RU2540616C2 - Способ обеззараживания водных систем минерализованными промышленными водами в виде растворов гипохлорита - Google Patents
Способ обеззараживания водных систем минерализованными промышленными водами в виде растворов гипохлорита Download PDFInfo
- Publication number
- RU2540616C2 RU2540616C2 RU2013130259/05A RU2013130259A RU2540616C2 RU 2540616 C2 RU2540616 C2 RU 2540616C2 RU 2013130259/05 A RU2013130259/05 A RU 2013130259/05A RU 2013130259 A RU2013130259 A RU 2013130259A RU 2540616 C2 RU2540616 C2 RU 2540616C2
- Authority
- RU
- Russia
- Prior art keywords
- hypochlorite
- water
- treatment
- mineralised
- waters
- Prior art date
Links
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 title claims abstract description 54
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 21
- 239000008235 industrial water Substances 0.000 title claims abstract description 20
- 238000005202 decontamination Methods 0.000 title abstract 4
- 230000003588 decontaminative effect Effects 0.000 title abstract 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000000460 chlorine Substances 0.000 claims abstract description 26
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 26
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims abstract description 4
- 239000010865 sewage Substances 0.000 claims abstract 5
- 239000002351 wastewater Substances 0.000 claims description 20
- 238000004659 sterilization and disinfection Methods 0.000 claims description 14
- 239000003643 water by type Substances 0.000 abstract description 7
- 239000000126 substance Substances 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 239000000243 solution Substances 0.000 description 27
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 9
- 238000005868 electrolysis reaction Methods 0.000 description 9
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 238000005265 energy consumption Methods 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 239000005708 Sodium hypochlorite Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 5
- 230000033558 biomineral tissue development Effects 0.000 description 4
- 230000000249 desinfective effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 238000003860 storage Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000000645 desinfectant Substances 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- ROZSPJBPUVWBHW-UHFFFAOYSA-N [Ru]=O Chemical class [Ru]=O ROZSPJBPUVWBHW-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- -1 hypochlorite ions Chemical class 0.000 description 1
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical class ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910000457 iridium oxide Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Изобретение относится к области обработки промышленных и сточных вод. Способ обеззараживания сточных вод включает их обработку растворами гипохлорита, полученными в электролизере из минерализованных промышленных вод. Обработку исходной минерализованной промышленной воды с концентраций хлорид-ионов от 5 до 11 г/л проводят в бездиафрагменном электролизере при режимах обработки воды по времени 10÷30 сек и с плотностью тока на электродах 500÷750 А/м2, получают раствор гипохлорита с концентрацией активного хлора от 80 до 600 мг/л, смешивают полученный раствор гипохлорита со сточными водами в соотношении от 1:55 до 1:12 при соответствии смешанного продукта нормам ПДК и обеспечивают контакт раствора гипохлорита со сточными водами в течение не менее 30 минут для полного их обеззараживания. Изобретение позволяет утилизировать минерализованные промышленные воды в виде растворов гипохлорита, используемых для обеззараживания сточных вод. 1 пр.
Description
Изобретение относится к области обработки промышленных и сточных вод и, в частности, к переработке минерализованных промышленных вод в гипохлоритные соединения, используемые в качестве реагента для обеззараживания водных систем.
Известен способ получения раствора гипохлорита натрия на месте потребления путем электролиза природных электролитов - подземных минерализованных и морских вод. При реализации данного способа эксплуатационные расходы определяются в основном затратами электроэнергии, поэтому с целью снижения энергетических затрат процесс проводят в направлении получения слабоконцентрированных растворов гипохлорита натрия с содержанием активного хлора 0,2÷1,0 г/л. При промышленной реализации данной схемы электролит без какой-либо предварительной обработки с заданным расходом подается на электролизную установку, а затем в бак-накопитель гипохлорита натрия или прямо в обрабатываемые системы [Г.Л. Медриш, А.А. Тейшева, Д.Л. Басин. «Обеззараживание природных и сточных вод с использованием электролиза», М., Стройиздат, 1982 г.].
Недостатками способа являются:
- необходимость присутствия вблизи места потребления и производства растворов гипохлоритов морских вод или подземных растворов - залегание подземных рассолов в большинстве случаев на глубинах более 250 метров, что усложняет процесс их переработки в растворы гипохлорита;
- присутствие в подземных рассолах и морских водах в значительных количествах таких компонентов, как железо, литий, стронций, медь, свинец, цинк, кремний, фтор, мышьяк, сероводород, соединения азота и др., что усложняет процесс электролиза рассолов, а также ограничивает возможность использования полученных растворов гипохлорита для обеззараживания питьевых и сточных вод из-за требований к ПДК.
Наиболее близким по технической сущности и достигаемому результату является способ получения растворов гипохлорита натрия из растворов хлорида натрия или растворов смеси хлорида натрия с неорганическими и/или органическими солями общей минерализацией 50÷300 г/л. Данный способ предполагает получение дезинфицирующих растворов (нейтральный анолит АНД) путем приготовления исходного раствора смешением питьевой воды или низкоминерализованного водного раствора с высокоминерализованным водным раствором электролита с обработкой полученного исходного раствора в анодной камере основного диафрагменного электрохимического реактора и последующей подачей раствора в анодную камеру дополнительного электрохимического реактора. В качестве высокоминерализованного раствора электролита используют раствор хлорида натрия или раствор смеси хлорида натрия с неорганическими и/или органическими солями общей минерализацией 50÷300 г/л [Патент № RU 2148027 C1. «Способ получения дезинфицирующего раствора - нейтрального анолита АНД». М кл. C02F 1/46, 1/47 от 01.02.1999 г. (прототип)].
Недостатком способа является то, что в предлагаемых условиях проводится электрохимическая обработка всего объема вод (маломинерализованной и высокоминерализованной). Кроме того, требуются большой расход соли, значительные затраты на ее доставку и хранение, что в комплексе приводит к высокой себестоимости готового продукта.
Использование диафрагменных электролизеров для получения активного хлора на месте его потребления нецелесообразно из-за сложности их изготовления, обслуживания, ремонта и высокой стоимости.
Целью изобретения является утилизация минерализованных промышленных вод в виде растворов гипохлорита, используемых для обеззараживания водных систем.
Указанная цель достигается получением растворов гипохлорита с концентрацией активного хлора от 80 до 600 мг/л из минерализованной промышленной воды, которые впоследствии используются в качестве реагента для обеззараживания сточных вод. Электрохимическая обработка минерализованных вод проводится в условиях, обеспечивающих минимальный расход электроэнергии на обработку 1 м3 оборотной воды (1÷4,8 кВт*ч) и получение 1 кг активного хлора (8÷16 кВт*ч): время обработки воды в электролизере - 10÷30 сек, плотность тока на электродах - 500÷750 А/м2.
Способ реализуется следующим образом.
Исходная минерализованная промышленная вода с концентрацией хлорид-ионов от 5 до 11 г/л поступает в бездиафрагменный электролизер на электрохимическую обработку. В процессе электролиза происходит насыщение минерализованной воды активным хлором за счет электрохимического перевода хлорид-иона в гипохлорит-ион. Таким образом, минерализованная вода превращается в раствор гипохлорита с концентрацией активного хлора от 80 до 600 мг/л.
В качестве электрохимического кондиционера воды используются бездиафрагменные электролизеры моно- или биполярного типа. Электроды (катоды и аноды) выполнены из ОРТА-И1 (титановая основа с покрытием, состоящим из смеси оксидов иридия и рутения). Применение таких электродов увеличивает срок службы электролизеров и позволяет удалять образующиеся соли жесткости на катодах методом переполюсовки (смены полярности).
Процесс электрохимической обработки минерализованной воды проводят при низких плотностях тока и малом времени обработки (время обработки воды в электролизере - 10÷30 сек, плотность тока на электродах - 500÷750 А/м2), что снижает эксплуатационные и капитальные затраты процесса (расход электроэнергии на обработку 1 м3 промышленной воды (1÷4,8 кВт*ч), на получение 1 кг активного хлора - (8÷16 кВт*ч)).
Полученный из минерализованной воды раствор гипохлорита подают в контактную емкость, в которой происходит:
1. Смешение раствора гипохлорита со сточными водами в соотношениях от 1:55 до 1:12 в зависимости от минерализации и ионного состава смешиваемых вод, так как смешанный продукт должен соответствовать требованиям ПДК (так, например, общая минерализация не должна превышать 1 г/л).
2. Контакт смешиваемых вод в течение 30 минут, обеспечивающий полное обеззараживание сточных вод (остаточная концентрация активного хлора находится в пределах 0,5÷1,2 мг/л).
Далее проводят сброс доведенного до норм ПДК продукта смешения.
Пример
В качестве исследуемых водных систем были выбраны: минерализованная промышленная вода Мирнинского ГОКа, продукты ее электролиза и продукты ее смешения с маломинерализованными сточными водами в различных соотношениях. Все исследуемые водные системы подвергались химическому анализу с целью контроля изменения их ионного состава и физико-химических характеристик.
Результаты экспериментальных данных по изучению зависимости концентрации гипохлорит-ионов в электрохимически обработанной промышленной воде от величины линейного тока, подаваемого на опытно-промышленный бездиафрагменный электролизер, и его производительности показали, что при производительности опытно-промышленного электролизера от 0,25 до 1,0 м3/ч возможно получение раствора гипохлорита натрия из оборотной воды с концентрацией активного хлора до 600 мг/л. Концентрация активного хлора в обработанной воде прямо пропорциональна величине линейного тока, подаваемого на электролизер.
Получение раствора гипохлорита из оборотной воды методом электролиза является стабильным процессом, показатели которого зависят только от времени обработки и величины линейного тока на электролизере (плотности тока на электродах).
С целью определения энергосберегающих режимов электрохимического кондиционирования промышленной воды Мирнинского ГОКа (МГОК) изучены зависимости удельного расхода электроэнергии на получение 1 кг активного хлора и обработку 1 м3 минерализованной воды от величины тока, подаваемого на электролизер, и его производительности.
В результате исследований установлено, что снижение производительности электролизера с 1,0 до 0,5 м3/ч при постоянной величине тока на электродах приводит к увеличению расхода электроэнергии на обработку 1 м3 оборотной воды примерно в 1,8 раза. Оптимальный режим электрохимической обработки оборотной воды обеспечил концентрацию активного хлора в обработанной воде при максимальной производительности электролизера и минимальной линейной токовой нагрузке (плотность тока на электродах), что позволило снизить расход электроэнергии на обработку 1 м3 оборотной воды и получение 1 кг активного хлора.
Этот режим электролиза осуществлялся следующими параметрами электрохимической обработки минерализованной воды: время обработки воды в электролизере - 11,5 сек, плотность тока на электродах - 500÷750 А/м2.
Удельный расход электроэнергии на обработку 1 м3 промышленной воды при этом составил 1,0÷4,8 кВт·ч/м3 кВт·ч, на получение 1 кг активного хлора от 8 до 16 кВт·ч при концентрации активного хлора в обработанной воде 156÷223 мг/л.
Также были выполнены эксперименты по использованию гипохлорита, полученного электрохимической переработкой минерализованной воды МГОКа, с определением оптимальной концентрации активного хлора в сточной воде, необходимой для полного ее обеззараживания, и допустимого соотношения смешения обработанной оборотной и сточной вод.
По требованиям комплекса очистных сооружений (КОС) после 30 минут контакта обеззараживающего реагента со сточной водой остаточная концентрация в ней активного хлора должна находиться в пределах от 0,5 до 1,2 мг/л.
В результате проведенных исследований было установлено, что для обеспечения остаточной концентрации активного хлора в заданных пределах в сточной воде после ее контакта в течение 30 минут с электрохимически обработанной оборотной водой исходная концентрация активного хлора в продукте их смешения составила около 5 мг/л, что на 7 мг/л меньше чем при использовании в качестве реагента жидкого хлора. Это объясняется более высокой активностью электрохимически полученного гипохлорита как обеззараживающего реагента.
Результаты контрольных химических анализов подтвердили возможность утилизации промышленной воды в виде раствора гипохлорита для обеззараживания сточных городских вод в объемах от 40 до 120 м3/ч. Остаточная концентрация активного хлора после обеззараживания сточных вод находится в пределах от 0,5 до 1,2 мг/л, что соответствует требованиям ПДК, а минерализация продуктов смешения не превышает величины 1 г/л.
Требуемая концентрация активного хлора в промышленной воде при ее утилизации в объеме от 40 до 120 м3/ч в виде раствора гипохлорита для обеззараживания сточных вод в объеме 2,2 тыс. м3/ч должна составлять от 96 до 190 мг/л.
Таким образом, в результате проведенных исследований установлено:
1. Возможность получения раствора гипохлорита с заданной концентрацией активного хлора методом электролиза минерализованной воды МГОКа и эффективность процесса обеззараживания городских сточных вод применением полученного продукта.
2. Хранение электрохимически полученного гипохлорита в течение суток не снижает его активность в процессе обеззараживания сточных вод.
3. Возможность утилизации промышленной воды МГОКа в объеме от 40 до 120 м3/ч в виде раствора гипохлорита для обеззараживания сточных вод. При этом остаточная концентрация активного хлора в продукте смешения составляет от 0,5 до 1,2 мг/л, а его минерализация не превышает 1 г/л, что соответствует требованиям КОС.
Таким образом, получение активных форм хлорсодержащих ионов из минерализованных промышленных вод и их использования в качестве реагента для обеззараживания сточных вод подтверждено примером.
Claims (1)
- Способ обеззараживания сточных вод, включающий их обработку растворами гипохлорита, полученными в электролизере из минерализованных промышленных вод, отличающийся тем, что обработку исходной минерализованной промышленной воды с концентраций хлорид-ионов от 5 до 11 г/л проводят в бездиафрагменном электролизере при режимах обработки воды по времени 10÷30 сек и с плотностью тока на электродах 500÷750 А/м2, получают раствор гипохлорита с концентрацией активного хлора от 80 до 600 мг/л, смешивают полученный раствор гипохлорита со сточными водами в соотношении от 1:55 до 1:12 при соответствии смешанного продукта нормам ПДК и обеспечивают контакт раствора гипохлорита со сточными водами в течение не менее 30 минут для полного их обеззараживания.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013130259/05A RU2540616C2 (ru) | 2013-07-03 | 2013-07-03 | Способ обеззараживания водных систем минерализованными промышленными водами в виде растворов гипохлорита |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013130259/05A RU2540616C2 (ru) | 2013-07-03 | 2013-07-03 | Способ обеззараживания водных систем минерализованными промышленными водами в виде растворов гипохлорита |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2013130259A RU2013130259A (ru) | 2015-01-10 |
RU2540616C2 true RU2540616C2 (ru) | 2015-02-10 |
Family
ID=53278965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013130259/05A RU2540616C2 (ru) | 2013-07-03 | 2013-07-03 | Способ обеззараживания водных систем минерализованными промышленными водами в виде растворов гипохлорита |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2540616C2 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2767943C1 (ru) * | 2021-05-21 | 2022-03-22 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Вологодский государственный университет" | Способ очистки сточных вод |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110344077A (zh) * | 2019-07-01 | 2019-10-18 | 吉林大学 | 一种由l-胱氨酸电化学合成n-乙酰-l半胱氨酸的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU591531A1 (ru) * | 1976-06-16 | 1978-02-05 | Предприятие П/Я В-2287 | Способ получени гипохлорита щелочных металлов |
US4159929A (en) * | 1978-05-17 | 1979-07-03 | Hooker Chemicals & Plastics Corp. | Chemical and electro-chemical process for production of alkali metal chlorates |
SU966035A1 (ru) * | 1981-03-25 | 1982-10-15 | Предприятие П/Я А-7346 | Способ очистки сточных вод,содержащих ароматические кислоты |
RU2100483C1 (ru) * | 1996-02-19 | 1997-12-27 | Акционерное общество закрытого типа Научно-производственное объединение "Юпитер" | Способ обработки воды гипохлоритом натрия и проточный электролизер для получения гипохлорита натрия |
RU2148027C1 (ru) * | 1999-02-01 | 2000-04-27 | Бахир Витольд Михайлович | Способ получения дезинфицирующего раствора - нейтрального анолита анд |
RU2233801C1 (ru) * | 2003-04-16 | 2004-08-10 | Федеральное государственное унитарное предприятие Комплексный научно-исследовательский и конструкторско-технологический институт водоснабжения, канализации, гидротехнических сооружений и инженерной гидрогеологии "НИИ Водгео" | Способ обеззараживания воды |
-
2013
- 2013-07-03 RU RU2013130259/05A patent/RU2540616C2/ru not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU591531A1 (ru) * | 1976-06-16 | 1978-02-05 | Предприятие П/Я В-2287 | Способ получени гипохлорита щелочных металлов |
US4159929A (en) * | 1978-05-17 | 1979-07-03 | Hooker Chemicals & Plastics Corp. | Chemical and electro-chemical process for production of alkali metal chlorates |
SU966035A1 (ru) * | 1981-03-25 | 1982-10-15 | Предприятие П/Я А-7346 | Способ очистки сточных вод,содержащих ароматические кислоты |
RU2100483C1 (ru) * | 1996-02-19 | 1997-12-27 | Акционерное общество закрытого типа Научно-производственное объединение "Юпитер" | Способ обработки воды гипохлоритом натрия и проточный электролизер для получения гипохлорита натрия |
RU2148027C1 (ru) * | 1999-02-01 | 2000-04-27 | Бахир Витольд Михайлович | Способ получения дезинфицирующего раствора - нейтрального анолита анд |
RU2233801C1 (ru) * | 2003-04-16 | 2004-08-10 | Федеральное государственное унитарное предприятие Комплексный научно-исследовательский и конструкторско-технологический институт водоснабжения, канализации, гидротехнических сооружений и инженерной гидрогеологии "НИИ Водгео" | Способ обеззараживания воды |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2767943C1 (ru) * | 2021-05-21 | 2022-03-22 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Вологодский государственный университет" | Способ очистки сточных вод |
Also Published As
Publication number | Publication date |
---|---|
RU2013130259A (ru) | 2015-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kumar et al. | Composite wastewater treatment by aerated electrocoagulation and modified peroxi-coagulation processes | |
Cotillas et al. | Optimization of an integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for urban wastewater reclamation | |
Ghernaout et al. | On the dependence of chlorine by-products generated species formation of the electrode material and applied charge during electrochemical water treatment | |
Ghernaout et al. | From chemical disinfection to electrodisinfection: The obligatory itinerary? | |
Särkkä et al. | Natural organic matter (NOM) removal by electrochemical methods—A review | |
Cotillas et al. | Use of carbon felt cathodes for the electrochemical reclamation of urban treated wastewaters | |
Dermentzis et al. | Removal of hexavalent chromium from electroplating wastewater by electrocoagulation with iron electrodes | |
Khelifa et al. | Treatment of metal finishing effluents by the electroflotation technique | |
Abdel-Gawad et al. | Removal of some pesticides from the simulated waste water by electrocoagulation method using iron electrodes | |
Oh et al. | Formation of hazardous inorganic by-products during electrolysis of seawater as a disinfection process for desalination | |
Isidro et al. | Can CabECO® technology be used for the disinfection of highly faecal-polluted surface water? | |
Llanos et al. | Novel electrodialysis–electrochlorination integrated process for the reclamation of treated wastewaters | |
WO2010064946A1 (ru) | Электрохимическая модульная ячейка для обработки растворов электролитов | |
Kobya et al. | Effect of operational parameters on the removal of phenol from aqueous solutions by electrocoagulation using Fe and Al electrodes | |
CN105621764A (zh) | 一种环氧氯丙烷生产废水的处理工艺 | |
Chun et al. | Electrochemical treatment of urine by using Ti/IrO2/TiO2 electrode | |
Nguyen et al. | Enhanced phosphorus and COD removals for retrofit of existing sewage treatment by electrocoagulation process with cylindrical aluminum electrodes | |
EP1461291B1 (en) | Electrolytic device and method for disinfecting water in a water supply system by means of the generation of active chlorine | |
Da Pozzo et al. | Electrogeneration of hydrogen peroxide in seawater and application to disinfection | |
Kalash et al. | Hardness removal from drinking water using electrochemical cell | |
RU2540616C2 (ru) | Способ обеззараживания водных систем минерализованными промышленными водами в виде растворов гипохлорита | |
Mahmoud et al. | Removal of surfactants in wastewater by electrocoagulation method using iron electrodes | |
Öztürk et al. | The effect of seawater conductivity on the treatment of leachate by electrocoagulation | |
Baydum et al. | Feasibility of producing sodium hypochlorite for disinfection purposes using desalination brine | |
AU2014252705A1 (en) | Water treatment method and mineral therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20160704 |