RU2540983C1 - Запаянная нейтронная трубка - Google Patents
Запаянная нейтронная трубка Download PDFInfo
- Publication number
- RU2540983C1 RU2540983C1 RU2013148418/07A RU2013148418A RU2540983C1 RU 2540983 C1 RU2540983 C1 RU 2540983C1 RU 2013148418/07 A RU2013148418/07 A RU 2013148418/07A RU 2013148418 A RU2013148418 A RU 2013148418A RU 2540983 C1 RU2540983 C1 RU 2540983C1
- Authority
- RU
- Russia
- Prior art keywords
- tube
- ion source
- insulator
- cathode
- sealed
- Prior art date
Links
- 239000012212 insulator Substances 0.000 claims abstract description 21
- 238000000605 extraction Methods 0.000 claims abstract description 8
- 230000004907 flux Effects 0.000 abstract description 8
- 239000004020 conductor Substances 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract 1
- 230000005611 electricity Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 150000002500 ions Chemical class 0.000 description 27
- 230000006698 induction Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 229910052805 deuterium Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- -1 deuterium ions Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000009203 neutron therapy Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052722 tritium Inorganic materials 0.000 description 1
Landscapes
- Particle Accelerators (AREA)
Abstract
Изобретение относится к устройствам для получения нейтронов и может быть использовано для нейтронного анализа для лучевой нейтронной терапии, а также для моделирования нейтронных полей термоядерных устройств. Техническим результатом изобретения является увеличение эффективности источника ионов запаянной нейтронной трубки и увеличение потока нейтронов. Технический результат достигается тем, что в запаянной нейтронной трубке между корпусом источника ионов и анодом параллельно оси трубки установлен трубчатый изолятор, по всей длине, кроме концов, покрытый проводящим слоем, электрически соединенным с катодом, а внутри трубчатого изолятора расположен проволочный проводник, соединенный с вытягивающим электродом и выводом проходного изолятора. 1 ил.
Description
Изобретение относится к устройствам для получения нейтронов и может быть использовано для нейтронного анализа, для лучевой нейтронной терапии, а также для моделирования нейтронных полей термоядерных устройств.
Известна запаянная нейтронная трубка, содержащая расположенный в полости цилиндрического магнита источник ионов в герметичном корпусе, цилиндрические анод и катод с отверстием для извлечения ионов, расположенные коаксиально, ускоряющий электрод, соединенный с корпусом ускорительной трубки через фланец, и мишень. Сборник материалов межотраслевой научно-технической конференции "Портативные генераторы нейтронов и технологии на их основе", 23-30 мая 2003 г., Москва, с.67. Недостатком запаянной нейтронной трубки является малая величина потока нейтронов из-за низкой величины тока ионов на мишени. Малая величина тока обусловлена отсутствием вытягивающего электрода. Нейтронные трубки такой конструкции используют для получения потоков нейтронов до 109 нейтр/с в каротажных приборах "Портативные генераторы нейтронов и технологии на их основе", 18-22 октября 2004 г., Москва, с.79.
Известна запаянная нейтронная трубка, включающая расположенный в полости цилиндрического магнита источник ионов в герметичном корпусе с цилиндрическим анодом, катодом с отверстием для извлечения ионов, расположенными коаксиально, и проходным изолятором, соединенным с корпусом ускорительной трубки через фланец, включающей вытягивающий электрод, являющийся частью внешнего, обычно металлокерамического, корпуса трубки, ускоряющий электрод и мишень. Недостатком аналога является сложность и увеличенная длина конструкции корпуса трубки и трубки в целом из-за появления дополнительного металлокерамического или металлостеклянного соединения. Усложнение конструкции приводит к уменьшению надежности и увеличению стоимости нейтронной трубки. Увеличение длины приводит к увеличению потерь тока ионов из-за роста вероятности взаимодействия ионов пучка с молекулами газа в промежутке катод - ускоряющий электрод трубки и, в конечном итоге, к уменьшению потока нейтронов. Сборник материалов 15-й научно-технической конференции "Вакуумная наука и техника", октябрь, 2008 г., с.156
За прототип выбрана запаянная нейтронная трубка, содержащая расположенный в полости цилиндрического магнита источник ионов в герметичном корпусе с цилиндрическим анодом и катодом, расположенными коаксиально, с отверстием в катоде для извлечения ионов, с вытягивающим электродом, и проходной изолятор для питания вытягивающего электрода, ускоряющий электрод и мишень. Вопросы Атомной науки и техники, Сер. Радиационная техника, Вып.2 (39), 1989 г., с.68-71. Недостатком прототипа является малая величина потока нейтронов. Низкая величина тока на мишени обусловлена малой величиной индукции магнита из-за невозможности разместить на фланце нейтронной трубки цилиндрический магнит с внешним диаметром больше двойного расстояния от оси трубки до проходного изолятора на фланце. Увеличение расстояния от оси трубки до проходного изолятора на фланце приводит к увеличению диаметра всей нейтронной трубки. Низкая величина магнитной индукции ограничивает эффективность горения разряда в источнике ионов, ограничивает величину тока на мишени и, как следствие, величину потока нейтронов.
Данное изобретение устраняет недостатки аналогов и прототипа.
Техническим результатом изобретения является увеличение эффективности источника ионов запаянной нейтронной трубки и увеличение потока нейтронов.
Технический результат достигается тем, что в запаянной нейтронной трубке, содержащей расположенный в полости цилиндрического магнита источник ионов в герметичном корпусе с цилиндрическим анодом, катодом с отверстием для извлечения ионов, расположенными коаксиально c проходным изолятором, соединенным с корпусом ускорительной трубки через фланец, закрепленный на фланце через изолятор вытягивающий электрод, ускоряющий электрод и мишень, что между корпусом источника ионов и анодом параллельно оси трубки установлен трубчатый изолятор, по всей длине, кроме концов, покрытый проводящим слоем, электрически соединенным с катодом, а внутри трубчатого изолятора расположен проволочный проводник, соединенный с вытягивающим электродом.
Сущность изобретения поясняется чертежом, на котором схематично представлен поперечный разрез запаянной нейтронной трубки, где: 1 - цилиндрический магнит, в полости которого расположен герметичный источник ионов 2, 3 - цилиндрический анод, 4 - катод в виде двух дисков, 5 - отверстие в катоде для извлечения ионов, 6 - проходной изолятор, 7 - корпус ускорительной трубки, 8 - фланец, 9 - изолятор, закрепленный на фланце 8, 10 - вытягивающий электрод, 11 - ускоряющий электрод, 12 - мишень, 13 - проволочный проводник, 14 - трубчатый изолятор, 15 - внешний проводящий слой, нанесенный по длине трубчатого изолятора 14, 16 - концы трубчатого изолятора без проводящего слоя.
Запаянная нейтронная трубка работает следующим образом.
Газоразрядная камера источника ионов 2 образована цилиндрическим анодом 3 и катодом 4, состоящим из двух дисков, расположенных соосно с анодом 3 дисков. Во втором диске катода 4 по ходу инжекции выполнено отверстие 5. В объеме, ограниченном анодом 3 и дисками катода 4, цилиндрическим магнитом 1, создают продольное магнитное поле. Цилиндрический магнит 1 охватывает корпус источника ионов 2. Один торец цилиндрического магнита 1 расположен на фланце 8 корпуса ускорительной трубки 7. Анод 3 и катод 4 установлены соосно в герметичном корпусе источника ионов 2. В источнике ионов 2 создают рабочее газовое давление дейтерия. К аноду 3 и катоду 4 прикладывают напряжение. Затем в газоразрядной камере источника ионов 2 зажигают разряд в скрещенных электрическом и магнитном полях. В газоразрядной камере возрастает концентрация ионов дейтерия, часть которых извлекают через отверстие 5 в катоде 4 и направляют в ускоряющий промежуток трубки. Напряжение на вытягивающий электрод 10 подают через проходной изолятор 6, размещенный на фланце 8 трубки. Ускоренные ионы попадают на мишень 12, насыщенную тритием и образуют нейтроны в результате термоядерных реакций. Эффективность горения разряда и концентрация заряженных частиц в плазме растет с увеличением магнитной индукции. Для увеличения магнитной индукции необходимо увеличить диаметр цилиндрического магнита 1. Оптимальным было бы увеличение диаметра цилиндрического магнита 1 до диаметра фланца 8 трубки. Однако это невозможно, поскольку на фланце 8 трубки установлен проходной изолятор или ввод питания вытягивающего электрода 10. Напряжение на вытягивающий электрод 10 подают от вывода проходного изолятора 6 источника ионов 2 и вывода проволочного проводника 13, расположенного в трубчатом изоляторе 14. Трубчатый изолятор 14 установлен между корпусом источника ионов 2 и анодом 3 параллельно оси трубки и покрыт внешним проводящим слоем 15, который соединен электрически с катодом 4. Проводящий слой 15 нанесен по всей длине трубчатого изолятора 14 за исключением его концов 16. Проводящий слой 15 обеспечивает "привязку" поверхности трубчатого изолятора к потенциалу герметичного корпуса 2 и исключает искрение между внешней поверхностью анода 3 и корпусом источника ионов 2.
Такое исполнение электрической схемы зажигания разряда позволило увеличить диаметр цилиндрического магнита 1, не увеличивая диаметр нейтронной трубки, увеличить магнитную индукцию в газоразрядной камере источника ионов. Это, в свою очередь, позволяет увеличить величину тока ионов и, в конечном итоге, поток нейтронов запаянной нейтронной трубки.
Claims (1)
- Запаянная нейтронная трубка, содержащая расположенный в полости цилиндрического магнита источник ионов в герметичном корпусе с цилиндрическим анодом, катодом с отверстием для извлечения ионов, соединенным электрически с корпусом источника ионов, расположенными коаксиально с проходным изолятором, соединенным с корпусом ускорительной трубки через фланец, закрепленный на фланце через изолятор вытягивающий электрод, ускоряющий электрод и мишень, отличающаяся тем, что между корпусом источника ионов и анодом параллельно оси трубки установлен трубчатый изолятор, по всей длине, кроме концов, покрытый проводящим слоем, электрически соединенным с катодом, а внутри трубчатого изолятора расположен проволочный проводник, соединенный на концах с вытягивающим электродом и выводом проходного изолятора.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013148418/07A RU2540983C1 (ru) | 2013-10-31 | 2013-10-31 | Запаянная нейтронная трубка |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013148418/07A RU2540983C1 (ru) | 2013-10-31 | 2013-10-31 | Запаянная нейтронная трубка |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2540983C1 true RU2540983C1 (ru) | 2015-02-10 |
Family
ID=53287031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013148418/07A RU2540983C1 (ru) | 2013-10-31 | 2013-10-31 | Запаянная нейтронная трубка |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2540983C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU209633U1 (ru) * | 2021-11-24 | 2022-03-17 | Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") | Вакуумная нейтронная трубка |
RU209870U1 (ru) * | 2021-11-26 | 2022-03-23 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") | Вакуумная нейтронная трубка |
RU2777013C1 (ru) * | 2021-12-13 | 2022-08-01 | Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") | Газонаполненная нейтронная трубка |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2362278C1 (ru) * | 2008-01-10 | 2009-07-20 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" | Запаянная нейтронная трубка |
WO2011060282A3 (en) * | 2009-11-16 | 2011-11-24 | Schlumberger Canada Limited | Electrode configuration for downhole nuclear radiation generator |
-
2013
- 2013-10-31 RU RU2013148418/07A patent/RU2540983C1/ru active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2362278C1 (ru) * | 2008-01-10 | 2009-07-20 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" | Запаянная нейтронная трубка |
WO2011060282A3 (en) * | 2009-11-16 | 2011-11-24 | Schlumberger Canada Limited | Electrode configuration for downhole nuclear radiation generator |
Non-Patent Citations (1)
Title |
---|
Вопросы Атомной науки и техники, Сер. Радиационная техника, Вып.2 (39), 1989 г., с.68-71. * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU209633U1 (ru) * | 2021-11-24 | 2022-03-17 | Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") | Вакуумная нейтронная трубка |
RU209870U1 (ru) * | 2021-11-26 | 2022-03-23 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") | Вакуумная нейтронная трубка |
RU2777013C1 (ru) * | 2021-12-13 | 2022-08-01 | Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") | Газонаполненная нейтронная трубка |
RU227218U1 (ru) * | 2024-02-28 | 2024-07-11 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л.Духова" (ФГУП "ВНИИА") | Запаянная нейтронная трубка |
RU228239U1 (ru) * | 2024-06-21 | 2024-08-21 | Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") | Запаянная нейтронная трубка |
RU228627U1 (ru) * | 2024-06-21 | 2024-09-06 | Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") | Запаянная нейтронная трубка |
RU228648U1 (ru) * | 2024-06-21 | 2024-09-09 | Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") | Запаянная нейтронная трубка |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2469595A (en) | Neutron generator | |
RU2540983C1 (ru) | Запаянная нейтронная трубка | |
RU168025U1 (ru) | Импульсный генератор нейтронов | |
US8971473B2 (en) | Plasma driven neutron/gamma generator | |
RU187270U1 (ru) | Импульсный генератор нейтронов | |
WO2014105473A1 (en) | Ion source using spindt cathode and electromagnetic confinement | |
RU149963U1 (ru) | Ионный триод для генерации нейтронов | |
Choi et al. | Characteristics of diode perveance and vircator output under various anode-cathode gap distances | |
SU528834A1 (ru) | Импульсна нейтронна трубка | |
RU228879U1 (ru) | Вакуумируемый компактный DD-генератор быстрых нейтронов | |
RU160364U1 (ru) | Ионный магнитный диод для генерации нейтронов | |
SU766048A1 (ru) | Импульсна нейтронна трубка | |
RU2356114C1 (ru) | Запаянная нейтронная трубка | |
RU138346U1 (ru) | Газонаполненная нейтронная трубка | |
CN107027236B (zh) | 中子发生器 | |
RU228648U1 (ru) | Запаянная нейтронная трубка | |
RU228627U1 (ru) | Запаянная нейтронная трубка | |
RU231590U1 (ru) | Камера с инерциальным удержанием ионов | |
RU2813664C1 (ru) | Импульсный генератор нейтронов | |
RU192809U1 (ru) | Наносекундный генератор быстрых нейтронов | |
RU2831733C1 (ru) | Генератор импульсного потока нейтронов с газонаполненной нейтронной трубкой | |
RU71468U1 (ru) | Запаянная нейтронная трубка | |
SU865110A1 (ru) | Импульсный источник нейтронов | |
RU209633U1 (ru) | Вакуумная нейтронная трубка | |
RU228239U1 (ru) | Запаянная нейтронная трубка |