[go: up one dir, main page]

RU2543666C1 - Способ определения обеспеченности водозаборных сооружений естественными ресурсами пластовых и глубинных вод - Google Patents

Способ определения обеспеченности водозаборных сооружений естественными ресурсами пластовых и глубинных вод Download PDF

Info

Publication number
RU2543666C1
RU2543666C1 RU2013144321/28A RU2013144321A RU2543666C1 RU 2543666 C1 RU2543666 C1 RU 2543666C1 RU 2013144321/28 A RU2013144321/28 A RU 2013144321/28A RU 2013144321 A RU2013144321 A RU 2013144321A RU 2543666 C1 RU2543666 C1 RU 2543666C1
Authority
RU
Russia
Prior art keywords
water
deep
resources
waters
deep waters
Prior art date
Application number
RU2013144321/28A
Other languages
English (en)
Inventor
Анатолий Иванович Тихонов
Михаил Сергеевич Голицын
Валериан Петрович Тихонов
Надежда Евгеньевна Миронова
Original Assignee
Общество с ограниченной ответственностью "НИИ геологических и геоэкологических проблем" (ООО "НИИГ и ГЭП")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "НИИ геологических и геоэкологических проблем" (ООО "НИИГ и ГЭП") filed Critical Общество с ограниченной ответственностью "НИИ геологических и геоэкологических проблем" (ООО "НИИГ и ГЭП")
Priority to RU2013144321/28A priority Critical patent/RU2543666C1/ru
Application granted granted Critical
Publication of RU2543666C1 publication Critical patent/RU2543666C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

Изобретение относится к области гидрогеологии и может быть использовано для изучения и оценки достаточности ресурсов подземных вод в условиях дополнительного притока глубинных вод для водообеспеченности водозаборного сооружения. Сущность: отбирают водные пробы из водозаборных скважин. Альфа-спектрометрическим методом определяют величину
Figure 00000001
отношения альфа-активностей изотопов урана-234 и урана-238 (234U/238U=γ). Строят линии равных значений величины
Figure 00000001
по площади и разрезу водоносного горизонта. По аномалиям на картах в горизонтальной плоскости и куполовидной конфигурации изолиний величины γ в вертикальной плоскости определяют в пределах водоносного горизонта очаги поступления глубинных вод. Определяют конфигурацию границ участка распространения глубинных вод. Затем по максимальным значениям величины γ выявляют участки поступления глубинных вод в пределы водоносного горизонта. Определяют величину изменения динамического уровня ΔH подземных вод в пределах этих участков относительно среднего уровня для изучаемого района. При положительном значении величины ΔH делают вывод о дополнительном восполнении запасов подземных вод в эксплуатируемом горизонте за счет притока глубинных вод; при отрицательном значении величины ΔH - о превышении суммарного водоотбора над суммарными ресурсами собственно пластовых и глубинных вод и необеспеченности водозаборных сооружений даже суммарными ресурсами собственно пластовых и глубинных вод; при ΔH=0 - о восполнении дефицита ресурсов собственно пластовых вод за счет дополнительного поступления глубинных вод. Технический результат: повышение эффективности и геологической информативности получаемых результатов при определении степени обеспеченности водоносных горизонтов ресурсами подземных вод в условиях неучитываемого гидрогеологическими способами дополнительного притока глубинных вод, уменьшение трудоемкости проведения работ. 3 ил.

Description

Изобретение относится к гидрогеологии и может быть использовано для изучения и оценки достаточности ресурсов подземных вод в условиях дополнительного притока глубинных вод для водообеспеченности водозаборного сооружения на основе изучения динамики подземных вод.
Под водообеспеченностью водозаборного сооружения понимается отношение ресурсов подземных вод, которые могут быть привлечены к скважине при максимально возможном понижении в ней уровня воды к эксплуатационному дебиту скважины. При работе водозаборной скважины вокруг нее образуется депрессионная воронка поверхности уровня подземных вод, в пределах которой вода движется к скважине. Следовательно, для питания скважины привлекаются подземные воды со значительной площади распространения водоносного горизонта. Кроме того, в области влияния депрессионной воронки вода может поступать из других водоносных горизонтов. Ресурсы подземных вод, которые могут быть привлечены данной скважиной (или групповым подземным водозабором) без существенного ухудшения эксплуатационного режима и качества воды в течение расчетного срока ее работы, называются эксплуатационными. Ресурсы подземных вод обеспечиваются естественными (статическими) запасами и естественными (динамическими) ресурсами подземных вод. Естественные запасы определяются мощностью водовмещающих пород, их распространением и водоотдачей. Естественные ресурсы равны расходу воды, проходящей через поперечное сечение водоносного горизонта. Согласно методическим требованиям [1-3] при определении водообеспеченности проектируемой одиночной разведочно-эксплуатационной скважины нельзя рассматривать интересующий водоносный горизонт без связи его с другими водоносными горизонтами и поверхностными водами. Однако в настоящее время при оценке ресурсов подземных вод разведуемых водоносных горизонтов принято считать, что в них могут поступать дополнительные воды в основном только из вышележащих горизонтов. В последние годы многочисленными исследованиями одного из авторов предложенного изобретения [4] достоверно установлено, что в пределы водоносных горизонтов могут поступать по проницаемым зонам неотектонических нарушений земной коры глубинные воды, доля которых в образовании естественных ресурсов разведуемых горизонтов может достигать 25% и более. При этом в них обнаруживается повышенное содержание различных токсичных металлов и других химических элементов глубинного генезиса, поэтому не считаться с этим явлением нельзя, особенно учитывая их вредное воздействие на организм человека.
В этих условиях об обеспеченности естественными ресурсами подземных вод разведанного горизонта потребностей водозаборных сооружений в гидрогеологии в настоящее время судят по величине допустимого понижения уровня (ΔHдоп) подземных вод в процессе эксплуатации скважины:
ΔHдоп≤Hст-Hдин,
где Hст и Hдин - соответственно статический и динамический уровни подземных вод. Из приведенного уравнения следует, что если ΔНдоп>Hст-Hдин, то это будет свидетельствовать о недостаточности естественных ресурсов подземных вод эксплуатируемого горизонта для обеспечения потребностей водозаборных скважин. Способ требует проведения постоянного мониторинга изменений уровня подземных вод при эксплуатации водозаборных сооружений, однако он трудоемкий и требует долголетнего постоянного наблюдения за изменениями уровня подземных вод и, кроме того, он не учитывает возможность притока глубинных вод в пределы водоносного горизонта.
Авторами предлагаемого изобретения установлено, что поступление глубинных вод в пределы водоносного горизонта в некоторых случаях может привести даже к повышению динамического уровня в районе водозаборных сооружений, что отражается куполовидной конфигурацией гидроизогипс. Это нередко относится гидрогелогами к погрешностям измерений уровня.
Известен способ определения обеспеченности водозаборных сооружений естественными ресурсами подземных вод эксплуатируемого горизонта, приведенный в [1], заключающийся в определении статического уровня подземных вод путем построения гидроизогипс, суждении об обеспеченности водозаборных сооружений естественными ресурсами пластовых вод по величине понижения уровня. Недостатки этого способа: не учитывается возможность влияния на количество определяемых ресурсов подземных вод разведуемого водоносного горизонта дополнительного притока в проницаемых зонах тектонических нарушений глубинных вод, что искажает надежность и эффективность получаемых результатов.
Наиболее близким техническим решением (прототипом) является способ индикаторного моделирования взаимосвязи водоносных горизонтов (Патент РФ №2458365, G01V 9/02, опубл. 10.08.2012) [5], основанный на открытии советских ученых [6], позволяющий выявлять очаги поступления глубинных вод в пределы водоносных горизонтов, заключающийся в отборе водных проб из водозаборных скважин, очистке природного урана от альфа-активных изотопов радия и тория, электролитическом осаждении урана на диск из нержавеющей стали, альфа-спектрометрическом определении величины наиболее стабильного природного индикатора - отношения альфа-активностей изотопов урана-234 и урана-238 (234U/238U=γ), построении линий равных значений этого индикатора по площади и разрезу водоносного горизонта, при котором по аномалиям на картах в горизонтальной плоскости и куполовидной конфигурации изолиний γ в вертикальной плоскости определяют наличие в пределах водоносного горизонта месторождения очагов поступления глубинных вод, затем прослеживают линию равных значений
γгргл-(γглпл)/3,
где γгл, γгр и γпл - величина γ=234U/238U соответственно в центральной части очага (γгл) и на границах участка (γгр) поступления глубинных вод, а также средняя для собственно пластовых вод (γпл), определяют конфигурацию границ участка распространения глубинных вод. Однако в прототипе не предусмотрена возможность определения степени обеспеченности водоносных горизонтов ресурсами подземных вод в условиях неучитываемого гидрогеологическими способами дополнительного притока глубинных вод.
Задачей предлагаемого изобретения является создание способа определения обеспеченности водозаборных сооружений естественными ресурсами пластовых и глубинных вод, позволяющего проводить изучение и давать объективную оценку достаточности ресурсов подземных вод в условиях дополнительного притока глубинных вод для водообеспеченности водозаборного сооружения на основе изучения динамики подземных вод.
Техническим результатом заявленного изобретения является повышение эффективности и геологической информативности получаемых результатов при определении степени обеспеченности водоносных горизонтов ресурсами подземных вод в условиях неучитываемого гидрогеологическими способами дополнительного притока глубинных вод с одновременным уменьшением трудоемкости и стоимости проведения этих работ.
Технический результат достигается тем, что способ определения обеспеченности водозаборных сооружений естественными ресурсами пластовых и глубинных вод заключается в отборе водных проб из водозаборных скважин, очистке природного урана от альфа-активных изотопов радия и тория, электролитическом осаждении урана на диск из нержавеющей стали, альфа-спектрометрическом определении величины наиболее стабильного природного индикатора - отношения альфа-активностей изотопов урана-234 и урана-238 (234U/238U=γ), построении линий равных значений этого индикатора по площади и разрезу водоносного горизонта, при котором по аномалиям на картах в горизонтальной плоскости и куполовидной конфигурации изолиний γ в вертикальной плоскости определяют наличие в пределах водоносного горизонта месторождения очагов поступления глубинных вод, затем прослеживают линию равных значений
γгргл-(γглпл)/3,
где γгл, γгр и γпл - величина γ=234U/238U соответственно в центральной части очага (γгл) и на границах участка (γгр) поступления глубинных вод, а также средняя для собственно пластовых вод (γпл), определяют конфигурации границ участка распространения глубинных вод, по максимальным значениям отношения γmax=234U/238U выявляют участки поступления глубинных вод в пределы водоносного горизонта, определяют величину изменения динамического уровня подземных вод ΔH=Hст-Hср-ст в пределах этих участков относительно среднего уровня ΔH для изучаемого района и при +ΔH судят о дополнительном восполнении запасов подземных вод в эксплуатируемом горизонте за счет притока глубинных вод, т.е. (Qпл+Qгл)>Qв, где Qпл, Qгл и Qв - соответственно ресурсы собственно пластовых и глубинных вод и суммарный отбор подземных вод, при -ΔH - о превышении суммарного водоотбора над суммарными ресурсами собственно пластовых и глубинных вод и необеспеченности водозаборных сооружений даже суммарными ресурсами собственно пластовых и глубинных вод, т.е. (Qпл+Qгл)<Qв а при ΔH=0 - о восполнении дефицита ресурсов собственно пластовых вод за счет дополнительного поступления глубинных вод, т.е. в этом случае (Qпл+Qгл)=Qв.
Сущность предлагаемого способа иллюстрируется полученными результатами обработки данных, представленными на Фиг.1-3.
На Фиг.1 изображены схемы изменения динамического уровня подземных вод (ΔH) при различных соотношениях разведанных запасов подземных вод (Qз) и объема водозабора (Qв) в случае поступления (а) и отсутствия (б) притока глубинных вод.
Приведенная на Фиг.1а-1 схема показывает, что в отличие от случая отсутствия притока глубинных вод, когда при длительной работе водозаборного сооружения наблюдается только понижение динамического уровня, при существовании очага поступления глубинных вод уровень воды в скважинах даже может подниматься. Это свидетельствует не только об обеспеченности водозаборного сооружения за счет собственно пластовых вод, но и увеличении ресурсов подземных вод в результате дополнительного поступления глубинных вод. Однако в этом случае может начаться принудительное подтягивание глубинных вод с высоким содержанием токсичных химических элементов (бор, литий и др.) и ухудшиться качество подземных вод.
На Фиг.2 и 3 приведены примеры изменения динамического уровня подземных вод при длительной эксплуатации водозаборных скважин на участках поступления глубинных вод в пределы верхнепермского водоносного комплекса на территории юго-западных районов Республики Татарстан.
Фиг.2 показывает, что в пределах изученной территории площадью около 3800 км2 повсеместно наблюдается внедрение глубинных вод. Всего выделено 15 очагов поступления глубинных вод.
На Фиг.3 приведена схематическая карта, показывающая, что в пределах большинства (9) участков внедрения глубинных вод наблюдается понижение динамического уровня относительно среднего регионального статического уровня (-ΔH). Это свидетельствует о недостаточности ресурсов подземных вод для обеспечения потребностей существующих водозаборных скважин даже суммарных собственно пластовых и глубинных вод, т.е. (Qпл+Qгл)<Qв, и возможности необратимого ухудшения экологического состояния подземных вод на таких участках в результате принудительного подтягивания глубинных вод. В пределах 6 участков поступления глубинных вод можно видеть даже повышение уровня подземных вод (+ΔH) в процессе водоотбора, что свидетельствует о превышении суммарных собственно пластовых и глубинных вод над потребностями водозаборных сооружений на этих участках, т.е. (Qпл+Qгл)>Qв. Только в пределах одного участка уровень подземных вод остался на прежнем уровне, т.е. ΔН=0.
Результаты апробирования предложенного способа приведены в таблице.
Таблица
Гидродинамические особенности (параметры) подземных вод на участках поступления глубинных вод в пределы верхнепермского водоносного комплекса на территории юго-западных районов Республики Татарстан
№ п/п Номер аномального участка 234U/238U=γ Местоположение Балансовое уравнение ΔH=Hст-скв.-Hср-ст м
1 2 3 4 5 6
1 I 7,17±0,16 д.д. Н. и Ст. Ишли Qв=(Qп+Qгл) 0
2 II 10,5±0,23 д. Ст Чукалы Qв<(Qп+Qгл) +70
3 III 18,1±0,51 Бассейн р. Карлы Qв<(Qп+Qгл) +30
4 IV 20,1±2,00 д. Кайрево Qв>(Qп+Qгл) -30
5 V 8,73±0.21 д. Убей Qв>(Qп+Qгл) -40
6 VI 5,94±0,08 д. Б. Цильна Qв>(Qп+Qгл) -80
7 VII 8,23±0,27 д. Шаймурзино Qв<(Qп+Qгл) +30
8 VIII 3,31±0,15 д. Черки-Гришино Qв>(Qп+Qгл) -20
9 IX 3,64±0,08 д. Адав-Тулумбаево Qв>(Qп+Qгл) -20
10 X 3,80±0,07 д. Немчиновка Qв<(Qп+Qгл) +10
11 XIа 7,86±0,17 д. Вожжи Qв>(Qп+Qгл) -20
12 ХIб 9,18±0,27 д. Тат. Беденьга Qв<(Qп+Qгл) +30
13 XII 4,57±0,16 д. Чув. Черепаново Qв<(Qп+Qгл) +20
14 XIII 6,57±0,13 д. Ниж. Тарханы Qв>(Qп+Qгл) -70
15 XIV 5,37±0,07 д. Иоково Qв>(Qп+Qгл) -5
16 XV 5,01±0,10 д. Кильдюшево Qв>(Qп+Qгл) -10
Способ реализуется следующим образом. Из водозаборных скважин, выбранных по оптимальной сети для равномерного изучения всей территории месторождения, отбирают водные пробы в чистые емкости, отметив перфорированные интервалы в скважинах, расположение их на топографической карте местности, в полевых условиях в водные пробы в стеклянных 20-л бутылях добавляют метилоранж для контроля кислотности среды, а также соляную кислоту до получения pH 1-2 (до розовой окраски раствора) для перевода урана в ионную форму. После этого при перемешивании в воду постепенно добавляют насыщенный раствор буфера - уротропина до перехода окраски воды из розового в желтый цвет, т.е. до pH 4.5-5.5. Далее в обрабатываемую пробу добавляют активированный уголь для сорбирования урана из водной пробы. После отстаивания раствора и осаждения угля на дне посуды проводят декантирование осветленной части раствора и фильтрование угольного осадка на воронке Бюхнера под вакуумом, осадок сушится и отправляется в стационарную радиохимическую лабораторию, где проводят очистку природного урана от альфа-активных изотопов радия и тория. При этом уран вымывается из угля карбонатным раствором и собирается в колбе Бунзена. Затем соосаждением на гидроокиси железа очищают уран от других альфа-излучающих нуклидов. Уран экстрагируется трибутилфосфатом и переходит в органическую фазу. Из органической фазы уран реэкстрагируется дистиллированной водой, высушивается и растворяется соляной кислотой. Затем проводится электролитическое осаждение урана на диск из нержавеющей стали и после промывки дистиллированной водой и сушки готовый урановый препарат отправляют в альфа-спектрометрическую лабораторию, где измеряют изотопное отношение и концентрацию урана в ионизационной камере. С помощью специальной компьютерной программы регистрируются импульсы от альфа-частиц, сохраняются полученные спектры и рассчитывается величина отношения активностей изотопов урана 234U/238U=γ, стандартное и относительное среднеквадратичное отклонение, концентрация урана и его химический выход. На основе полученных данных составляется карта распределения величины γ - наиболее стабильного природного индикатора подземных вод путем построения линий равных значений γ в горизонтальной и вертикальной плоскостях. При этом по максимальным значениям γ на картах в горизонтальной плоскости и куполовидной конфигурации изолиний γ в вертикальной плоскости определяют наличие в пределах водоносного горизонта месторождения очагов поступления глубинных вод.
Затем прослеживают линию равных значений
γгргл-(γглпл)/3,
где γгл, γгр и γпл - величина γ=234U/238U соответственно в центральной части очага (γгд) и на границах участка (γгр) поступления глубинных вод, а также средняя для собственно пластовых вод (γпл), определяют конфигурацию границ участка распространения глубинных вод.
Далее по максимальным значениям отношения γmax=234U/238U выявляют участки поступления глубинных вод в пределы водоносного горизонта, определяют величину изменения динамического уровня подземных вод ΔH=Hст-Hср-ст в пределах этих участков относительно среднего уровня для изучаемого района и при +ΔH судят о дополнительном восполнении запасов подземных вод в эксплуатируемом горизонте за счет притока глубинных вод, т.е. (Qпл+Qгл)>Qв, где Qпл, Qгл и Qв - соответственно ресурсы собственно пластовых и глубинных вод и суммарный отбор подземных вод, при -ΔH - о превышении суммарного водоотбора над суммарными ресурсами собственно пластовых и глубинных вод и необеспеченности водозаборных сооружений даже суммарными ресурсами собственно пластовых и глубинных вод, т.е. (Qпл+Qгл)<Qв, а при ΔH=0 - о восполнении дефицита ресурсов собственно пластовых вод за счет дополнительного поступления глубинных вод, т.е. в этом случае (Qпл+Qгл)=Qв.
Таким образом, в отличие от прототипа предложенное техническое решение с приведенной совокупностью отличительных существенных признаков, а именно заключающееся в том, что определяют величину изменения динамического уровня подземных вод ΔH=Hст-Hср-ст в пределах участков поступления глубинных вод относительно среднего уровня ΔН для изучаемого района и при +ΔH судят о дополнительном восполнении запасов подземных вод в эксплуатируемом горизонте за счет притока глубинных вод, т.е. (Qпл+Qгл)>Qв, где Qпл, Qгл и Qв - соответственно ресурсы собственно пластовых и глубинных вод и суммарный отбор подземных вод, при -ΔH - о превышении суммарного водоотбора над суммарными ресурсами собственно пластовых и глубинных вод и необеспеченности водозаборных сооружений даже суммарными ресурсами собственно пластовых и глубинных вод, т.е. (Qпл+Qгл)<Qв, а при ΔН=0 - о восполнении дефицита ресурсов собственно пластовых вод за счет дополнительного поступления глубинных вод, т.е. в этом случае (Qпл+Qгл)=Qв, позволяет повысить эффективность и геологическую информативность получаемых результатов при определении степени обеспеченности водоносных горизонтов ресурсами подземных вод в условиях не учитываемого гидрогеологическими способами дополнительного притока глубинных вод, а также позволяет одновременно уменьшить трудоемкость и стоимость проведения работ по сравнению с гидрогеологическими способами. В предложенном изобретении для достижения технического результата используются новые формулы, выведенные авторами заявленного технического решения, что снижает трудоемкость и стоимость проведения работ для достижения заявленного технического результата. Предложенное техническое решение явным образом не следует из уровня техники. Кроме того, в процессе патентного поиска не выявлены технические решения, имеющие признаки, совпадающие с отличительными признаками заявленного изобретения, следовательно, оно удовлетворяет условию патентоспособности "изобретательский "уровень". В уровне техники не обнаружен аналог, характеризующийся признаками, идентичными всем существенным признакам заявленного изобретения. Апробирование способа экспериментальным путем подтверждает его реализуемость с достижением заявленного технического результата, в связи с этим изобретение соответствует условию патентоспособности "промышленная применимость".
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Бочевер Ф.М., Веригин Н.Н. Методическое пособие по расчетам эксплуатационных запасов подземных вод для водоснабжения. Госстройиздат, 1961.
2. Водообеспеченность скважины/http://www.geoda.ru/library/drilling_11/.
3. Плотников Н.А. Оценка запасов подземных вод. Госгеолтехиздат, 1959.
4. Тихонов А.И. Неравновесный уран в условиях активного водообмена и его использование в геологиии и гидрогеологии. - Чебоксары: Изд-во Л.А. Наумова, 2009.
5. Тихонов В.П., Тихонов А.И., Васильев А.В. и др. Способ индикаторного моделирования взаимосвязи водоносных горизонтов // Патент на изобретение Российской Федерации №2458365, G01V 9/02, опубл. 10.08.2012 г. в Гос. реестре изобретений РФ, бюл. №22.
6. Чердынцев В.В., Чалов П.И. Естественное разделение урана 234U и 238U // Открытия в СССР (Сборник кратких описаний открытий, внесенных в Государственный реестр СССР). - М.: ЦНИИПИ, 1977.

Claims (1)

  1. Способ определения обеспеченности водозаборных сооружений естественными ресурсами пластовых и глубинных вод, заключающийся в отборе водных проб из водозаборных скважин, очистке природного урана от альфа-активных изотопов радия и тория, электролитическом осаждении урана на диск из нержавеющей стали, альфа-спектрометрическом определении величины наиболее стабильного природного индикатора - отношения альфа-активностей изотопов урана-234 и урана-238 (234U/238U=γ), построении линий равных значений этого индикатора по площади и разрезу водоносного горизонта, при котором по аномалиям на картах в горизонтальной плоскости и куполовидной конфигурации изолиний γ в вертикальной плоскости определяют наличие в пределах водоносного горизонта месторождения очагов поступления глубинных вод, затем прослеживают линию равных значений: γгргл-(γглпл)/3, где γгл, γгр и γпл - величина γ=234U/238U соответственно в центральной части очага (γгл) и на границах участка (γгр) поступления глубинных вод, а также средняя для собственно пластовых вод (γпл), определяют конфигурацию границ участка распространения глубинных вод, отличающийся тем, что по максимальным значениям отношения γmax=234U/238U выявляют участки поступления глубинных вод в пределы водоносного горизонта, определяют величину изменения динамического уровня подземных вод ΔH=Hст-Hср-ст в пределах этих участков относительно среднего уровня ΔН для изучаемого района и при +ΔH судят о дополнительном восполнении запасов подземных вод в эксплуатируемом горизонте за счет притока глубинных вод, т.е. (Qпл+Qгл)>Qв, где Qпл, Qгл и Qв - соответственно ресурсы собственно пластовых и глубинных вод и суммарный отбор подземных вод, при -ΔH - о превышении суммарного водоотбора над суммарными ресурсами собственно пластовых и глубинных вод и необеспеченности водозаборных сооружений даже суммарными ресурсами собственно пластовых и глубинных вод, т.е. (Qпл+Qгл)<Qв, а при ΔH=0 - о восполнении дефицита ресурсов собственно пластовых вод за счет дополнительного поступления глубинных вод, т.е. в этом случае (Qпл+Qгл)=Qв.
RU2013144321/28A 2013-10-01 2013-10-01 Способ определения обеспеченности водозаборных сооружений естественными ресурсами пластовых и глубинных вод RU2543666C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013144321/28A RU2543666C1 (ru) 2013-10-01 2013-10-01 Способ определения обеспеченности водозаборных сооружений естественными ресурсами пластовых и глубинных вод

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013144321/28A RU2543666C1 (ru) 2013-10-01 2013-10-01 Способ определения обеспеченности водозаборных сооружений естественными ресурсами пластовых и глубинных вод

Publications (1)

Publication Number Publication Date
RU2543666C1 true RU2543666C1 (ru) 2015-03-10

Family

ID=53290210

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013144321/28A RU2543666C1 (ru) 2013-10-01 2013-10-01 Способ определения обеспеченности водозаборных сооружений естественными ресурсами пластовых и глубинных вод

Country Status (1)

Country Link
RU (1) RU2543666C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112444890A (zh) * 2020-11-06 2021-03-05 核工业北京地质研究院 一种深部铀矿二维氡气差量探测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU920607A1 (ru) * 1980-07-03 1982-04-15 Институт Физики И Математики Ан Киргизской Сср Способ определени водопроводимости горных пород
RU2458365C1 (ru) * 2011-05-18 2012-08-10 Общество с ограниченной ответственностью "Научно-исследовательский институт геологических и геоэкологических проблем" Способ индикаторного моделирования взаимосвязи водоносных горизонтов

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU920607A1 (ru) * 1980-07-03 1982-04-15 Институт Физики И Математики Ан Киргизской Сср Способ определени водопроводимости горных пород
RU2458365C1 (ru) * 2011-05-18 2012-08-10 Общество с ограниченной ответственностью "Научно-исследовательский институт геологических и геоэкологических проблем" Способ индикаторного моделирования взаимосвязи водоносных горизонтов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
А.Ф.Иванов и др. Генезис минеральных вод на территории Вурнарского района Чувашской республики по уран-изотопным данным / Ученые записки Казанского университета. Серия: Естественные науки, 2009, т.151, N4, стр.152-161 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112444890A (zh) * 2020-11-06 2021-03-05 核工业北京地质研究院 一种深部铀矿二维氡气差量探测方法
CN112444890B (zh) * 2020-11-06 2023-11-14 核工业北京地质研究院 一种深部铀矿二维氡气差量探测方法

Similar Documents

Publication Publication Date Title
Kogovsek et al. Solute transport processes in a karst vadose zone characterized by long-term tracer tests (the cave system of Postojnska Jama, Slovenia)
Kaste et al. Environmental chemistry of beryllium-7
Su et al. An examination of groundwater discharge and the associated nutrient fluxes into the estuaries of eastern Hainan Island, China using 226Ra
Charette et al. Submarine groundwater discharge in a river-dominated Florida estuary
Li et al. Trace metal in surface water and groundwater and its transfer in a Yellow River alluvial fan: evidence from isotopes and hydrochemistry
Szocs et al. The application of isotope and chemical analyses in managing transboundary groundwater resources
Abiye et al. Surface water and groundwater interaction in the upper Crocodile River Basin, Johannesburg, South Africa: Environmental isotope approach
CN112557612A (zh) 利用水系沉积物解析金属矿区地下水重金属污染源及污染边界的方法
Zurek et al. Quantification of anthropogenic impact on groundwater-dependent terrestrial ecosystem using geochemical and isotope tools combined with 3-D flow and transport modelling
Monroe Chemical characteristics of ground-water discharge along the south rim of Grand Canyon in Grand Canyon National Park, Arizona, 2000-2001
RU2458365C1 (ru) Способ индикаторного моделирования взаимосвязи водоносных горизонтов
RU2543666C1 (ru) Способ определения обеспеченности водозаборных сооружений естественными ресурсами пластовых и глубинных вод
Land et al. Ground-water quality of coastal aquifer systems in the West Coast Basin, Los Angeles County, California, 1999–2002
Sharma et al. Appraising the factors favouring uranium mobilization and associated health risk assessment in groundwaters of north-western India
Kotowski et al. Application of dissolved gases concentration measurements, hydrochemical and isotopic data to determine the circulation conditions and age of groundwater in the Central Sudetes Mts
García-Aróstegui et al. Sampling methods may drive short-term groundwater nitrate variability in an irrigated watershed connected to a coastal lagoon (Campo de Cartagena-Mar Menor, SE Spain)
Al-Saud et al. Challenges for an integrated groundwater management in the Kingdom of Saudi Arabia
Gallo Hydrologic and Geochemical Investigation of Modern Leakage Near the McCord Well Field, Memphis, Tennessee
Hibbs et al. Revisiting a classification scheme for US‐Mexico alluvial basin‐fill aquifers
Edirisinghe et al. Isotope and chemical assessment of natural water in the Jaffna Peninsula in northern Sri Lanka for groundwater development aspects
Kirby Geologic and hydrologic characterization of regional nongeothermal groundwater resources in the Cove Fort area, Millard and Beaver Counties, Utah
Houston et al. Pecos River Basin salinity assessment, Santa Rosa Lake, New Mexico, to the confluence of the Pecos River and the Rio Grande, Texas, 2015
RU2569918C1 (ru) Способ выявления очагов современного поступления глубинных углеводородных флюидов в пределы эксплуатируемых нефтегазовых месторождений
Viaroli et al. Hydrostructural setting of Riardo Plain: effects on Ferrarelle mineral water type
Reischer et al. Karst hydrogeology of the Untersberg massif and its interaction with the porous aquifer in the adjacent Salzburg Basin.

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20161002