[go: up one dir, main page]

RU2543361C2 - Способ производства электроэнергии из солнечной энергии и система, использующая котел на биотопливе в качестве дополнительного источника теплоты - Google Patents

Способ производства электроэнергии из солнечной энергии и система, использующая котел на биотопливе в качестве дополнительного источника теплоты Download PDF

Info

Publication number
RU2543361C2
RU2543361C2 RU2013119272/06A RU2013119272A RU2543361C2 RU 2543361 C2 RU2543361 C2 RU 2543361C2 RU 2013119272/06 A RU2013119272/06 A RU 2013119272/06A RU 2013119272 A RU2013119272 A RU 2013119272A RU 2543361 C2 RU2543361 C2 RU 2543361C2
Authority
RU
Russia
Prior art keywords
solar collector
water
biofuel
biofuel boiler
boiler
Prior art date
Application number
RU2013119272/06A
Other languages
English (en)
Other versions
RU2013119272A (ru
Inventor
Квингпинг ЯНГ
Янфенг Жанг
Хонг ЛИ
Original Assignee
Ухань Каиди Инжиниринг Технолоджи Рисоч Институтеко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ухань Каиди Инжиниринг Технолоджи Рисоч Институтеко., Лтд. filed Critical Ухань Каиди Инжиниринг Технолоджи Рисоч Институтеко., Лтд.
Publication of RU2013119272A publication Critical patent/RU2013119272A/ru
Application granted granted Critical
Publication of RU2543361C2 publication Critical patent/RU2543361C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/121Controlling or monitoring
    • F03G6/124Start-up control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/0055Devices for producing mechanical power from solar energy having other power cycles, e.g. Stirling or transcritical, supercritical cycles; combined with other power sources, e.g. wind, gas or nuclear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/065Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/065Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
    • F03G6/066Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle of the Organic Rankine Cycle [ORC] type or the Kalina Cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/121Controlling or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/121Controlling or monitoring
    • F03G6/127Over-night operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

Изобретение относится к способу производства электроэнергии из биотоплива и солнечной энергии. Заявляется система производства электроэнергии из солнечной энергии с использованием котла на биотопливе (6) в качестве дополнительного источника теплоты, которая включает концентрирующий солнечный коллектор, котел на биотопливе (6), турбогенератор, при этом в концентрирующем солнечном коллекторе в качестве рабочего тела используется вода и применяются трубки солнечного коллектора (13) среднего давления, скомбинированные в последовательно-параллельную матрицу, выход концентрирующего солнечного коллектора соединен с основанием барабана (6а) котла на биотопливе (6) через второй клапан управления (22), а выход пара из барабана котла на биотопливе (6а) соединен с цилиндром (3) турбогенератора (1). В такой системе селективно используются солнечная энергия и источник тепла от котла на биотопливе в зависимости от погодных условий. Также раскрыт способ производства электроэнергии с использованием системы. Изобретение обеспечивает стабильную работу, что повышает эффективность ее использования. 2 н. и 10 з.п. ф-лы, 4 ил.

Description

Область техники
Настоящее изобретение относится к способу производства электроэнергии из солнечной энергии, а также к системе, использующей котел на биотопливе в качестве дополнительного источника теплоты, которые относятся к области новых способов производства электроэнергии, а именно к генерации «чистой» электроэнергии из биотоплива и солнечной энергии.
Предшествующий уровень техники
В связи с сокращением запасов традиционных видов ископаемого топлива (угля, нефти, природного газа) и загрязнением окружающей среды при использовании их энергии, что угрожает развитию и жизни человека, необходимо обеспечить возобновляемую и экологически чистую энергию в мировом масштабе. Солнечная энергия характеризуется широким распространением, практически неограниченным запасом, чистой аккумуляцией и утилизацией и отсутствием генерации CO2.
Тем не менее, масштабное использование и утилизация солнечной энергии стоит намного дороже, чем использование энергии обычного ископаемого топлива. К тому же, производство электроэнергии из солнечной энергии зависит от изменений погоды, что делает производство нестабильным и непостоянным. Поэтому решение вышеуказанных проблем стало актуальным вопросом исследований в области энергетики.
Являясь органическим веществом, образовавшимся в процессе фотосинтеза растений, биомасса характеризуется широким распространением, большим количеством запасов, чистотой в сравнении с ископаемым топливом, отсутствием генерации CO2. Таким образом биомасса является очень важным возобновляемым источником энергии, а возобновление и использование биомассы также является актуальным вопросом исследований в области энергетики. В качестве биотоплива теплоэлектростанции с котлом на биотопливе стали использоваться скошенное сено, топливо из лесной древесины и отходы деревообработки после промышленной обработки древесины. Однако калорийность биотоплива намного меньше калорийности угля того же объема. Для обеспечения непрерывной работы теплоэлектростанции с котлом на биотопливе требуются большие площади для хранения биотоплива, которые занимают большой участок земли. К тому же, биотопливо, которое хранится на открытом воздухе, высыхает, что может вызвать возгорание, а некоторые виды биотоплива способны к самовозгоранию в сухой окружающей среде. Все эти недостатки критически нивелируют преимущества и ограничивают использование теплоэлектростанций с котлом на биотопливе.
Американская компания eSolar разработала солнечную электростанцию башенного типа. Башня системы II использует сотни или тысячи зеркал (также известных как гелиостаты) для отражения солнечных лучей на накопитель (также известный как солнечный бойлер). Максимальная температура достигает 1000°C. Расплавленная соль (или проводящее масло), используемая в качестве теплоносителя, нагревается примерно до 560°C и запасается в теплоаккумулирующем баке. Вода нагревается и превращается в пар с высокой температурой и высоким давлением за счет теплоты расплавленной соли (или проводящего масла) с помощью теплообменника. Затем пар подается на турбину для выработки электроэнергии.
Израильская компания LUZ разработала девять комплексов параболоцилиндрических систем для производства электроэнергии из солнечной энергии в пустыне Южной Калифорнии. Солнечная энергия концентрируется на трубках солнечного коллектора, расположенных на фокальной линии параболоида. Масло, являющееся теплоносителем, нагревается и запасается в баке аккумуляторе. За счет теплопередачи масло нагревает воду, превращая ее в пар с температурой 372°C в теплообменнике. Далее пар подается на турбину для генерации электроэнергии.
Из-за того, что солнечное излучение сильно зависит от погоды и облачности, а солнечное излучение может улавливаться только в определенный промежуток времени с 8:00 до 17:00, то для вышеописанной башенной или параболоцилиндрической системы производства электроэнергии из солнечной энергии используется специально разработанная турбина быстрого запуска (также известная как солнечная турбина, которая способна работать днем и останавливаться ночью или работающая в солнечные дни и останавливающаяся в облачные), адаптированная к характеристикам преобразования солнечной энергии, к частоте и скорости запуска системы для обеспечения стабильной работы турбины. В сравнении с обычной турбиной, приспособленной для работы по преобразованию энергии ископаемого топлива, солнечная турбина характеризуется тем, что она не требует много времени для предварительного нагрева за счет обеспечения системой хранения достаточно большого количества теплоты с помощью аккумулирующей насадки, а также двойным теплообменом между теплоносителем (теплопередающим маслом или расплавленной солью) и рабочим телом (водяным паром). Однако такая техническая схема делает систему более сложной, что увеличивает стоимость. Двойной теплообмен снижает эффективность термоэлектрического преобразования. Также солнечная турбина имеет большие габариты, высокую стоимость и низкую тепловую эффективность из-за использования специальных конструкционных материалов и особой конструкции.
Также, если в системе в качестве теплоносителя используется расплавленная соль, то работа системы обеспечивается достаточно сложно. Если температура снижается до 260°C, то расплавленная соль переходит из жидкого состояния в твердое, а соль в твердом состоянии влияет на работу системы вне зависимости от того, находится ли она в трубках или в баке аккумуляторе. Таким образом, температура расплавленной соли должна поддерживаться выше 260°C длительное время, что является энергозатратным и достаточно сложным в осуществлении.
Зимой, в ночное время или при затяжном снегопаде и облачности, когда температура падает ниже 0°C, вышеуказанная солнечная турбина не может работать непрерывно. Помимо ее бесполезности при простое, достаточно сложной и энергозатратной задачей является предотвращение перемерзания системы в это время.
Раскрытие изобретения
В виду существования вышеуказанных проблем, одной из технических задач настоящего изобретения является обеспечение способа производства электроэнергии из солнечной энергии с использованием котла на биотопливе в качестве дополнительного источника теплоты и системы, в которой используется такой котел. В настоящем изобретении в качестве дополнительного источника теплоты используется котел на биотопливе, и комбинация использования энергии биотоплива и солнечной энергии эффективно решает проблему нестабильности солнечной энергии.
Настоящее изобретение обеспечивает следующее техническое решение: способ производства электроэнергии из солнечной энергии с использованием котла на биотопливе в качестве дополнительного источника теплоты в системе, включающей концентрирующий солнечный коллектор, котел на биотопливе и турбогенератор. В концентрирующем солнечном коллекторе и котле на биотопливе в качестве рабочего тела для поглощения и накопления теплоты используют воду. Котел на биотопливе используют в качестве вспомогательного источника теплоты для обеспечения дополнительного источника теплоты при производстве электроэнергии из солнечной энергии.
Такой способ включает следующие этапы:
1) разжигают котел на биотопливе, когда уровень воды L1 в барабане котла на биотопливе достигает заданного, запускают турбогенератор в соответствии с рабочим процессом теплоэлектростанции с котлом на биотопливе;
2) запускают концентрирующий солнечный коллектор; определяют температуру t3 воды на выходе из концентрирующего солнечного коллектора; открывают второй клапан управления, расположенный между выходом воды концентрирующего солнечного коллектора и барабаном котла на биотопливе, когда t3 ≥? 95°C, и открывают третий клапан управления для регулирования подачи воды к трубке солнечного коллектора; подают воду в барабан котла на биотопливе; регулируют подачу воды к трубке солнечного коллектора для обеспечения t3 ≥95°C в соответствии с температурой воды t3 и осуществляют автоматическое регулирование с помощью системы управления турбогенератора для поддержания уровня воды в барабане котла на биотопливе, давления пара и температуры пара на выходе из котла на биотопливе в заданных интервалах значений, а также поддержания устойчивого режима работы турбогенератора;
3) закрывают второй клапан управления на выходе воды из концентрирующего солнечного коллектора и третий клапан управления для регулирования подачи воды к трубке солнечного коллектора для предотвращения вытекания воды из трубки солнечного коллектора и сохранения теплоты и поддержания в рабочем состоянии, если подача воды в трубку солнечного коллектора установлена на минимальном уровне, а температура воды t3 при этом на выходе воды из концентрирующего солнечного коллектора определена турбогенератором и составляет t3<95°C; переключают турбогенератор в режим теплоэлектростанции; увеличивают подачу топлива в котел на биотопливе с помощью системы управления турбогенератора с автоматическим регулированием для поддержания заданных значений давления и температуры пара на выходе пара из котла на биотопливе и поддержания устойчивого режима работы турбогенератора;
4) открывают первый клапан управления, расположенный между выходом воды из концентрирующего солнечного коллектора и подпиточным баком, если температура t3 на выходе воды из концентрирующего солнечного коллектора продолжает падать и становится ниже t3=5-9°C; открывают перепускной клапан для сброса воды комнатной температуры из трубки солнечного коллектора в бак запаса обессоленной воды; открывают сливной клапан для сброса воды из трубок солнечного коллектора; подают сжатый воздух через отверстие в перепускном клапане во все трубки солнечного коллектора до полного удаления воды; поддерживают концентрирующий солнечный коллектор и трубки солнечного коллектора в сухом состоянии, предотвращающем перемерзание; переключают турбогенератор в режим работы теплоэлектростанции с котлом на биотопливе; и
5) повторяют этап 1), если температура воды в трубке солнечного коллектора увеличивается и достигает t3 ≥95°C при возобновлении солнечного излучения; подают воду в котел на биотопливе и снижают подачу топлива в котел на биотопливе за счет автоматического регулирования турбогенератора.
Система производства электроэнергии из солнечной энергии, использующая котел на биотопливе в качестве дополнительного источника теплоты в соответствии с вышеописанным способом, включает концентрирующий солнечный коллектор, котел на биотопливе и турбогенератор. При этом в концентрирующем солнечном коллекторе и котле на биотопливе в качестве рабочего тела для поглощения и удержания теплоты используется вода. Концентрирующий солнечный коллектор включает трубки солнечного коллектора среднего давления, скомбинированные в последовательно-параллельную матрицу. Выход концентрирующего солнечного коллектора соединен с основанием барабана котла на биотопливе через второй клапан управления. Выход пара из барабана котла на биотопливе соединен с цилиндром турбины.
Также в концентрирующем солнечном коллекторе могут использоваться вакуумные трубки среднего давления, скомбинированные в последовательно-параллельную матрицу, при этом выход концентрирующего солнечного коллектора соединен с основанием барабана котла на биотопливе через второй клапан управления, а выход пара из барабана котла на биотопливе соединен с цилиндром турбины.
В качестве варианта, пароперегреватель может устанавливаться последовательно между выходом пара из барабана котла на биотопливе и трубой, соединенной с цилиндром турбины. При этом пароперегреватель соединен со входом цилиндра высокого давления турбины, а также пароперегреватель размещен в дымоходе котла на биотопливе.
Также выход цилиндра высокого давления может быть соединен с промежуточным пароперегревателем с помощью трубы. При этом промежуточный пароперегреватель соединяют с входом цилиндра низкого давления турбины. Промежуточный пароперегреватель размещают в дымоходе котла на биотопливе.
В качестве варианта, конденсатор может быть соединен с выходом цилиндра турбины. При этом выход воды конденсатора соединен с деаэратором. Также выход воды конденсатора соединен с трубкой солнечного коллектора и/или с входом воды в котел на биотопливе через деаэратор и первым водяным насосом.
Дополнительно, экономайзер может быть установлен последовательно с трубой входа воды в котел на биотопливе, при этом экономайзер размещен в дымоходе котла на биотопливе.
В качестве варианта, подпиточный бак концентрирующего солнечного коллектора и котла на биотопливе может быть выполнен в виде бака запаса обессоленной воды, имеющего теплоизоляционный слой. Бак запаса обессоленной воды соединен с деаэратором через второй водяной насос и далее соединен с трубкой солнечного коллектора, входом воды в котел на биотопливе через деаэратор и первым водяным насосом. Бак запаса обессоленной воды соединен с выходом концентрирующего солнечного коллектора через первый клапан управления.
Дополнительно, датчик температуры Т3 может располагаться на трубе между выходом воды из концентрирующего солнечного коллектора и вторым клапаном управления и первым клапаном управления. Контрольное значение температуры, отображаемое датчиком температуры Т3, отправляется на систему управления второго клапана управления и первого клапана управления. Рабочая температура датчика температуры Т3 устанавливается в пределах значений температуры безопасной работы котла на биотопливе.
В качестве варианта, концентрирующий солнечный коллектор может включать параболоцилиндрическое зеркало и трубку солнечного коллектора, при этом трубка солнечного коллектора расположена на фокальной линии параболоцилиндрического зеркала.
В качестве варианта, концентрирующий солнечный коллектор может включать отражающую линзу Френеля и трубку солнечного коллектора, при этом трубка солнечного коллектора расположена на фокальной линии отражающей линзы Френеля.
В качестве варианта, концентрирующий солнечный коллектор может содержать пропускающую линзу Френеля и трубку солнечного коллектора, при этом трубка солнечного коллектора расположена на фокальной линии пропускающей линзы Френеля.
Настоящее изобретение имеет следующие преимущества.
Система, вырабатывающая электроэнергию от двух источников теплоты по настоящему изобретению, обеспечена множеством различных клапанов и способна переключаться в режим производства электроэнергии из солнечной энергии, в режим теплоэлектростанции с котлом на биотопливе или комбинированный режим производства электроэнергии, в зависимости от солнечного излучения, времени суток, а также погодных условий. Таким образом, турбогенератор способен работать непрерывно днем и ночью, и устраняется проблема перемерзания концентрирующего солнечного коллектора.
Если наибольшая температура воды, нагретой с помощью концентрирующего солнечного коллектора, намного ниже температуры воды, нагретой котлом, то котел на биотопливе по настоящему изобретению обеспечивают экономайзером, пароперегревателем и промежуточным пароперегревателем. Вода в концентрирующем солнечном коллекторе поступает в барабан котла на биотопливе и вспомогательные устройства для перегрева или промежуточного перегрева, тем самым достигается градиент температуры тепловой солнечной энергии, а также повышается эффективность работы всего турбогенератора.
Система производства электроэнергии по настоящему изобретению упрощена за счет исключения системы аккумулирования тепла (использующей теплопроводное масло или расплавленную соль в качестве рабочего тела), используемой в солнечных электростанциях предшествующего уровня техники, а также способна выборочно или совместно использовать источник теплоты от солнца или котла на биотопливе в зависимости от характера солнечного излучения, времени суток, а также погодных условий для непрерывной работы турбогенератора днем и ночью, тем самым эффективно повышая КПД системы производства электроэнергии из солнечной энергии и решая проблему перемерзания концентрирующего солнечного коллектора зимой.
Концентрирующий солнечный коллектор размещают на крыше складка биотоплива. За счет того, что площадь склада биотоплива достаточно велика, такое размещение защищает биотопливо от дождя и позволяет сэкономит пространство, занимаемое солнечной электростанцией, использующей котел на биотопливе в качестве второго источника теплоты.
Краткое описание фигур чертежей
Фиг. 1 - структурная схема, иллюстрирующая систему производства электроэнергии из солнечной энергии по настоящему изобретению.
Фиг. 2 - схематичный вид, иллюстрирующий концентрирующий солнечный коллектор параболоцилиндрического типа, размещенный на крыше склада биотоплива.
Фиг. 3 - схематичный вид, иллюстрирующий концентрирующий солнечный коллектор, содержащий отражающую линзу Френеля и вакуумную трубку солнечного коллектора.
Фиг. 4 - схематичный вид, иллюстрирующий концентрирующий солнечный коллектор, содержащий пропускающую линзу Френеля и вакуумную трубку солнечного коллектора.
Варианты осуществления изобретения
Способ производства электроэнергии из солнечной энергии с использованием котла на биотопливе в качестве дополнительного источника теплоты и система, отнесенная к этому способу, далее будут описаны более подробно со ссылкой на приложенные чертежи.
Обозначения на фиг.1: 1 - электрогенератор; 2 - турбина; 3 - цилиндр высокого давления турбины 2; 4 - цилиндр низкого давления турбины 2; 5 - конденсатор; 6 - котел на биотопливе; 7 - экономайзер, расположенный в дымоходе 6а котла на биотопливе 6; 8 - промежуточный пароперегреватель, расположенный в дымоходе 6а котла на биотопливе 6; 9 - пароперегреватель, расположенный в дымоходе 6а котла на биотопливе 6; 10 - первый водяной насос; 11 - второй водяной насос котла на биотопливе 6; 12 - бак запаса обессоленной воды, обеспеченный теплоизоляционным слоем для хранения мягкой воды, прошедшей обработку в устройстве химической очистки воды; 13 - вакуумная трубка солнечного коллектора; 14 - параболоцилиндрическое зеркало, здесь n трубок солнечного коллектора 13 и m параболоцилиндрических зеркал 14 расположены так, что образуют поле солнечного коллектора, где n и m - целые положительные числа; 19, 20, 21, 22 - отсекающие клапаны (пневматические, электрические, гидравлические или электромагнитные; на фиг.1 изображены пневматические отсекающие клапаны), которые переключают режимы работы всей системы производства электроэнергии; 23, 24, 25, 26 - регулирующие клапаны (пневматические, электрические или гидравлические; на фиг.1 изображены пневматические регулирующие клапаны), из них клапаны 23 и 24 способны регулировать подачу пара на турбину, клапан 25 способен регулировать подачу воды, а клапан 26 способен регулировать подачу воды в концентрирующий солнечный коллектор; 28 - деаэратор; L1 - уровнемер барабана котла на биотопливе; P1 - аэроманометр на выходе из котла на биотопливе (определяет давление p1); T1 - датчик температуры пара на выходе из котла на биотопливе (определяет температуру t1) и T3 - датчик температуры воды на выходе из концентрирующего солнечного коллектора (определяет температуру t3).
Система производства электроэнергии из солнечной энергии с использованием котла на биотопливе в качестве дополнительного источника теплоты включает концентрирующий солнечный коллектор, котел на биотопливе и турбогенератор. В концентрирующем коллекторе солнечной энергии и котле на биотопливе в качестве рабочего тела используется вода. В концентрирующем солнечном коллекторе используются вакуумные трубки солнечного коллектора 13 в виде вакуумных трубок среднего давления, скомбинированных в последовательно-параллельную матрицу. Выход концентрирующего солнечного коллектора соединен с основанием барабана котла на биотопливе 6а через второй отсекающий клапан 22. Выход пара из барабана котла на биотопливе 6а соединен с цилиндром турбины. Концентрирующий солнечный коллектор и котел на биотопливе нагревают одну и ту же воду для генерации водяного пара, который приводит в действие турбину, служащую для работы электрогенератора 2.
Труба входа воды в концентрирующий солнечный коллектор последовательно соединена с деаэратором 28 и первым водяным насосом 10.
Пароперегреватель 9 последовательно установлен между выходом пара из барабана котла на биотопливе 6а и трубой, соединенной с цилиндром турбины. Пароперегреватель 9 соединен с входом цилиндра высокого давления турбины 3. Пароперегреватель 9 размещен в дымоходе 6b котла на биотопливе. Уходящий газ из котла на биотопливе нагревает водяной пар и превращает его в сухой пар.
Выход цилиндра высокого давления 3 соединен с промежуточным пароперегревателем 8 через трубу. Промежуточный пароперегреватель 8 соединен с входом цилиндра низкого давления турбины. Промежуточный пароперегреватель 8 размещен в дымоходе 6b котла на биотопливе. Уходящие газы из котла на биотопливе нагревают пар.
Конденсатор 5 соединен с выходом цилиндра турбины. Выход воды конденсатора 5 соединен с деаэратором 28. Выход воды конденсатора 5 соединен с вакуумной трубкой солнечного коллектора 13 и/или с входом воды в котел на биотопливе через деаэратор 28 и первым водяным насосом 10, за счет чего обеспечивается циркуляция воды.
Экономайзер 7 последовательно соединен с трубой входа в котел на биотопливе 6, при этом экономайзер 7 размещен в дымоходе 6b котла на биотопливе. Уходящие газы из котла на биотопливе подогревают воду в котле на биотопливе.
Подпиточный бак воды концентрирующего солнечного коллектора и котла на биотопливе является баком запаса обессоленной воды 12, имеющим теплоизоляционный слой. Бак запаса обессоленной воды 12 соединен с деаэратором 28 через второй водяной насос 11 и далее с вакуумной трубкой солнечного коллектора 13 и с входом воды в котел на биотопливе через деаэратор 28, а также с первым водяным насосом 10. Бак запаса обессоленной воды 12 соединен с выходом концентрирующего солнечного коллектора через первый отсекающий клапан 21.
Датчик температуры T3 расположен на трубе между выходом воды концентрирующего солнечного коллектора и вторым отсекающим клапаном 22 и первым отсекающим клапаном 21. Контрольное значение температуры, отображаемое температурным датчиком Т3, передается на управляющую систему второго отсекающего клапана 22 и первого отсекающего клапана 21. Рабочая температура температурного датчика Т3 устанавливается в пределах значения температуры безопасной работы котла на биотопливе.
На фиг.2 показана схема параболоцилиндрического концентрирующего солнечного коллектора, размещенного на крыше склада биотоплива. Концентрирующий солнечный коллектор включает параболоцилиндрическое зеркало 14 и вакуумную трубку солнечного коллектора 13, где вакуумная трубка солнечного коллектора 13 расположена на фокальной линии параболоцилиндрического зеркала. Здесь, позицией 17 обозначена крыша склада биотоплива.
На фиг.3 показана схема концентрирующего солнечного коллектора, включающего отражающую линзу Френеля и вакуумную трубку солнечного коллектора. Концентрирующий солнечный коллектор включает отражающую линзу Френеля 30 и вакуумную трубку солнечного коллектора 13. Вакуумная трубка солнечного коллектора 13 расположена на фокальной линии отражающей линзы Френеля 30.
На фиг.4 показана схема концентрирующего солнечного коллектора, включающего пропускающую линзу Френеля и вакуумную трубку солнечного коллектора. Концентрирующий солнечный коллектор включает пропускающую линзу Френеля 31 и вакуумную трубку солнечного коллектора 13. Вакуумная трубка солнечного коллектора 13 расположена на фокальной линии пропускающей линзы Френеля 31.
Склад запаса биотоплива для котла на биотопливе имеет крышу подходящей длины и достаточно большой площади. Концентрирующий солнечный коллектор расположен на крыше склада запаса биотоплива. Вода используется в качестве теплоносителя в концентрирующем солнечном коллекторе и котле на биотопливе и по выбору или одновременно подается в вакуумную трубку солнечного коллектора и котел на биотопливе после обработки с помощью устройства химической очистки воды (бак запаса обессоленной воды для любого известного устройства химической очистки воды необходимо обеспечить теплоизоляционным слоем). Далее вода превращается в пар, который поступает в турбину для привода электрогенератора.
Котел на биотопливе и концентрирующий солнечный коллектор обеспечены отсекающими клапанами 18, 19, 20, 22 (пневматическими, электрическими, гидравлическими или электромагнитными). Рабочее состояние воды и пара в котле на биотопливе и концентрирующем солнечном коллекторе может быть легко изменено с помощью открытия или закрытия некоторых отсекающих клапанов, таким образом вся система производства электроэнергии может работать в режиме производства электроэнергии из солнечной энергии, производства электроэнергии с помощью котла на биотопливе или в комбинированном режиме производства электроэнергии.
Очевидно, что котел на биотопливе 6 с фиг.1 может быть заменен на котел, работающий на синтезированном газе, угле, мазуте, природном газе, метане из каменного угля, или на другой известный котел.
Также понятно, что вакуумная трубка солнечного коллектора с фиг.1-4 может быть заменена на известную черную трубку солнечного коллектора.
Работа системы производства электроэнергии из солнечной энергии описана далее со ссылкой на фиг.1 и 2.
В концентрирующем коллекторе солнечной энергии и котле на биотопливе в качестве рабочего тела для поглощения и удержания теплоты используется вода. Котел на биотопливе работает как второй источник теплоты для обеспечения дополнительного источника теплоты при производстве электроэнергии из солнечной энергии. Котел на биотопливе и концентрирующий солнечный коллектор запускаются одновременно.
Процесс работы включает следующие этапы:
1) разжигают котел на биотопливе, когда уровень воды в барабане котла на биотопливе достигает заданного; включают турбогенератор для работы в режиме теплоэлектростанции с котлом на биотопливе;
2) запускают концентрирующий солнечный коллектор (в этот момент первый клапан управления находится в закрытом состоянии); замеряют температуру t3 воды на выходе из концентрирующего солнечного коллектора; открывают второй клапан управления, расположенный между выходом воды концентрирующего солнечного коллектора и барабаном котла на биотопливе, когда t3 ≥95°C, и открывают третий клапан управления для регулирования подачи воды к трубке солнечного коллектора; подают воду в барабан котла на биотопливе; регулируют подачу воды в трубку солнечного коллектора для обеспечения t3 ≥95°C в соответствии с температурой воды t3 и поддерживают уровень воды в барабане котла на биотопливе, давление пара и температуру пара на выходе из котла на биотопливе в заданных интервалах значений, а также поддерживают устойчивый режим работы турбины за счет автоматического регулирования системой управления турбогенератора;
3) закрывают второй клапан управления на выходе воды из концентрирующего солнечного коллектора и третий клапан управления для регулирования подачи воды к трубке солнечного коллектора для предотвращения вытекания воды из трубки солнечного коллектора и сохранения теплоты и поддержания в рабочем состоянии, если подача воды в трубку солнечного коллектора устанавливается на минимальном уровне, при этом если температура воды t3 на выходе воды из концентрирующего солнечного коллектора, определенная системой управления турбогенератора, снизилась до t3<95°C; переключают турбогенератор в режим теплоэлектростанции; увеличивают подачу топлива в котел на биотопливе автоматическим регулированием системой управления турбогенератора для поддержания заданных значений давления и температуры пара на выходе пара из котла на биотопливе и поддержания устойчивого режима работы турбогенератора;
4) открывают первый клапан управления, расположенный между выходом воды из концентрирующего солнечного коллектора и подпиточным баком, если температура t3 на выходе воды из концентрирующего солнечного коллектора продолжает падать и становится ниже t3=5-9°C; открывают перепускной клапан для сброса воды комнатной температуры из трубки солнечного коллектора в бак запаса обессоленной воды; открывают сливной клапан для сброса воды из трубок солнечного коллектора; подают сжатый воздух через отверстие в перепускном клапане во все трубки солнечного коллектора до полного удаления воды; поддерживают концентрирующий солнечный коллектор и трубки солнечного коллектора в сухом состоянии, предотвращающем перемерзание; переключают турбогенератор в режим работы теплоэлектростанции с котлом на биотопливе; и
5) повторяют этап 1), если температура воды в трубке солнечного коллектора увеличивается и достигает t3 ≥95°C при возобновлении солнечного излучения; подают воду в котел на биотопливе и снижают подачу топлива в котел на биотопливе за счет автоматического регулирования системой управления турбогенератора.
Новый запуск системы производства электроэнергии из солнечной энергии (или перезапуск всей системы после капитального ремонта) по настоящему изобретению: до восхода солнца закрывают отсекающий клапан 21, открывают отсекающие клапаны 18, 19, 20, 22 и запускают второй водяной насос 11 для заполнения барабана котла на биотопливе 6а до заданного уровня, определяемого уровнемером L1, и вода заполняет все вакуумные трубки солнечного коллектора. Во время восхода солнца разжигают котел на биотопливе и запускают турбогенератор для обеспечения рабочего процесса в режиме теплоэлектростанции с котлом на биотопливе. Во время восхода солнца солнечное излучение резко возрастает до наивысшего значения за полчаса в 8:00, нагретая вода из концентрирующего солнечного коллектора поступает в барабан котла на биотопливе 6а. При расходе 65 т/ч средняя температура и давление в котле на биотопливе могут быть: давление p1=5,29 мПа, температура t1=450°C, а температура воды на выходе из экономайзера 7 составляет примерно 231°C. Поддержание уровня воды в барабане котла на биотопливе 6а, а также значений p1 и t1 в заданных интервалах является условием устойчивого режима работы турбогенератора.
Схема А применима если концентрирующий солнечный коллектор и котел на биотопливе, используемый в качестве дополнительного источника теплоты, работают одновременно в виду облачных и дождливых дней с суточной периодичностью. Особенности схемы А являются следующими.
В облачные и дождливые дни с суточной периодичностью температура воды t3 на выходе воды из концентрирующего солнечного коллектора падает, из-за чего система управления турбогенератора производит автоматическое регулирование для увеличения подачи топлива в котел на биотопливе до тех пор, пока уровень воды в барабане 6а, а также значения p1 и t1 не будут поддерживаться в заданных интервалах. Когда слой облаков утолщается и начинается дождь, температура воды t3 на выходе воды из солнечного коллектора продолжает падать, и когда температура t3 опускается с 231°C примерно до 95°C (что соответствует наименьшему температурному значению для безопасной работы котла на биотопливе), второй отсекающий клапан 22 на выходе воды из концентрирующего солнечного коллектора и третий отсекающий клапан 19 закрываются для предотвращения вытекания воды из вакуумной трубки солнечного коллектора и поддержания воды в нагретом и рабочем состоянии. Таким образом, турбогенератор переходит в режим теплоэлектростанции. Когда облака рассеиваются и появляется солнечное излучение, температура воды t3 на выходе воды из концентрирующего солнечного коллектора увеличивается и становится выше 95°C, второй отсекающий клапан 22 и третий отсекающий клапан 19 открываются для продолжения работы солнечного коллектора и поступления воды в барабан котла на биотопливе 6а. Вместе с ростом температуры воды в вакуумных трубках солнечного коллектора подача топлива в котел на биотопливе снижается за счет автоматического регулирования турбогенератора.
Схема В применима в темное ночное время, а особенности процесса работы по схеме В являются следующими.
Перед наступлением ночи, когда солнечные лучи не попадают на концентрирующий солнечный коллектор, температура воды на выходе из концентрирующего солнечного коллектора падает, и если t3 упадет до интервала значений от 9°C до 5°C (t3 ≥5°C), система выполняет схему А. Вода в вакуумной трубке солнечного коллектора не вытекает и находится в нагретом рабочем состоянии. Турбогенератор переключен в режим теплоэлектростанции до тех пор, пока не наступит безоблачный день и не появятся солнечные лучи.
Схема C применяется в ночное время, когда температура падает до точки замерзания воды (или в облачные дни, когда температура падает до точки замерзания воды), особенности процесса работы по схеме C являются следующими.
Перед наступлением ночи и темноты, когда солнечные лучи не падают на концентрирующий солнечный коллектор, система применяет схему C. Если t3 продолжает падать и становится t3=5-9°C, первый отсекающий клапан 21 и перепускной клапан 27 открываются для сброса воды комнатной температуры из вакуумной трубки солнечного коллектора в бак запаса обессоленной воды 12. Сливной клапан 29 открыт для удаления воды, оставшейся в вакуумных трубках солнечного коллектора. Сжатый воздух подается через отверстие перепускного клапана во все вакуумные трубки до полного удаления из них воды. Таким образом, концентрирующий солнечный коллектор и его вакуумные трубки поддерживаются в сухом состоянии для предотвращения перемерзания, а турбогенератор переключается в режим производства электроэнергии от котла на биотопливе.
Заключение
Система производства электроэнергии по настоящему изобретению является системой производства электроэнергии из солнечной энергии с использованием котла на биотопливе в качестве дополнительного источника теплоты, в которой нагревается вода. Настоящее изобретение упрощено за счет исключения системы аккумулирования тепла (использующей теплопроводящее масло или расплавленную соль в качестве теплоносителя), используемой в солнечных электростанциях предшествующего уровня техники, а также способно выборочно или одновременно использовать источник тепла от солнца или котла на биотопливе в зависимости от изменения солнечного излучения, при смене дня и ночи, изменении погоды для поддержания непрерывной работы турбогенератора днем и ночью, в результате чего повышается КПД системы производства электроэнергии из солнечной энергии, а также решается проблема перемерзания концентрирующего солнечного коллектора зимой.

Claims (12)

1. Способ производства электроэнергии из солнечной энергии с использованием котла на биотопливе в качестве дополнительного источника теплоты в системе, включающей:
концентрирующий солнечный коллектор,
котел на биотопливе и
турбогенератор,
характеризующейся тем, что
в концентрирующем солнечном коллекторе и котле на биотопливе в качестве рабочего тела для поглощения и накапливания теплоты используют воду,
котел на биотопливе используют в качестве вспомогательного источника теплоты для обеспечения дополнительного источника теплоты при производстве электроэнергии из солнечной энергии,
при этом способ включает следующие этапы:
(1) разжигают котел на биотопливе, когда уровень воды L1 в барабане котла на биотопливе достигает заданного уровня, запускают турбогенератор в соответствии с рабочим процессом теплоэлектростанции с котлом на биотопливе;
(2) запускают концентрирующий солнечный коллектор; определяют температуру воды t3 на выходе из концентрирующего солнечного коллектора; открывают второй клапан управления, расположенный между выходом воды концентрирующего солнечного коллектора и барабаном котла на биотопливе, когда t3 ≥? 95°C, и открывают третий клапан управления для регулирования подачи воды к трубке солнечного коллектора; подают воду в барабан котла на биотопливе; регулируют подачу воды к трубке солнечного коллектора для обеспечения t3 ≥95°C в соответствии с температурой воды t3 и поддерживают уровень воды в барабане котла на биотопливе, давление пара и температуру пара на выходе из котла на биотопливе в заданных интервалах значений, а также поддерживают устойчивый режим работы турбогенератора с помощью автоматического регулирования системой управления турбогенератора;
(3) закрывают второй клапан управления на выходе воды из концентрирующего солнечного коллектора и третий клапан управления для регулирования подачи воды к трубке солнечного коллектора для предотвращения вытекания воды из трубки солнечного коллектора и сохранения теплоты, и поддержания в рабочем состоянии, если подача воды в трубку солнечного коллектора установлена на минимальном уровне, а температура воды t3 на выходе воды из концентрирующего солнечного коллектора, определенная турбогенератором, снизилась при этом до t3<95°C; переключают турбогенератор в режим теплоэлектростанции; увеличивают подачу топлива в котел на биотопливе с помощью системы управления турбогенератора для поддержания заданных значений давления и температуры пара на выходе пара из котла на биотопливе и поддержания устойчивого режима работы турбогенератора;
(4) открывают первый клапан управления, расположенный между выходом воды из концентрирующего солнечного коллектора и подпиточным баком, если температура t3 на выходе воды из концентрирующего солнечного коллектора продолжает падать ниже t3=5-9°C; открывают перепускной клапан для сброса воды комнатной температуры из трубки солнечного коллектора в бак запаса обессоленной воды; открывают сливной клапан для сброса оставшейся воды из трубок солнечного коллектора; подают сжатый воздух через отверстие в перепускном клапане во все трубки солнечного коллектора до полного удаления из них воды; поддерживают концентрирующий солнечный коллектор и трубки солнечного коллектора в сухом состоянии, предотвращающем перемерзание; переключают турбогенератор в режим работы теплоэлектростанции с котлом на биотопливе; и
(5) повторяют этап (1), если температура воды в трубке солнечного коллектора возрастает до t3 ≥95°C при возобновлении солнечного излучения; подают воду в котел на биотопливе и снижают подачу топлива в котел на биотопливе с помощью автоматического регулирования турбогенератора.
2. Система производства электроэнергии из солнечной энергии, использующая котел на биотопливе в качестве дополнительного источника теплоты в соответствии со способом по п.1, включающая:
концентрирующий солнечный коллектор,
котел на биотопливе и
турбогенератор,
характеризующаяся тем, что:
в концентрирующем солнечном коллекторе и в котле на биотопливе в качестве рабочего тела для поглощения и удержания теплоты используют воду;
концентрирующий солнечный коллектор включает трубки солнечного коллектора, скомбинированные в последовательно-параллельную матрицу;
выход концентрирующего солнечного коллектора соединен с основанием барабана котла на биотопливе (6а) через второй клапан управления; и
выход пара из барабана котла на биотопливе (6а) соединен с цилиндром турбины.
3. Система по п.2, отличающаяся тем, что:
концентрирующий солнечный коллектор включает вакуумные трубки среднего давления, скомбинированные в последовательно-параллельную матрицу;
выход концентрирующего солнечного коллектора соединен с основанием барабана котла на биотопливе (6а) через второй клапан управления; и
выход пара из барабана котла на биотопливе (6а) соединен с цилиндром турбины.
4. Система по п.2 или 3, отличающаяся тем, что:
пароперегреватель (9) установлен последовательно между выходом пара из барабана котла на биотопливе (6а) и трубой, соединенной с цилиндром турбины;
пароперегреватель (9) соединен с входом цилиндра высокого давления турбины (3); и
пароперегреватель (9) размещен в дымоходе (6b) котла на биотопливе.
5. Система по п.2 или 3, отличающаяся тем, что:
выход цилиндра высокого давления (3) соединен с промежуточным пароперегревателем (8) с помощью трубы;
промежуточный пароперегреватель (8) соединен с входом цилиндра низкого давления турбины; и
промежуточный пароперегреватель (8) размещен в дымоходе (6b) котла на биотопливе.
6. Система по п.2 или 3, отличающаяся тем, что:
конденсатор (5) соединен с выходом цилиндра турбины;
выход воды конденсатора (5) соединен с деаэратором (28); и
выход воды конденсатора (5) соединен с трубкой солнечного коллектора (13) и/или с входом воды в котел на биотопливе через деаэратор (28) и первым водяным насосом (10).
7. Система по п.2 или 3, отличающаяся тем, что экономайзер (7) установлен последовательно с трубой входа воды в котел на биотопливе (6), при этом экономайзер (7) размещен в дымоходе (6b) котла на биотопливе.
8. Система по п.2 или 3, отличающаяся тем, что:
подпиточный бак концентрирующего солнечного коллектора и котла на биотопливе выполнен в виде бака запаса обессоленной воды (12), имеющего теплоизоляционный слой;
бак запаса обессоленной воды (12) соединен с деаэратором (28) через второй водяной насос (11) и далее соединен с трубкой солнечного коллектора (13), входом воды в котел на биотопливе через деаэратор (28) и первым водяным насосом (10); и
бак запаса обессоленной воды (12) соединен с выходом концентрирующего солнечного коллектора через первый клапан управления (21).
9. Система по п.2 или 3, отличающаяся тем, что:
датчик температуры (Т3) расположен на трубе между выходом воды из концентрирующего солнечного коллектора и вторым клапаном управления (22) и первым клапаном управления (21);
датчик температуры (Т3) выполнен с возможностью отправлять определенное им контрольное значение температуры на систему управления второго клапана управления (22) и первого клапана управления (21); и
рабочая температура датчика температуры (Т3) установлена в пределах значений температуры безопасной работы котла на биотопливе.
10. Система по п.2 или 3, отличающаяся тем, что концентрирующий солнечный коллектор содержит параболоцилиндрическое зеркало (14) и трубку солнечного коллектора (13), при этом трубка солнечного коллектора (13) расположена на фокальной линии параболоцилиндрического зеркала.
11. Система по п.2 или 3, отличающаяся тем, что концентрирующий солнечный коллектор содержит отражающую линзу Френеля (30) и трубку солнечного коллектора (13), при этом трубка солнечного коллектора (13) расположена на фокальной линии отражающей линзы Френеля (30).
12. Система по п.2 или 3, отличающаяся тем, что концентрирующий солнечный коллектор содержит пропускающую линзу Френеля (31) и трубку солнечного коллектора (13), при этом трубка солнечного коллектора (13) расположена на фокальной линии пропускающей линзы Френеля (31).
RU2013119272/06A 2010-09-29 2011-08-11 Способ производства электроэнергии из солнечной энергии и система, использующая котел на биотопливе в качестве дополнительного источника теплоты RU2543361C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2010102989867A CN101968041B (zh) 2010-09-29 2010-09-29 采用生物质锅炉作为辅助热源的太阳能发电方法及系统
CN201010298986.7 2010-09-29
PCT/CN2011/078241 WO2012041125A1 (zh) 2010-09-29 2011-08-11 采用生物质锅炉作为辅助热源的太阳能发电方法及系统

Publications (2)

Publication Number Publication Date
RU2013119272A RU2013119272A (ru) 2014-11-10
RU2543361C2 true RU2543361C2 (ru) 2015-02-27

Family

ID=43547248

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013119272/06A RU2543361C2 (ru) 2010-09-29 2011-08-11 Способ производства электроэнергии из солнечной энергии и система, использующая котел на биотопливе в качестве дополнительного источника теплоты

Country Status (14)

Country Link
US (1) US9151277B2 (ru)
EP (1) EP2623778A4 (ru)
JP (1) JP5486739B2 (ru)
KR (1) KR101452885B1 (ru)
CN (1) CN101968041B (ru)
AP (1) AP3505A (ru)
AU (1) AU2011307820B2 (ru)
BR (1) BR112013007780A2 (ru)
CA (1) CA2813091C (ru)
MX (1) MX335973B (ru)
MY (1) MY163951A (ru)
RU (1) RU2543361C2 (ru)
SG (1) SG188660A1 (ru)
WO (1) WO2012041125A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2724360C1 (ru) * 2019-11-26 2020-06-23 Мусса Фуадович Малхозов Котельная

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101968041B (zh) * 2010-09-29 2012-05-30 武汉凯迪工程技术研究总院有限公司 采用生物质锅炉作为辅助热源的太阳能发电方法及系统
WO2013014664A2 (en) * 2011-07-27 2013-01-31 Yehuda Harats System for improved hybridization of thermal solar and biomass and fossil fuel based energy systems
CN102493931A (zh) * 2011-12-12 2012-06-13 武汉凯迪工程技术研究总院有限公司 太阳能与沼气能互补发电设备
CN103375368B (zh) * 2012-04-12 2016-01-20 深圳市联讯创新工场科技开发有限公司 一种太阳能发电系统及其控制方法
CN103375369B (zh) * 2012-04-28 2017-02-08 杭州三花研究院有限公司 一种太阳能辅助燃煤电站发电系统
EP2738458B2 (de) * 2012-11-30 2023-05-24 Lumenion AG Kraftwerksanlage und Verfahren zum Erzeugen von elektrischem Strom
CN103897983A (zh) * 2012-12-25 2014-07-02 海口同方阳光科技有限公司 一种太阳能沼气罐增温装置
CN103897986A (zh) * 2012-12-25 2014-07-02 海口同方阳光科技有限公司 一种用于太阳能沼气池中温发酵增温的智能控制系统
CN103115445B (zh) * 2013-02-05 2014-09-24 中盈长江国际新能源投资有限公司 太阳能自动均热聚热管、槽式组件、热发电系统和工艺
CN103233785B (zh) * 2013-04-02 2015-06-24 山东科技大学 一种利用太阳能与沼气的双能源联合发电系统
CN103322698B (zh) * 2013-07-03 2015-05-20 马帅 一种具有双轴跟踪功能的分布式太阳能光热系统
CN103485988A (zh) * 2013-09-03 2014-01-01 康毓贤 地热能、太阳能、生物质能综合利用发电系统
CN103511205B (zh) * 2013-09-25 2016-08-17 青海中控太阳能发电有限公司 一种应对云层遮挡的塔式太阳能热发电系统
FR3018559B1 (fr) * 2014-03-13 2019-05-10 Mini Green Power Installation de production d'energie a partir de la biomasse et de l'energie solaire
CN103953402B (zh) * 2014-04-11 2015-07-29 武汉凯迪工程技术研究总院有限公司 一种太阳能与生物质能联合发电的优化集成系统
CN103912464B (zh) * 2014-04-11 2016-09-14 武汉凯迪工程技术研究总院有限公司 太阳能光热与bigcc集成的联合发电系统
CN104265379A (zh) * 2014-06-19 2015-01-07 钱诚 一种可再生能源公共服务系统
CN104180533A (zh) * 2014-07-08 2014-12-03 江苏新阪神太阳能有限公司 太阳能与生物质能联合供热装置
CN104197312A (zh) * 2014-07-08 2014-12-10 江苏新阪神太阳能有限公司 太阳能与生物质能联合供热系统的制造方法
RU2589595C2 (ru) * 2014-09-18 2016-07-10 Общество с ограниченной ответственностью "Горностай" Солнечный коллектор
WO2016147210A1 (en) * 2015-03-13 2016-09-22 Cristaldi, Angelo Automatic plant and process for producing electric energy from solar irradiation, from a fuel-type auxiliary plant and from a system for storing thermal energy
CN104819020B (zh) * 2015-05-13 2016-04-20 华北电力大学 一种塔式太阳能辅助燃煤混合发电系统
US10612670B2 (en) 2015-10-23 2020-04-07 Culligan International Company Control valve for fluid treatment apparatus
CN105757715A (zh) * 2016-03-11 2016-07-13 西北农林科技大学 锅炉自动点火系统及其控制方法
CN106194614A (zh) * 2016-06-07 2016-12-07 宁波高新区世代能源科技有限公司 太阳能发电机
CN106014511A (zh) * 2016-06-14 2016-10-12 周连惠 一种生物质能发电系统
CN106194293B (zh) * 2016-07-01 2017-11-28 华北电力大学 一种同时集成槽式、塔式太阳能集热系统的燃煤发电系统
CN106837717A (zh) * 2017-02-03 2017-06-13 安徽鼎甲科技有限公司 一种光热发电与生物质能互补发电系统
AU2018235206A1 (en) * 2017-03-13 2019-10-03 Marco Antonio DE MIRANDA CARVALHO System and methods for integration of concentrated solar steam generators to rankine cycle power plants
CN107321488B (zh) * 2017-08-30 2023-07-14 四川绿矿环保科技有限公司 旋转水阀跳汰机
DE102017123455A1 (de) * 2017-10-10 2019-04-11 Bilfinger Engineering & Technologies Gmbh Receiver, Kraftwerk und Verfahren zur thermischen Nutzung von Sonnenenergie
CN108018395B (zh) * 2017-12-25 2023-05-23 中冶京诚工程技术有限公司 转炉煤气放散塔系统
ES2660907B2 (es) * 2018-01-09 2018-10-04 Francesc Martínez-Val Piera Horno de combustión para calentamiento de fluido en un rango alto de temperaturas
CN108412562A (zh) * 2018-02-05 2018-08-17 安徽国祯生态科技有限公司 一种燃煤耦合生物质发电工艺及装置
US10712048B2 (en) * 2018-02-28 2020-07-14 General Electric Technology Gmbh Molten salt central receiver arrangement and operating method
FR3083262B1 (fr) * 2018-06-28 2021-12-10 Constructions Ind De La Mediterranee Cnim Installation et procede de production d'energie
FR3083263B1 (fr) 2018-06-28 2021-12-31 Constructions Ind De La Mediterranee Cnim Installation et procede de production d'energie
CN109405285A (zh) * 2018-12-04 2019-03-01 山东国信工业设备有限公司 一种太阳能发电高压电极锅炉双蓄热系统
CN110986383A (zh) * 2019-11-29 2020-04-10 徐州日托光伏科技有限公司 一种太阳能组件及太阳能发电系统
CN111623514B (zh) * 2020-07-06 2024-10-15 江苏嘉林新能源科技有限公司 一种生物质能与太阳能综合利用系统及其控制方法
US11629069B2 (en) 2020-07-15 2023-04-18 Daniel Hodges Solar powered vacuum assisted desalination system
WO2023287747A1 (en) * 2020-12-21 2023-01-19 Daniel Hodges Solar powered vacuum assisted desalination system
US11371392B1 (en) * 2021-01-07 2022-06-28 General Electric Company System and method for improving startup time in a fossil-fueled power generation system
CN113074094A (zh) * 2021-03-31 2021-07-06 承德石油高等专科学校 一种基于有机朗肯循环的生物质能-塔式太阳能耦合发电系统
CN114183790A (zh) * 2021-11-22 2022-03-15 国家电投集团电站运营技术(北京)有限公司 太阳能与生物质互补供热方法
CN114183789A (zh) * 2021-11-22 2022-03-15 国家电投集团电站运营技术(北京)有限公司 太阳能与生物质互补供热的热力系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2284967C1 (ru) * 2005-06-03 2006-10-10 Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ) Биоэнергетическая установка
WO2008010967A2 (en) * 2006-07-17 2008-01-24 Claudio Filippone Electrical generator systems and related methods
RU96859U1 (ru) * 2009-12-15 2010-08-20 Пензенская государственная технологическая академия, отдел научных исследований Биоэнергетический комплекс

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995011371A1 (es) * 1993-10-21 1995-04-27 Compañia Sevillana De Electricidad, S.A. Procedimiento de mejora para centrales electricas de ciclo combinado con apoyo solar
US7331178B2 (en) * 2003-01-21 2008-02-19 Los Angeles Advisory Services Inc Hybrid generation with alternative fuel sources
US7246492B2 (en) * 2003-03-19 2007-07-24 John Perry Hendrix Progressive solar based power generating system
JP2005098198A (ja) * 2003-09-25 2005-04-14 Kubota Corp 廃棄物処理炉の高効率発電システム
JP2005291112A (ja) 2004-03-31 2005-10-20 Takeo Saito 温度差発電装置
JP2006009574A (ja) * 2004-06-22 2006-01-12 Tokyo Electric Power Co Inc:The 火力発電プラント
ES2328539B1 (es) * 2006-07-27 2010-09-24 Tecnoholding, S.A. "procedimiento e instalacion para la generacion de energia electrica a partir de fuentes de energia renovables".
TW200837310A (en) * 2006-09-13 2008-09-16 Siong Cheak Steven Mok System for generating brown gas and uses thereof
US20080127647A1 (en) * 2006-09-15 2008-06-05 Skyfuel, Inc. Solar-Generated Steam Retrofit for Supplementing Natural-Gas Combustion at Combined Cycle Power Plants
CN101063080B (zh) * 2007-05-25 2011-06-22 山东百川同创能源有限公司 生物质能-沼气发酵-太阳能集成利用系统
US20090136337A1 (en) * 2007-11-26 2009-05-28 General Electric Company Method and Apparatus for Improved Reduced Load Operation of Steam Turbines
CN101251247A (zh) * 2008-02-20 2008-08-27 刘盛开 太阳能供热装置和蒸汽集中装置及其发电方式
DE202008002599U1 (de) * 2008-02-25 2008-04-24 Flagsol Gmbh Solarthermisches Hybrid-Kraftwerk
US8661819B2 (en) * 2008-04-15 2014-03-04 Morningside Venture Investments Limited Water reclamation system and method
CN201486603U (zh) 2009-08-28 2010-05-26 郭清温 一种太阳能与生物质联合发电装置
CN101787906B (zh) * 2010-02-05 2012-08-22 东南大学 一种太阳能和生物质能综合互补的联合热发电系统
JP2011169187A (ja) * 2010-02-17 2011-09-01 Jfe Engineering Corp 太陽熱利用廃棄物発電装置
US8161724B2 (en) * 2010-03-31 2012-04-24 Eif Nte Hybrid Intellectual Property Holding Company, Llc Hybrid biomass process with reheat cycle
CN101839225A (zh) * 2010-05-25 2010-09-22 郑斌 生物质辅助太阳能发电装置
US8701773B2 (en) * 2010-07-05 2014-04-22 Glasspoint Solar, Inc. Oilfield application of solar energy collection
CN201786587U (zh) * 2010-09-29 2011-04-06 武汉凯迪工程技术研究总院有限公司 采用生物质锅炉作为辅助热源的太阳能发电系统
CN101968041B (zh) * 2010-09-29 2012-05-30 武汉凯迪工程技术研究总院有限公司 采用生物质锅炉作为辅助热源的太阳能发电方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2284967C1 (ru) * 2005-06-03 2006-10-10 Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ) Биоэнергетическая установка
WO2008010967A2 (en) * 2006-07-17 2008-01-24 Claudio Filippone Electrical generator systems and related methods
RU96859U1 (ru) * 2009-12-15 2010-08-20 Пензенская государственная технологическая академия, отдел научных исследований Биоэнергетический комплекс

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2724360C1 (ru) * 2019-11-26 2020-06-23 Мусса Фуадович Малхозов Котельная

Also Published As

Publication number Publication date
CA2813091C (en) 2017-03-07
CN101968041B (zh) 2012-05-30
AP3505A (en) 2015-12-31
MX335973B (es) 2016-01-06
BR112013007780A2 (pt) 2017-09-26
EP2623778A1 (en) 2013-08-07
SG188660A1 (en) 2013-05-31
US20130219888A1 (en) 2013-08-29
KR20130099107A (ko) 2013-09-05
WO2012041125A1 (zh) 2012-04-05
US9151277B2 (en) 2015-10-06
JP5486739B2 (ja) 2014-05-07
EP2623778A4 (en) 2017-09-06
RU2013119272A (ru) 2014-11-10
AU2011307820B2 (en) 2015-10-29
AU2011307820A1 (en) 2013-05-23
MY163951A (en) 2017-11-15
JP2013542359A (ja) 2013-11-21
CN101968041A (zh) 2011-02-09
KR101452885B1 (ko) 2014-10-22
AP2013006806A0 (en) 2013-04-30
CA2813091A1 (en) 2012-04-05
MX2013003544A (es) 2013-06-11

Similar Documents

Publication Publication Date Title
RU2543361C2 (ru) Способ производства электроэнергии из солнечной энергии и система, использующая котел на биотопливе в качестве дополнительного источника теплоты
RU2643910C1 (ru) Оптимизированная комплексная система для гибридного генерирования электроэнергии на основе солнечной энергии и энергии биомассы
US9541070B2 (en) Plant for energy production
Allouhi et al. Recent advances, challenges, and prospects in solar dish collectors: Designs, applications, and optimization frameworks
US20120102950A1 (en) Solar thermal power plant with the integration of an aeroderivative turbine
CN201786587U (zh) 采用生物质锅炉作为辅助热源的太阳能发电系统
CN101852193A (zh) 聚光太阳能发电系统
Sun Hybrid solar power system
CN202100400U (zh) 太阳能与生物质燃料锅炉联合发电供热系统
CN105247208B (zh) 具有蓄热器的太阳能集热器厂
WO2016001369A1 (en) System of a desalination plant driven by a solar power plant
CN201661433U (zh) 聚光太阳能发电系统
CN204963253U (zh) 一种太阳能热发电集热储热装置
Vergura et al. Matlab based model of 40-MW concentrating solar power plant
CN105004073B (zh) 一种太阳能热发电集热储热系统
CN118481939B (zh) 一种光热发电系统
CN101871438A (zh) 太阳能热水低温发电系统
CN203362421U (zh) 塔式太阳能与有机朗肯循环发电系统
Petrollese et al. Techno-economic comparison of biomass combustion and anaerobic digestion systems for hybridization of CSP plants
Cristescu et al. New evolutions, directions and trends in conversion and storage of renewable energies
Figaj et al. Novel and Hybrid Biomass-Based Polygeneration Systems
GB2531569A (en) Method and apparatus for operating a solar furnace 24 hours a day
GB2500060A (en) Solar collector with concrete heat store
Chowdhury et al. PROSPECTIVE BIOMASS HYBRID POWER PLANTS WITH THERMOSOLAR IN AUSTRALIA-A STUDY
CZ20323U1 (cs) Nízkoteplotní kogenerátor využívající obnovitelné zdroje energie a noční proud

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150812

NF4A Reinstatement of patent

Effective date: 20160820

MM4A The patent is invalid due to non-payment of fees

Effective date: 20200812