера) не ниже 60 мас. %.
Применение предложенного способа получения олигомеров альфа-олефинов, обеспечивает высокую конверсию альфа-олефина, выход олигомера и выход целевого продукта (Таблица 2).
Способ иллюстрируется следующими примерами.
Пример 1.
Процесс олигомеризации гексена-1 проводят в реакторе периодического действия. Перед началом эксперимента реактор нагревают до температуры 200°C и продувают аргоном в течение 30 мин. Далее вакуумируют и охлаждают до комнатной температуры. После охлаждения реактора, в противотоке аргона в него подают раствор гексена-1 в толуоле с соотношением альфа-олефин:растворитель, равным 1:1, и 10 мл (0,08 моль) диэтилалюминийхлорида и нагревают смесь до температуры 25°C. Далее добавляют 2,8 мл (0,2 моль) раствора 2,4-ди-трет-бутил-6-гидроксиметилфенол ванадилпропилата в 10 мл толуола и 2,2 мл (0,02 моль) этилтрихлорацетата. Реактор герметизируют и наполняют аргоном до небольшого избыточного давления. Началом процесса олигомеризации считают момент ввода катализатора. Процесс ведут при перемешивании и постоянной температуре 25°C на протяжении 2 ч. Затем к полученной смеси добавляют изопропиловый спирт и 1М раствор соляной кислоты для дезактивации непрореагировавших алюминийорганических соединений, после чего продукт выгружают из реактора, и на делительной воронке отделяют органический слой. Органический слой промывают несколько раз дистиллированной водой до нейтральной реакции, высушивают над безводным сульфатом натрия, фильтруют и фракционируют на роторном испарителе с целью отгонки непрореагировавшего сырья и толуола Остаток фракционируют в вакууме. В результате получен олигомер с выходом 75 мас. %, выход целевого продукта (тримера) составляет 62 мас. %.
Пример 2.
Процесс олигомеризации гексена-1 проводят в реакторе периодического действия. Перед началом эксперимента реактор нагревают до температуры 200°C и продувают аргоном в течение 30 мин. Далее вакуумируют и охлавдают до комнатной температуры. После охлаждения реактора, в противотоке аргона в него подают раствор гексена-1 в бензоле с соотношением альфа-олефин:растворитель, равным 2:1, и 15 мл (0,12 моль) диэтилалюминийхлорида, и нагревают смесь до температуры 35°C. Далее добавляют 10 мл (0,7 моль) раствора 4-трет-бутил-2-(1,1,1,3,3,3-гексафтор-2-гидроксипропан-2-ил)фенол ванадилпропилата в 35 мл толуола и 2,2 (0,02 моль) этилтрихлорацетата. Реактор герметизируют и наполняют аргоном до небольшого избыточного давления. Началом процесса олигомеризации считают момент ввода катализатора.
Процесс ведут при перемешивании и постоянной температуре 35°C на протяжении 3 ч. Затем к полученной смеси добавляют изопропиловый спирт и 1М раствор соляной кислоты для дезактивации непрореагировавших алюминийорганических соединений, после чего продукт выгружают из реактора и на делительной воронке отделяют органический слой. Органический слой промывают несколько раз дистиллированной водой до нейтральной реакции, высушивают над безводным сульфатом натрия, фильтруют и фракционируют на роторном испарителе с целью отгонки непрореагировавшего сырья и толуола. Остаток фракционируют в вакууме. В результате получен олигомер с выходом 75 мас. %, выход целевого продукта (тримера) составляет 66 мас. %.
Пример 3.
Процесс олигомеризации гексена-1 проводят в реакторе периодического действия. Перед началом эксперимента реактор нагревают до температуры 200°C и продувают аргоном в течение 30 мин. Далее вакуумируют и охлаждают до комнатной температуры. После охлаждения реактора в противотоке аргона в него подают раствор гексена-1 в ксилоле с соотношением альфа-олефин:растворитель, равным 3:1, и 25 мл (0,20 моль) диэтилалюминийхлорида и нагревают смесь до температуры 60°C. Далее добавляют 28 мл (2 моль) раствора катализатора - 2,4-ди-трет-бутил-6-гидроксиметилфенол ванадилпропилата в 90 мл толуола и 4,4 мл (0,03 моль) этилтрихлорацетата. Реактор герметизируют и наполняют аргоном до небольшого избыточного давления. Началом процесса олигомеризации считают момент ввода катализатора. Процесс ведут при перемешивании и постоянной температуре 60°C на протяжении 4 ч. Затем к полученной смеси добавляют изопропиловый спирт и 1М раствор соляной кислоты для дезактивации непрореагировавших алюминийорганических соединений, после чего продукт выгружают из реактора и на делительной воронке отделяют органический слой. Органический слой промывают несколько раз дистиллированной водой до нейтральной реакции, высушивают над безводным сульфатом натрия, фильтруют и фракционируют на роторном испарителе с целью отгонки непрореагировавшего сырья и толуола. Остаток фракционируют в вакууме. В результате получен олигомер с выходом 75 мас. %, выход целевого продукта (тримера) составляет 65 мас. %.
Пример 4.
Синтез, как в Примере 1, за исключением того, что в качестве сокатализатора используют сесквиэтилалюминийхлорид.
В результате получен олигомер с выходом 78 мас. %, выход целевого продукта (тримера) составляет 66 мас. %.
Пример 5.
Синтез, как в Примере 4, за исключением того, что процесс олигомеризации проводят при температуре 80°C.
В результате получен олигомер с выходом 76 мас. %, выход целевого продукта (тримера) составляет 63 мас. %.
Пример 6.
Синтез, как в Примере 1, за исключением того, что в качестве альфа-олефинового сырья используют октен-1.
В результате получен олигомер с выходом 80 мас. %, выход целевого продукта (тримера) составляет 70 мас. %.
Пример 7.
Синтез, как в Примере 3, за исключением того, что в качестве альфа-олефинового сырья используют децен-1.
В результате получен олигомер с выходом 83 мас. %, выход целевого продукта (тримера) составляет 72 мас. %.
Пример 8 (по прототипу).
Перед началом эксперимента колба с магнитной мешалкой была тщательно вакуумирована после продувки аргоном в течение 30 мин. Затем в колбу подают раствор тетрадецена-1 (осушен 5А молекулярными ситами) и 10 мл сухого толуола, осушенного над калием и нагревают смесь до температуры эксперимента. При температуре 40°C добавляют 4 мл 3,3 М концентрированного метиалюмоксана в толуоле и перемешивают в течение 15 мин. Далее добавляют 4 мл 6,2×10-3 М раствора дихлорида бис(циклопентадиенил) циркония в толуоле. Температуру реакции поддерживают термостатом с шагом ±1°C. Процесс ведут при перемешивании и постоянной температуре на протяжении 1 ч. Для прекращения реакции в колбу добавляют 50 мл 10%-ного водного раствора HCl и конечную смесь перемешивают в течение 2 ч. Затем от продукта отделяют органический слой и дважды промывают 50 мл дистиллированной воды. Раствор толуола впоследствии удаляют из органического слоя при помощи роторного испарителя. Анализ продуктовой смеси с помощью высокотемпературной имитированной дистилляции показал выход олигомеров на уровне 66%. Олигомеры состоят из ~42% димеров, 26% тримеров, 15% тетрамеров, 8% пентамеров и 9% высших олигомеров.
Пример 9 (по прототипу).
Перед началом эксперимента колба с магнитной мешалкой была тщательно вакуумирована после продувки аргоном в течение 30 мин. Затем в колбу подают раствор децена-1 (осушен 5А молекулярными ситами) и 10 мл сухого толуола, осушенного над калием и нагревают смесь до температуры эксперимента. При температуре 60°C добавляют 2 мл 3,3 М концентрированного метиалюмоксана в толуоле и перемешивают в течение 15 мин. Далее добавляют 4 мл 6,2×10-3 М раствора дихлорида бис(циклопентадиенил) циркония в толуоле. Температуру реакции поддерживают термостатом с шагом ±1°C. Процесс ведут при перемешивании и постоянной температуре при температуре 60°C на протяжении 1 ч. Для прекращения реакции в колбу добавляют 50 мл 10%-ного водного раствора HCl и конечную смесь перемешивают в течение 2 ч. Затем от продукта отделяют органический слой и дважды промывают 50 мл дистиллированной воды. Раствор толуола впоследствии удаляют из органического слоя при помощи роторного испарителя. Анализ продуктовой смеси с помощью высокотемпературной имитированной дистилляции показал выход олигомеров на уровне 94%. Олигомеры состояли из ~60% димеров, 23% тримеров, 9% тетрамеров, 3% пентамеров и 5% высших олигомеров.
Основные показатели процесса олигомеризации альфа-олефанов С6, С8 и С10 по примерам 1-9 приведены в Таблице 2.
Figure 00000002
Как видно из таблицы, применение заявленного способа олигомеризации в присутствии постметаллоценовой каталитической системы координационного соединения алкоголята ванадия в присутствии реактиватора - этилтрихлорацетата и сокатализатора - диэтилалюминия хлорида или сесквиэтилалюминия хлорида в заданных молярных концентрациях, обеспечивает получение целевого продукта с высокими значениями конверсии исходного мономера (78-85%), выхода целевого продукта (62-72 мас. %) и отношения Втримераолигомера (0,83-9,88) по сравнению с прототипом (0,24-0,39).
Получаемые заявленным способом продукты могут использоваться в качестве основ синтетических полиолефиновых базовых масел различного назначения.

Claims (3)

1. Способ получения олигомеров альфа-олефина С6, C8 или С10, предусматривающий подготовку олефинового сырья, стадию олигомеризации в присутствии инертного растворителя и постметаллоценовой каталитической системы, содержащей координационное соединение алкоголята металла 5 группы Периодической системы с органическим полидентатным лигандом и сокатализатор, отличающийся тем, что стадию олигомеризации ведут при температуре от 25 до 80°C, соотношении альфа-олефин:растворитель, равном 1:1-3:1, в присутствии реактиватора - этилтрихлорацетата в концентрации 10-20 моль/мл3, при этом каталитическая система содержит координационное соединение алкоголята ванадия в концентрации 0,1-1,0 моль/мл3, а в качестве сокатализатора - диэтилалюминий хлорид или сесквиэтилалюминий хлорид в концентрации 20-50 моль/мл3.
2. Способ по п. 1, отличающийся тем, что растворитель выбирают из ряда ароматических соединений: бензол, толуол или ксилол.
3. Способ по п. 1, отличающийся тем, что в качестве альфа-олефинового сырья используют гексен-1, октен-1 или децен-1.
RU2015106557/04A 2015-02-26 2015-02-26 Способ получения олигомеров альфа-олефина c6, c8 или c10 RU2570650C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015106557/04A RU2570650C1 (ru) 2015-02-26 2015-02-26 Способ получения олигомеров альфа-олефина c6, c8 или c10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015106557/04A RU2570650C1 (ru) 2015-02-26 2015-02-26 Способ получения олигомеров альфа-олефина c6, c8 или c10

Publications (1)

Publication Number Publication Date
RU2570650C1 true RU2570650C1 (ru) 2015-12-10

Family

ID=54846690

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015106557/04A RU2570650C1 (ru) 2015-02-26 2015-02-26 Способ получения олигомеров альфа-олефина c6, c8 или c10

Country Status (1)

Country Link
RU (1) RU2570650C1 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU784172A1 (ru) * 1979-04-04 1999-03-27 Отделение Института химической физики АН СССР СПОСОБ ПОЛУЧЕНИЯ ВЫСШИХ α-ОЛЕФИНОВ
RU2437920C2 (ru) * 2006-06-14 2011-12-27 Несте Ойл Ойй Способ получения олефиновых олигомеров

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU784172A1 (ru) * 1979-04-04 1999-03-27 Отделение Института химической физики АН СССР СПОСОБ ПОЛУЧЕНИЯ ВЫСШИХ α-ОЛЕФИНОВ
RU2437920C2 (ru) * 2006-06-14 2011-12-27 Несте Ойл Ойй Способ получения олефиновых олигомеров

Similar Documents

Publication Publication Date Title
EP0257696B1 (en) Process for dimerizing alpha-olefins
US10005972B2 (en) Processes for preparing low viscosity lubricants
RU2235756C2 (ru) Способ получения олигомерных масел
US20040097772A1 (en) Catalyst system for the trimerisation of olefins
US9309167B2 (en) Process for oligomerization of olefins that uses a catalytic composition that comprises an organometallic complex that contains an alkoxy ligand that is functionalized by a heteroatom
KR20160108608A (ko) 메탈로센-ssa 촉매시스템을 이용한 알파 올레핀 올리고머화 및 윤활제 블렌드 제조를 위한 생성된 폴리알파올레핀의 용도
KR20040044910A (ko) 알파-올레핀의 삼량체화 방법
JPH0665110A (ja) プロペンオリゴマーの製法
JP6664375B2 (ja) オレフィン重合触媒およびオレフィンオリゴマーの製造方法
CN109701642B (zh) 一种催化剂组合物及其应用
US10308563B2 (en) Process for producing ethylene oligomers
CN113242764B (zh) 用于铬辅助乙烯低聚工艺中生产1-辛烯的配体
WO2002066405A1 (en) Catalyst system for the trimerisation of olefins
RU2652118C2 (ru) Способ получения винилиденовых олефинов
RU2570650C1 (ru) Способ получения олигомеров альфа-олефина c6, c8 или c10
JPH06316538A (ja) オリゴマー化法
WO2011003044A1 (en) Selective olefin dimerization with supported metal complexes activated by alkylaluminum compounds or ionic liquids
RU2731901C1 (ru) Способ получения основы синтетических моторных масел
JP2004530764A (ja) オリゴマーの調製方法
CN109701653B (zh) 一种催化剂组合物及其应用
EP1073521A1 (en) Catalyst system for alpha-olefin oligomerization
TW201700504A (zh) α-烯烴低聚合物之製造方法
CN109701650B (zh) 一种烯烃齐聚用助催化剂的制备方法及其应用
KR20210138694A (ko) 크롬 보조 에틸렌 올리고머화 방법에서 1-옥텐 생성용 리간드
RU2739445C1 (ru) Способ производства олигомеров альфа-олефинов