RU2554723C2 - Способ и устройство электроснабжения воздушного летательного аппарата (варианты) - Google Patents
Способ и устройство электроснабжения воздушного летательного аппарата (варианты) Download PDFInfo
- Publication number
- RU2554723C2 RU2554723C2 RU2013126926/11A RU2013126926A RU2554723C2 RU 2554723 C2 RU2554723 C2 RU 2554723C2 RU 2013126926/11 A RU2013126926/11 A RU 2013126926/11A RU 2013126926 A RU2013126926 A RU 2013126926A RU 2554723 C2 RU2554723 C2 RU 2554723C2
- Authority
- RU
- Russia
- Prior art keywords
- voltage
- power
- ground
- power supply
- cable
- Prior art date
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/50—Arrangements for eliminating or reducing asymmetry in polyphase networks
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Stand-By Power Supply Arrangements (AREA)
Abstract
Группа изобретений относится к наземным сооружениям для привязных летательных аппаратов. Первый вариант способа электроснабжения воздушного летательного аппарата с удерживающим тросом характеризуется тем, что передачу электроэнергии с земли осуществляют повышенным напряжением 0,1…10 кВ постоянного тока путем преобразования напряжения источника питания на земле по напряжению с 12…380 В до 0,1…10 кВ и передачи по линии электропередачи с дальнейшим преобразованием напряжения 0,1…10 кВ до 12…380 В. Второй вариант способа характеризуется тем, что передачу электроэнергии с земли осуществляют резонансным способом на повышенной частоте 1…25 кГц путем преобразования напряжения источника питания на земле по напряжению и частоте с 12…380 В до 0,1…10 кВ, 1…25 кГц и передачи по линии электропередачи с дальнейшим преобразованием напряжения кабельной линии 0,1…10 кВ до 12…380 В. Каждый вариант устройства электроснабжения характеризуется использованием соответствующих преобразователей напряжения. Группа изобретений направлена на увеличение дальности и высоты электроснабжения. 4 н.п. ф-лы, 2 ил.
Description
Изобретение относится к электротехнике, в частности к способу и устройству для передачи электрической энергии на воздушный летательный аппарат.
Известен осветительный аэростат на мобильной платформе в виде наполняемой газом оболочки, внутри которой на подвеске закреплен источник света, при этом подвеска прикреплена к двум противоположно расположенным фланцам, выполненным с возможностью доступа газа внутрь оболочки, аэростат через нижний фланец соединен с растяжкой, в котором растяжка закреплена на консоли мобильной платформы, на которой размещены генератор, обеспечивающий энергопитание, позволяющий осуществлять внешнее электрическое подключение; гелиевый коллектор и баллоны для гелия, блок управления и питания, страховочная сеть для фиксации аэростата при порывах ветра (патент РФ №124360, опубл. 20.01.2013. Бюл. №2).
Известен светящийся воздушный шар, содержащий надуваемую газом оболочку, по меньшей мере, один электрический источник света, размещенный внутри оболочки, источник электрического питания, размещенный за пределами оболочки, электрические провода, соединяющие источник питания с источником света, устройство герметичного ввода электрических проводов внутрь оболочки (патент РФ №59994, опубл. 10.01.2007. Бюл. №1). Шар снабжен электропроводным ниппелем, выполненным в виде втулки из эластичного электроизоляционного материала, снабженной электрическими проводниками, расположенными в теле втулки.
Наиболее близким изобретением является способ электроснабжения привязного аэростата и устройство для его реализации, в котором в положении привязного аэростата «на высоте» при пропадании наземного электропитания одновременно с переходом электропитания комплекса бортового электрооборудования на питание от бортовой аккумуляторной батареи формируют управляющий сигнал, который передают на комплекс бортового электрооборудования для его переключения в режим пониженного энергопотребления (патент №2449927, опубл. 10.05.2012. Бюл. №13).
В положении привязного аэростата «на земле» обеспечивают электропитание комплекса бортового электрооборудования от наземного источника питания, преобразуя его напряжение в напряжение постоянного тока, соответствующее рабочему напряжению комплекса бортового электрооборудования.
Устройство содержит размещенные на наземном объекте источник электроэнергии, блок защитно-коммутационной аппаратуры, первый преобразователь, лебедку с размещенным на ее барабане канат-кабелем, размещенные на упомянутом аэростате второй преобразователь и аккумуляторную батарею, являющуюся резервным источником питания комплекса бортового электрооборудования.
Недостатком этих изобретений является возможность передачи электроэнергии на борт воздушного шара, находящегося на небольшой высоте.
Задачей предлагаемого изобретения является увеличение дальности и высоты, на которую нужно будет передавать электроэнергию для летательного аппарата с Земли.
Технический результат предлагаемого устройства - осуществление наземного питания бортового оборудования воздухоплавательного аппарата и заряд резервных бортовых аккумуляторных батарей.
Вышеуказанный результат достигается тем, что в способе электроснабжения воздушного летательного аппарата с удерживающим тросом передачу электроэнергии с земли осуществляют на воздушный летательный аппарат повышенным напряжением 0,1…10 кВ постоянного тока путем преобразования напряжения источника питания на земле по напряжению с 12…380 В до 0,1…10 кВ и передачи по линии электропередачи с дальнейшим преобразованием напряжения 0,1…10 кВ до 12…380 В, необходимого для питания бортового оборудования.
В другом варианте способа электроснабжения воздушного летательного аппарата с удерживающим тросом, передачу электроэнергии с земли осуществляют резонансным способом на повышенной частоте 1…25 кГц путем преобразования напряжения источника питания на земле по напряжению и частоте с 12…380 В до 0,1…10 кВ, 1…25 кГц и передачи по линии электропередачи с дальнейшим преобразованием напряжения кабельной линии 0,1…10 кВ до 12…380 В, необходимого для питания бортового оборудования.
Технический результат устройства электроснабжения воздушного летательного аппарата, включающего привязной воздушный летательный аппарат с удерживающим тросом и источник питания, в котором источник питания расположен на земле и содержит повышающий преобразователь напряжения для повышения напряжения 12…380 В до 0,1…10 кВ постоянного тока, линию электропередачи или кабель, встроенный в удерживающий трос, и понижающий преобразователь на борту воздушного летательного аппарата с напряжением на выходе 12…380 В для питания бортового электрооборудования с зарядным устройством и блоком аккумуляторных батарей, при этом источник питания с повышающим преобразователем напряжения подключен к линии электропередачи или кабелю, встроенному в удерживающий трос, к которому подключен понижающий преобразователь, установленный на летательном аппарате для питания бортового электрооборудования и заряда бортовых аккумуляторных батарей.
В другом варианте устройства электроснабжения воздушного летательного аппарата, включающего привязной воздушный летательный
аппарат с удерживающим тросом и источник питания, источник питания расположен на земле и содержит повышающий преобразователь напряжения для повышения напряжения 12…380 В до 0,1…10 кВ, 1…25 кГц, линию электропередачи или кабель, совмещающий функции удерживающего троса, и понижающий преобразователь на борту воздушного летательного аппарата с напряжением на выходе 12…380 В для питания бортового электрооборудования с зарядным устройством и блоком аккумуляторных батарей, при этом источник питания с повышающим преобразователем напряжения подключен к линии электропередачи или кабелю, встроенному в удерживающий трос, к которому подключен понижающий преобразователь, установленный на летательном аппарате для питания бортового электрооборудования и заряда бортовых аккумуляторных батарей.
Сущность предлагаемого изобретения поясняется фиг. 1, фиг. 2.
На фиг. 1 представлена общая схема способа и устройства для электроснабжения воздушного летательного аппарата с передачей электроэнергии по отдельной линии электропередачи.
На фиг. 2 представлена общая схема способа и устройства для электроснабжения воздушного летательного аппарата с передачей электроэнергии по линии электропередачи, встроенной в удерживающий трос.
Система фиг. 1 содержит привязной воздушный летательный аппарат 1 с понижающим преобразователем, наземный источник электроэнергии с повышающим преобразователем напряжения 2, линию электропередачи 3, удерживающий трос 4, крепление к земле 5.
Система фиг. 2 содержит привязной воздушный летательный аппарат 1 с понижающим преобразователем, наземный источник электроэнергии с повышающим преобразователем напряжения 2, удерживающий трос 4, крепление к земле 5, линию электропередачи, встроенную в удерживающий трос 6.
К наземному источнику электроэнергии с повышающим преобразователем напряжения 2 подключена линия электропередачи 3, которая соединена с воздушным летательным аппаратом 1 или встроена в удерживающий трос 6, который прикреплен к земле 5.
Устройство работает следующим образом.
От источника электроэнергии на земле напряжение постоянного или переменного тока поступает на повышающий преобразователь напряжения 2, который повышает напряжение источника питания по напряжению или по напряжению и частоте, повышенное напряжение поступает в отдельную линию электропередачи 3 или встроенную в удерживающий трос 6 и подается на воздушный летательный аппарат 1, в котором установлен обратный преобразователь, понижающий напряжение в необходимое для работы бортового электрооборудования и заряда аккумуляторных батарей.
Пример реализации способа и устройства электроснабжения воздушного летательного аппарата - в качестве источника электроэнергии на земле может быть использована аккумуляторная батарея или электросеть. Повышающий преобразователь напряжения повышает напряжение до 100…10000 В переменного тока с повышенной частотой до 1…50 кГц или до 100…10000 В постоянного тока. Провод линии электропередачи может быть выполнен в виде «витой пары», коаксиального кабеля или однопроводной кабельной линии, встроенной в удерживающий трос. На борту воздушного летательного аппарата установлен обратный преобразователь, который преобразует повышенное напряжение в пониженное, необходимое для работы зарядного устройства бортовых аккумуляторных батарей и для работы бортового электрооборудования и электродвигателя. При работе повышающего и понижающего преобразователей на повышенной частоте может использоваться резонансный режим передачи электроэнергии по однопроводной линии электропередачи.
Предлагаемые способ и устройство используются для электроснабжения высотного воздушного летательного аппарата до высоты 20…40 км.
Claims (4)
1. Способ электроснабжения воздушного летательного аппарата с удерживающим тросом, отличающийся тем, что передачу электроэнергии с земли осуществляют на воздушный летательный аппарат повышенным напряжением 0,1…10 кВ постоянного тока путем преобразования напряжения источника питания на земле по напряжению с 12…380 В до 0,1…10 кВ и передачи по линии электропередачи с дальнейшим преобразованием напряжения 0,1…10 кВ до 12…380 В, необходимого для питания бортового оборудования.
2. Способ электроснабжения воздушного летательного аппарата с удерживающим тросом, отличающийся тем, что передачу электроэнергии с земли осуществляют резонансным способом на повышенной частоте 1…25 кГц путем преобразования напряжения источника питания на земле по напряжению и частоте с 12…380 В до 0,1…10 кВ, 1…25 кГц и передачи по линии электропередачи с дальнейшим преобразованием напряжения кабельной линии 0,1…10 кВ до 12…380 В, необходимого для питания бортового оборудования.
3. Устройство электроснабжения воздушного летательного аппарата, включающее привязной воздушный летательный аппарат с удерживающим тросом и источник питания, расположенный на земле, отличающееся тем, что источник питания, расположенный на земле, содержит повышающий преобразователь напряжения для повышения напряжения 12…380 В до 0,1…10 кВ постоянного тока, линию электропередачи или кабель, встроенный в удерживающий трос, и понижающий преобразователь на борту воздушного летательного аппарата с напряжением на выходе 12…380 В для питания бортового электрооборудования с зарядным устройством и блоком аккумуляторных батарей, при этом источник питания с повышающим преобразователем напряжения подключен к линии электропередачи или кабелю, встроенному в удерживающий трос, к которому подключен понижающий преобразователь, установленный на летательном аппарате для питания бортового электрооборудования и заряда бортовых аккумуляторных батарей.
4. Устройство электроснабжения воздушного летательного аппарата, включающее привязной воздушный летательный аппарат с удерживающим тросом и источник питания, расположенный на земле, отличающееся тем, что источник питания, расположенный на земле, содержит повышающий преобразователь напряжения для повышения напряжения 12…380 В до 0,1…10 кВ, 1…25 кГц, линию электропередачи или кабель, совмещающий функции удерживающего троса, и понижающий преобразователь на борту воздушного летательного аппарата с напряжением на выходе 12…380 В для питания бортового электрооборудования с зарядным устройством и блоком аккумуляторных батарей, при этом источник питания с повышающим преобразователем напряжения подключен к линии электропередачи или кабелю, встроенному в удерживающий трос, к которому подключен понижающий преобразователь, установленный на летательном аппарате для питания бортового электрооборудования и заряда бортовых аккумуляторных батарей.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013126926/11A RU2554723C2 (ru) | 2013-06-13 | 2013-06-13 | Способ и устройство электроснабжения воздушного летательного аппарата (варианты) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013126926/11A RU2554723C2 (ru) | 2013-06-13 | 2013-06-13 | Способ и устройство электроснабжения воздушного летательного аппарата (варианты) |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2013126926A RU2013126926A (ru) | 2014-12-20 |
RU2554723C2 true RU2554723C2 (ru) | 2015-06-27 |
Family
ID=53278190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013126926/11A RU2554723C2 (ru) | 2013-06-13 | 2013-06-13 | Способ и устройство электроснабжения воздушного летательного аппарата (варианты) |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2554723C2 (ru) |
Cited By (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9496921B1 (en) | 2015-09-09 | 2016-11-15 | Cpg Technologies | Hybrid guided surface wave communication |
US9857402B2 (en) | 2015-09-08 | 2018-01-02 | CPG Technologies, L.L.C. | Measuring and reporting power received from guided surface waves |
US9859707B2 (en) | 2014-09-11 | 2018-01-02 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US9882436B2 (en) | 2015-09-09 | 2018-01-30 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US9882397B2 (en) | 2014-09-11 | 2018-01-30 | Cpg Technologies, Llc | Guided surface wave transmission of multiple frequencies in a lossy media |
US9887587B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Variable frequency receivers for guided surface wave transmissions |
US9887585B2 (en) | 2015-09-08 | 2018-02-06 | Cpg Technologies, Llc | Changing guided surface wave transmissions to follow load conditions |
US9885742B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Detecting unauthorized consumption of electrical energy |
US9887556B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Chemically enhanced isolated capacitance |
US9887557B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Hierarchical power distribution |
US9887558B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Wired and wireless power distribution coexistence |
US9893403B2 (en) | 2015-09-11 | 2018-02-13 | Cpg Technologies, Llc | Enhanced guided surface waveguide probe |
US9893402B2 (en) | 2014-09-11 | 2018-02-13 | Cpg Technologies, Llc | Superposition of guided surface waves on lossy media |
US9899718B2 (en) | 2015-09-11 | 2018-02-20 | Cpg Technologies, Llc | Global electrical power multiplication |
US9941566B2 (en) | 2014-09-10 | 2018-04-10 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9960470B2 (en) | 2014-09-11 | 2018-05-01 | Cpg Technologies, Llc | Site preparation for guided surface wave transmission in a lossy media |
US9973037B1 (en) | 2015-09-09 | 2018-05-15 | Cpg Technologies, Llc | Object identification system and method |
US9997040B2 (en) | 2015-09-08 | 2018-06-12 | Cpg Technologies, Llc | Global emergency and disaster transmission |
US10001553B2 (en) | 2014-09-11 | 2018-06-19 | Cpg Technologies, Llc | Geolocation with guided surface waves |
US10027131B2 (en) | 2015-09-09 | 2018-07-17 | CPG Technologies, Inc. | Classification of transmission |
US10027177B2 (en) | 2015-09-09 | 2018-07-17 | Cpg Technologies, Llc | Load shedding in a guided surface wave power delivery system |
US10027116B2 (en) | 2014-09-11 | 2018-07-17 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US10033198B2 (en) | 2014-09-11 | 2018-07-24 | Cpg Technologies, Llc | Frequency division multiplexing for wireless power providers |
US10031208B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US10033197B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US10063095B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Deterring theft in wireless power systems |
US10062944B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Guided surface waveguide probes |
US10074993B2 (en) | 2014-09-11 | 2018-09-11 | Cpg Technologies, Llc | Simultaneous transmission and reception of guided surface waves |
US10079573B2 (en) | 2014-09-11 | 2018-09-18 | Cpg Technologies, Llc | Embedding data on a power signal |
US10084223B2 (en) | 2014-09-11 | 2018-09-25 | Cpg Technologies, Llc | Modulated guided surface waves |
US10103452B2 (en) | 2015-09-10 | 2018-10-16 | Cpg Technologies, Llc | Hybrid phased array transmission |
US10101444B2 (en) | 2014-09-11 | 2018-10-16 | Cpg Technologies, Llc | Remote surface sensing using guided surface wave modes on lossy media |
US10122218B2 (en) | 2015-09-08 | 2018-11-06 | Cpg Technologies, Llc | Long distance transmission of offshore power |
US10135301B2 (en) | 2015-09-09 | 2018-11-20 | Cpg Technologies, Llc | Guided surface waveguide probes |
US10141622B2 (en) | 2015-09-10 | 2018-11-27 | Cpg Technologies, Llc | Mobile guided surface waveguide probes and receivers |
US10175203B2 (en) | 2014-09-11 | 2019-01-08 | Cpg Technologies, Llc | Subsurface sensing using guided surface wave modes on lossy media |
US10175048B2 (en) | 2015-09-10 | 2019-01-08 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10193595B2 (en) | 2015-06-02 | 2019-01-29 | Cpg Technologies, Llc | Excitation and use of guided surface waves |
US10193229B2 (en) | 2015-09-10 | 2019-01-29 | Cpg Technologies, Llc | Magnetic coils having cores with high magnetic permeability |
US10205326B2 (en) | 2015-09-09 | 2019-02-12 | Cpg Technologies, Llc | Adaptation of energy consumption node for guided surface wave reception |
US10230270B2 (en) | 2015-09-09 | 2019-03-12 | Cpg Technologies, Llc | Power internal medical devices with guided surface waves |
US10274527B2 (en) | 2015-09-08 | 2019-04-30 | CPG Technologies, Inc. | Field strength monitoring for optimal performance |
US10312747B2 (en) | 2015-09-10 | 2019-06-04 | Cpg Technologies, Llc | Authentication to enable/disable guided surface wave receive equipment |
US10324163B2 (en) | 2015-09-10 | 2019-06-18 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10396566B2 (en) | 2015-09-10 | 2019-08-27 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408915B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408916B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10447342B1 (en) | 2017-03-07 | 2019-10-15 | Cpg Technologies, Llc | Arrangements for coupling the primary coil to the secondary coil |
US10498006B2 (en) | 2015-09-10 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave transmissions that illuminate defined regions |
US10498393B2 (en) | 2014-09-11 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave powered sensing devices |
US10559866B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Inc | Measuring operational parameters at the guided surface waveguide probe |
US10559867B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Minimizing atmospheric discharge within a guided surface waveguide probe |
US10560147B1 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Guided surface waveguide probe control system |
US10559893B1 (en) | 2015-09-10 | 2020-02-11 | Cpg Technologies, Llc | Pulse protection circuits to deter theft |
RU2715420C1 (ru) * | 2019-08-21 | 2020-02-28 | Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук | Способ непрерывной высотной телекоммутационной связи |
US10581492B1 (en) | 2017-03-07 | 2020-03-03 | Cpg Technologies, Llc | Heat management around a phase delay coil in a probe |
US10630111B2 (en) | 2017-03-07 | 2020-04-21 | Cpg Technologies, Llc | Adjustment of guided surface waveguide probe operation |
US10680306B2 (en) | 2013-03-07 | 2020-06-09 | CPG Technologies, Inc. | Excitation and use of guided surface wave modes on lossy media |
US10998993B2 (en) | 2015-09-10 | 2021-05-04 | CPG Technologies, Inc. | Global time synchronization using a guided surface wave |
RU2782805C1 (ru) * | 2022-06-14 | 2022-11-02 | Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук | Система электроснабжения привязного летательного аппарата |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2340064C1 (ru) * | 2007-03-29 | 2008-11-27 | Российская Академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) | Способ и устройство для передачи электрической энергии (варианты) |
RU2423772C1 (ru) * | 2010-03-23 | 2011-07-10 | Российская академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) | Способ и устройство передачи электрической энергии (варианты) |
RU2423769C2 (ru) * | 2009-06-04 | 2011-07-10 | Российская академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) | Способ и устройство электроснабжения потребителей, питающихся от линий электропередачи большой протяженности |
RU2449927C2 (ru) * | 2010-08-12 | 2012-05-10 | Открытое акционерное общество "Авиационная электроника и коммуникационные системы" | Способ электроснабжения привязного аэростата и устройство для его реализации |
-
2013
- 2013-06-13 RU RU2013126926/11A patent/RU2554723C2/ru not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2340064C1 (ru) * | 2007-03-29 | 2008-11-27 | Российская Академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) | Способ и устройство для передачи электрической энергии (варианты) |
RU2423769C2 (ru) * | 2009-06-04 | 2011-07-10 | Российская академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) | Способ и устройство электроснабжения потребителей, питающихся от линий электропередачи большой протяженности |
RU2423772C1 (ru) * | 2010-03-23 | 2011-07-10 | Российская академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) | Способ и устройство передачи электрической энергии (варианты) |
RU2449927C2 (ru) * | 2010-08-12 | 2012-05-10 | Открытое акционерное общество "Авиационная электроника и коммуникационные системы" | Способ электроснабжения привязного аэростата и устройство для его реализации |
Cited By (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10680306B2 (en) | 2013-03-07 | 2020-06-09 | CPG Technologies, Inc. | Excitation and use of guided surface wave modes on lossy media |
US10224589B2 (en) | 2014-09-10 | 2019-03-05 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US9941566B2 (en) | 2014-09-10 | 2018-04-10 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US10998604B2 (en) | 2014-09-10 | 2021-05-04 | Cpg Technologies, Llc | Excitation and use of guided surface wave modes on lossy media |
US10193353B2 (en) | 2014-09-11 | 2019-01-29 | Cpg Technologies, Llc | Guided surface wave transmission of multiple frequencies in a lossy media |
US10079573B2 (en) | 2014-09-11 | 2018-09-18 | Cpg Technologies, Llc | Embedding data on a power signal |
US9887587B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Variable frequency receivers for guided surface wave transmissions |
US10175203B2 (en) | 2014-09-11 | 2019-01-08 | Cpg Technologies, Llc | Subsurface sensing using guided surface wave modes on lossy media |
US10498393B2 (en) | 2014-09-11 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave powered sensing devices |
US9887556B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Chemically enhanced isolated capacitance |
US9887557B2 (en) | 2014-09-11 | 2018-02-06 | Cpg Technologies, Llc | Hierarchical power distribution |
US10135298B2 (en) | 2014-09-11 | 2018-11-20 | Cpg Technologies, Llc | Variable frequency receivers for guided surface wave transmissions |
US10381843B2 (en) | 2014-09-11 | 2019-08-13 | Cpg Technologies, Llc | Hierarchical power distribution |
US9893402B2 (en) | 2014-09-11 | 2018-02-13 | Cpg Technologies, Llc | Superposition of guided surface waves on lossy media |
US10355480B2 (en) | 2014-09-11 | 2019-07-16 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US9859707B2 (en) | 2014-09-11 | 2018-01-02 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US9960470B2 (en) | 2014-09-11 | 2018-05-01 | Cpg Technologies, Llc | Site preparation for guided surface wave transmission in a lossy media |
US10355481B2 (en) | 2014-09-11 | 2019-07-16 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US10177571B2 (en) | 2014-09-11 | 2019-01-08 | Cpg Technologies, Llc | Simultaneous multifrequency receive circuits |
US10001553B2 (en) | 2014-09-11 | 2018-06-19 | Cpg Technologies, Llc | Geolocation with guided surface waves |
US10320045B2 (en) | 2014-09-11 | 2019-06-11 | Cpg Technologies, Llc | Superposition of guided surface waves on lossy media |
US10101444B2 (en) | 2014-09-11 | 2018-10-16 | Cpg Technologies, Llc | Remote surface sensing using guided surface wave modes on lossy media |
US10027116B2 (en) | 2014-09-11 | 2018-07-17 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US10033198B2 (en) | 2014-09-11 | 2018-07-24 | Cpg Technologies, Llc | Frequency division multiplexing for wireless power providers |
US10320200B2 (en) | 2014-09-11 | 2019-06-11 | Cpg Technologies, Llc | Chemically enhanced isolated capacitance |
US10084223B2 (en) | 2014-09-11 | 2018-09-25 | Cpg Technologies, Llc | Modulated guided surface waves |
US9882397B2 (en) | 2014-09-11 | 2018-01-30 | Cpg Technologies, Llc | Guided surface wave transmission of multiple frequencies in a lossy media |
US10153638B2 (en) | 2014-09-11 | 2018-12-11 | Cpg Technologies, Llc | Adaptation of polyphase waveguide probes |
US10074993B2 (en) | 2014-09-11 | 2018-09-11 | Cpg Technologies, Llc | Simultaneous transmission and reception of guided surface waves |
US10193595B2 (en) | 2015-06-02 | 2019-01-29 | Cpg Technologies, Llc | Excitation and use of guided surface waves |
US9857402B2 (en) | 2015-09-08 | 2018-01-02 | CPG Technologies, L.L.C. | Measuring and reporting power received from guided surface waves |
US10274527B2 (en) | 2015-09-08 | 2019-04-30 | CPG Technologies, Inc. | Field strength monitoring for optimal performance |
US10320233B2 (en) | 2015-09-08 | 2019-06-11 | Cpg Technologies, Llc | Changing guided surface wave transmissions to follow load conditions |
US10122218B2 (en) | 2015-09-08 | 2018-11-06 | Cpg Technologies, Llc | Long distance transmission of offshore power |
US10132845B2 (en) | 2015-09-08 | 2018-11-20 | Cpg Technologies, Llc | Measuring and reporting power received from guided surface waves |
US9997040B2 (en) | 2015-09-08 | 2018-06-12 | Cpg Technologies, Llc | Global emergency and disaster transmission |
US10467876B2 (en) | 2015-09-08 | 2019-11-05 | Cpg Technologies, Llc | Global emergency and disaster transmission |
US9887585B2 (en) | 2015-09-08 | 2018-02-06 | Cpg Technologies, Llc | Changing guided surface wave transmissions to follow load conditions |
US10027131B2 (en) | 2015-09-09 | 2018-07-17 | CPG Technologies, Inc. | Classification of transmission |
US9973037B1 (en) | 2015-09-09 | 2018-05-15 | Cpg Technologies, Llc | Object identification system and method |
US9882436B2 (en) | 2015-09-09 | 2018-01-30 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US10135301B2 (en) | 2015-09-09 | 2018-11-20 | Cpg Technologies, Llc | Guided surface waveguide probes |
US9882606B2 (en) | 2015-09-09 | 2018-01-30 | Cpg Technologies, Llc | Hybrid guided surface wave communication |
US10536037B2 (en) | 2015-09-09 | 2020-01-14 | Cpg Technologies, Llc | Load shedding in a guided surface wave power delivery system |
US10516303B2 (en) | 2015-09-09 | 2019-12-24 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US10062944B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Guided surface waveguide probes |
US10205326B2 (en) | 2015-09-09 | 2019-02-12 | Cpg Technologies, Llc | Adaptation of energy consumption node for guided surface wave reception |
US10063095B2 (en) | 2015-09-09 | 2018-08-28 | CPG Technologies, Inc. | Deterring theft in wireless power systems |
US10230270B2 (en) | 2015-09-09 | 2019-03-12 | Cpg Technologies, Llc | Power internal medical devices with guided surface waves |
US10033197B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US9885742B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Detecting unauthorized consumption of electrical energy |
US10031208B2 (en) | 2015-09-09 | 2018-07-24 | Cpg Technologies, Llc | Object identification system and method |
US10027177B2 (en) | 2015-09-09 | 2018-07-17 | Cpg Technologies, Llc | Load shedding in a guided surface wave power delivery system |
US9496921B1 (en) | 2015-09-09 | 2016-11-15 | Cpg Technologies | Hybrid guided surface wave communication |
US9887558B2 (en) | 2015-09-09 | 2018-02-06 | Cpg Technologies, Llc | Wired and wireless power distribution coexistence |
US10425126B2 (en) | 2015-09-09 | 2019-09-24 | Cpg Technologies, Llc | Hybrid guided surface wave communication |
US10333316B2 (en) | 2015-09-09 | 2019-06-25 | Cpg Technologies, Llc | Wired and wireless power distribution coexistence |
US10148132B2 (en) | 2015-09-09 | 2018-12-04 | Cpg Technologies, Llc | Return coupled wireless power transmission |
US10396566B2 (en) | 2015-09-10 | 2019-08-27 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10498006B2 (en) | 2015-09-10 | 2019-12-03 | Cpg Technologies, Llc | Guided surface wave transmissions that illuminate defined regions |
US10559893B1 (en) | 2015-09-10 | 2020-02-11 | Cpg Technologies, Llc | Pulse protection circuits to deter theft |
US10175048B2 (en) | 2015-09-10 | 2019-01-08 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408915B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10408916B2 (en) | 2015-09-10 | 2019-09-10 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10998993B2 (en) | 2015-09-10 | 2021-05-04 | CPG Technologies, Inc. | Global time synchronization using a guided surface wave |
US10141622B2 (en) | 2015-09-10 | 2018-11-27 | Cpg Technologies, Llc | Mobile guided surface waveguide probes and receivers |
US10324163B2 (en) | 2015-09-10 | 2019-06-18 | Cpg Technologies, Llc | Geolocation using guided surface waves |
US10601099B2 (en) | 2015-09-10 | 2020-03-24 | Cpg Technologies, Llc | Mobile guided surface waveguide probes and receivers |
US10312747B2 (en) | 2015-09-10 | 2019-06-04 | Cpg Technologies, Llc | Authentication to enable/disable guided surface wave receive equipment |
US10193229B2 (en) | 2015-09-10 | 2019-01-29 | Cpg Technologies, Llc | Magnetic coils having cores with high magnetic permeability |
US10103452B2 (en) | 2015-09-10 | 2018-10-16 | Cpg Technologies, Llc | Hybrid phased array transmission |
US9899718B2 (en) | 2015-09-11 | 2018-02-20 | Cpg Technologies, Llc | Global electrical power multiplication |
US10326190B2 (en) | 2015-09-11 | 2019-06-18 | Cpg Technologies, Llc | Enhanced guided surface waveguide probe |
US10355333B2 (en) | 2015-09-11 | 2019-07-16 | Cpg Technologies, Llc | Global electrical power multiplication |
US9893403B2 (en) | 2015-09-11 | 2018-02-13 | Cpg Technologies, Llc | Enhanced guided surface waveguide probe |
US10447342B1 (en) | 2017-03-07 | 2019-10-15 | Cpg Technologies, Llc | Arrangements for coupling the primary coil to the secondary coil |
US10581492B1 (en) | 2017-03-07 | 2020-03-03 | Cpg Technologies, Llc | Heat management around a phase delay coil in a probe |
US10630111B2 (en) | 2017-03-07 | 2020-04-21 | Cpg Technologies, Llc | Adjustment of guided surface waveguide probe operation |
US10560147B1 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Guided surface waveguide probe control system |
US10559867B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Minimizing atmospheric discharge within a guided surface waveguide probe |
US10559866B2 (en) | 2017-03-07 | 2020-02-11 | Cpg Technologies, Inc | Measuring operational parameters at the guided surface waveguide probe |
RU2715420C1 (ru) * | 2019-08-21 | 2020-02-28 | Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук | Способ непрерывной высотной телекоммутационной связи |
RU2782805C1 (ru) * | 2022-06-14 | 2022-11-02 | Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук | Система электроснабжения привязного летательного аппарата |
RU2831621C1 (ru) * | 2024-02-13 | 2024-12-11 | Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук | Способ определения высоты платформы из привязного беспилотного летательного аппарата |
Also Published As
Publication number | Publication date |
---|---|
RU2013126926A (ru) | 2014-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2554723C2 (ru) | Способ и устройство электроснабжения воздушного летательного аппарата (варианты) | |
CN203638106U (zh) | 有线数据传输多旋翼无人飞行器 | |
CN205986259U (zh) | 一种适用于电力线路巡航的无人机无线充电系统 | |
KR102127283B1 (ko) | 에너지 하베스팅을 적용한 선박의 배터리 모니터링 시스템 | |
CN109733215B (zh) | 一种基于太阳能光储一体的公路动态无线充电系统 | |
CN206012962U (zh) | 一种便携式系留无人机 | |
KR101912246B1 (ko) | 유도전원형 전력선 표시등구 | |
CN103754373A (zh) | 有线电源多旋翼无人飞行器 | |
CN104135084A (zh) | 向输电塔提供电力的系统和方法及发送和接收数据的方法 | |
CN103280853A (zh) | 一种发射塔式远程汽车充电系统和充电方法 | |
CN108638893B (zh) | 一种基于输电杆塔的无人机充电系统 | |
CN203638098U (zh) | 有线电源多旋翼无人飞行器 | |
CN202120688U (zh) | 防风偏复合绝缘子 | |
RU2010133712A (ru) | Способ электроснабжения привязного аэростата и устройство для его реализации | |
CN104079080A (zh) | 一种高压线路设备的供电装置 | |
CN103532244A (zh) | 高压输电线路在线监测装置的等电位供电及信号传输系统 | |
CN206517170U (zh) | 基于激光充电装置的无人机 | |
CN112713663B (zh) | 一种高压输电线路二次设备的取电装置 | |
CN104410119A (zh) | 一种太阳能移动充电电源 | |
CN108568116A (zh) | 一种娱乐系统 | |
CN209545218U (zh) | 一种无线充电装置 | |
CN103023125A (zh) | 一种高压输电线路监测设备安装调试电源装置 | |
CN209358297U (zh) | 一种取电装置 | |
RU119905U1 (ru) | Система электроснабжения подводного телеуправляемого аппарата с судна-носителя (варианты) | |
CN106253406A (zh) | 一种无线水下充电终端 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FA92 | Acknowledgement of application withdrawn (lack of supplementary materials submitted) |
Effective date: 20150129 |
|
FZ9A | Application not withdrawn (correction of the notice of withdrawal) |
Effective date: 20150312 |
|
HZ9A | Changing address for correspondence with an applicant | ||
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20160614 |