RU2538363C2 - Датчик дифференциального давления с измерением давления в линии - Google Patents
Датчик дифференциального давления с измерением давления в линии Download PDFInfo
- Publication number
- RU2538363C2 RU2538363C2 RU2012157960/28A RU2012157960A RU2538363C2 RU 2538363 C2 RU2538363 C2 RU 2538363C2 RU 2012157960/28 A RU2012157960/28 A RU 2012157960/28A RU 2012157960 A RU2012157960 A RU 2012157960A RU 2538363 C2 RU2538363 C2 RU 2538363C2
- Authority
- RU
- Russia
- Prior art keywords
- pressure
- sensor
- electrode
- diaphragm
- cavity
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/0041—Transmitting or indicating the displacement of flexible diaphragms
- G01L9/0072—Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L13/00—Devices or apparatus for measuring differences of two or more fluid pressure values
- G01L13/02—Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
- G01L13/025—Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements using diaphragms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L15/00—Devices or apparatus for measuring two or more fluid pressure values simultaneously
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Изобретение относится к датчикам давления, используемым для измерения технологической текучей среды и дифференциального давления. Техническим результатом изобретения является повышение точности измерений давления. Сборный узел датчика давления для измерения давления технологической текучей среды включает в себя корпус датчика с наличием полости, сформированной в нем, и первое и второе отверстия к полости, сконфигурированные для приложения первого и второго давлений. Диафрагма в полости отделяет первое отверстие от второго отверстия и сконфигурирована с возможностью изгибаться в ответ на перепад давления между первым давлением и вторым давлением. Обеспечивается емкостный датчик деформации, сконфигурированный с возможностью определять величину деформации корпуса датчика в ответ на давление в линии, приложенное к корпусу датчика. 3 н. и 12 з.п. ф-лы, 5 ил.
Description
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к типу датчиков давления, используемому для измерения давления технологической текучей среды. Более конкретно, настоящее изобретение относится к датчику давления, сконфигурированному для измерения в технологической текучей среде и дифференциального давления и также (рабочего) давления в линии.
Передатчики (преобразователи) используются в системах мониторинга и управления ходом процесса, чтобы измерять различные переменные процесса для технологических процессов. Один тип передатчика измеряет дифференциальное давление технологической текучей среды в ходе процесса. Это измерение дифференциального давления можно затем использовать для вычисления расхода технологической текучей среды. Различные способы были использованы в датчиках давления, используемых в таких передатчиках. Один известный способ состоит в использовании изгибаемой диафрагмы. Емкость измеряется по отношению к диафрагме, причем диафрагма образует одну из емкостных пластин конденсатора. Если диафрагма изгибается вследствие приложенного давления, измеряемая емкость изменяется. В такой конфигурации имеется ряд источников погрешностей в измерениях давления.
Один способ, который рассматривает эти погрешности, излагается в патенте США № 6295875, озаглавленном "PROCESS PRESSURE MEASUREMENT DEVICES WITH IMPROVED ERROR COMPENSATION" (Устройства измерения давления с улучшенной компенсацией погрешностей), выданном 2 октября 2001 изобретателям Frick и др., который полностью включен в документ путем ссылки. Этот патент описывает датчик дифференциального давления, который включает в себя дополнительный электрод для использования в снижении погрешностей измерения. Однако в некоторых установках требуется измерять давление в линии для технологической текучей среды (абсолютное или в масштабе), в дополнение к измерению дифференциального давления.
ОПИСАНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
Сборный узел датчика давления для измерения давления технологической текучей среды включает в себя корпус датчика, имеющий полость, сформированную в нем, и первое и второе отверстия к полости, сконфигурированные для приложения первого и второго давления. Диафрагма в полости отделяет первое отверстие от второго отверстия и сконфигурирована с возможностью изгибаться в ответ на перепад давления между первым давлением и вторым давлением. Предложен емкостный датчик деформации и сконфигурирован для восприятия (определения величины) деформации корпуса датчика в ответ на давление в линии, приложенное к корпусу датчика.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг.1 - система измерения параметров процесса с передатчиком параметров процесса, сконструированного в соответствии с настоящим изобретением.
Фиг.2 - схематичный вид передатчика по Фиг.1.
Фиг.3 - вид поперечного сечения части передатчика параметров процесса по Фиг.1.
Фиг.4 - упрощенный вид поперечного сечения датчика давления для использования в иллюстрации действия по настоящему изобретению.
Фиг.5 - вид поперечного сечения датчика давления, включающего в себя электроды, используемые для измерения давления в линии.
ПОДРОБНОЕ ОПИСАНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
Настоящее изобретение обеспечивает устройство и способ для определения давления в линии и дифференциального давления для емкостного датчика давления. Путем вычисления отношений сумм, или сумм отношений, для соответственных емкостей (емкостных сопротивлений) в многоемкостном датчике давления, может быть определено дифференциальное давление технологической текучей среды. Как обсуждено в разделе «ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ», в некоторых установках может быть желательным измерять давление в линии (абсолютное или в масштабе) в дополнение к измерению дифференциального давления. Один такой способ для измерения давления в линии показан и описан в находящейся в совместном рассмотрении заявке на патент США № 11/140681, озаглавленной "LINE PRESSURE MEASUREMENT USING DIFFERENTIAL PRESSURE SENSOR" (Измерение давления в линии с использованием датчика дифференциального давления), поданной 27 мая 2005 заявителями Donald E. Harasyn и др., заявкпе на патент США № 11/138977, озаглавленной "PRESSURE SENSOR USING COMPRESSIBLE SENSOR BODY" (Датчик давления, использующий сжимаемый корпус датчика), поданной 26 мая 2005 заявителями David A. Broden и др., которая принадлежит тому же правообладателю с настоящей заявкой, и содержимое которых включается в документ путем ссылки во всей полноте.
На Фиг.1 показана обобщенно среда системы 32 измерения параметров процесса. На Фиг.1 показан технологический трубопровод 30, содержащий текучую среду под давлением, связанный с системой 32 измерения параметров процесса для измерения рабочего давления. Система 32 измерения параметров процесса включает в себя импульсный трубопровод 34, соединенный с трубопроводом 30. Импульсный трубопровод 34 соединен с передатчиком 36 рабочего давления. Первичный измерительный элемент 33, такой как измерительная диафрагма, трубка Вентури, измерительное сопло и тому подобное, входит в контакт с технологической текучей средой в позиции в технологическом трубопроводе 30 между трубками импульсного трубопровода 34. Первичный измерительный элемент 33 вызывает изменение давления в текучей среде, если она проходит мимо первичного измерительного элемента 33. Это изменение давления (изменение дифференциального давления) относится к движению технологической текучей среды. Датчик дифференциального давления может использоваться для измерения этого изменения давления, а измерительная схема - использоваться для обеспечения выходных данных, относящихся к движению технологической текучей среды.
Передатчик 36 является устройством измерения параметров процесса, которое воспринимает рабочие давления через импульсный трубопровод 34. Передатчик 36 воспринимает дифференциальное рабочее давление и преобразовывает его в стандартизированный сигнал передачи, который является функцией последовательности технологических операций (потока).
Контур 38 процесса предпочтительно обеспечивает и сигнал питания на передатчик 36 от аппаратной 40, и двунаправленную связь, и может создаваться в соответствии с рядом протоколов связи процесса. В иллюстрируемом примере контур 38 процесса является двухпроводным контуром. Двухпроводный контур используется, чтобы передавать всю мощность питания и все передачи на передатчик 36, и от него в течение обычных операций с помощью сигнала в 4-20 мА. Компьютер 42 или другая система обработки информации через модем 44, или другой сетевой интерфейс, используется для связи с передатчиком 36. Удаленный источник напряжения 46 питает передатчик 36. Другой пример контура управления процессом представляет беспроводная связь, в которой данные передаются с помощью беспроводных технологий либо непосредственно на централизованное место, или на конфигурацию типа ячеистой сети или с использованием других способов.
Фиг.2 является упрощенной блок-схемой одного варианта осуществления передатчика 36 давления. Передатчик 36 давления включает в себя модуль 52 датчика и плату 72 электроники, связанные вместе через шину данных 66. Электроника 60 модуля датчика связывает с датчиком 56 давления, который принимает приложенное дифференциальное давление 54. Информационное соединение 58 связывает датчик 56 с аналого-цифровым преобразователем 62. Необязательный термодатчик 63 также иллюстрируется наряду с запоминающим устройством 64 модуля датчика. Плата 72 электроники включает в себя микрокомпьютерную систему 74, запоминающее устройство 76 модуля электроники, цифроаналоговое преобразование 78 сигнала и блок 80 цифровой связи. Выход обеспечивается на контуре 38 относящимся к воспринятому давлению. Фиг.2 также схематично иллюстрирует внешний емкостный датчик деформации 59, который размещается внешне по отношению к корпусу датчика 56 давления и выполнен с возможностью обеспечивать емкостную величину. Датчик 59 выполнен с возможностью иметь емкостную величину, которая изменяется в ответ на деформацию корпуса датчика 56 давления вследствие приложенного давления. Как схематично проиллюстрировано на Фиг.2, давление в линии прикладывается к корпусу датчика 56 давления вследствие приложения давления 54.
В соответствии со способами, изложенными в патенте США № 6295875, выданном Frick и др., передатчик 36 давления измеряет дифференциальное давление. Однако настоящее изобретение не ограничивается такой конфигурацией.
На Фиг.3 показан упрощенный вид поперечного сечения для одного варианта осуществления модуля датчика 52, показывающий датчик 56 давления. Датчик 56 давления взаимодействует с технологической текучей средой через изолирующие диафрагмы 90, которые изолируют технологическую текучую среду от полостей 92. Полости 92 взаимодействуют с модулем 56 датчика давления через капиллярные трубки 94. По существу несжимаемая заполняющая текучая среда заполняет полости 92 и капиллярные трубки 94. Когда давление от технологической текучей среды прикладывается к диафрагмам 90, оно передается на датчик 56 давления.
Согласно одному варианту осуществления, датчик 56 давления образован из двух половин 114 и 116 датчика давления и заполнен по существу несжимаемым сплошным материалом 105, таким как стекло или керамика. Центральная диафрагма 106 расположена внутри полости 132, 134, сформированной внутри датчика 56. Внешняя стенка полости 132, 134 несет электроды 144, 146, 148 и 150. Эти электроды обычно именуются первичными электродами 144 и 148 и вторичными электродами 146 и 150. Эти электроды образуют конденсаторы по отношению к подвижной диафрагме 106. Конденсаторы опять именуются первичными и вторичными конденсаторами, соответственно.
Как проиллюстрировано на Фиг.3, различные электроды в датчике 56 соединяются с аналого-цифровым преобразователем 62 по электрическому соединению 103, 104, 108 и 110. Дополнительно, изгибаемая диафрагма 106 соединяется с аналого-цифровым преобразователем 62 через соединение 109.
Как описано в патенте США № 6295875, дифференциальное давление, приложенное к датчику 56, можно измерять, используя электроды 144, 146, 148 и 150. Как обсуждено ниже, на Фиг.3 схематично иллюстрируется емкостный передатчик 56 дифференциального давления, который описан ниже более подробно.
В действии, давления P1 и P2 прижимают изолирующую диафрагму 90, посредством этого нажимая по существу на несжимаемую заполняющую текучую среды, которая заполняет полость между центральной диафрагмой 106 и изолирующей диафрагмой 90. Это заставляет центральную диафрагму 106 изгибаться, приводя к изменению емкости между диафрагмой 106 и электродами 146, 144, 148, и 150. Используя известные способы, изменения в этих емкостях можно измерять и использовать, чтобы определить дифференциальное давление.
На Фиг.4 показан упрощенный вид поперечного сечения датчика 56, используемый для иллюстрации действия по настоящему изобретению. Фиг.4 иллюстрирует различные электрические соединения с электродами 144, 146, 148, и 150.
В течение действия датчика 56 давления, давление в линии, приложенное к датчику давления через капиллярные трубки 94 (см. Фиг.3), вызывает деформацию в корпусе 220 датчика 56 давления. Хотя оба давления P1 и P2 вызывают деформацию датчика. Датчик будет основываться на трех различных условиях. Высокое давление до элемента (точки измерения) и низкое давление после элемента, и низкое давление до элемента и высокое давление после элемента и высокое давление до элемента с высоким давлением после элемента. Датчик будет измерять давление в линии, определенное в виде максимального из давления после элемента или до элемента. Приложенное давление в линии вызывает разность давлений между давлением внутри корпуса 220 и внутренней среды передатчика давления. Этот перепад давлений вызывает деформацию в корпусе 220. В примере, приведенном на Фиг.4, показана значительно преувеличенная деформация. Конкретно, приложенное давление в линии вызывает «выпучивание» наружу наружных стенок 200 и 202 корпуса 220 до позиций, показанных пунктиром в 200' и 202'.
Настоящее изобретение обеспечивает способ измерения давления в линии на основании деформирования, или изгиба, вдоль края датчика 56 давления. Этот изгиб иллюстрируется пунктирными линиями, помеченными 200' и 202'. Около центрального конца датчика 56 величина перемещения иллюстрируется в виде Δd1. Как показано на Фиг.4, перемещение около центра датчика 56 Δd1 больше перемещения около края Δd2. Давление в линии относится к и Δd1, и Δd2, а также относительному измерению, такому как Δd1-Δd2 или Δd1/Δd2.
Фиг.5 представляет упрощенный вид поперечного сечения датчика 56, иллюстрирующий один способ для измерения перемещения Δd1 или Δd2. В примерном варианте осуществления по Фиг.5 осуществляется мониторинг перемещений путем помещения кольцевых емкостных электродов 240 и 242 очень близко к одному концу датчика 56. Электроды 240, 242 выполняются на изолированной несущей пластине 244, поддерживаемой держателем 248. В одной конфигурации держатель 248 содержит трубку или подобное. Держатель 248 может прикрепляться по непрерывной линии (постоянно), или в точках, к датчику 56 и изолированной несущей пластине 244. В другой примерной конфигурации держатель 248 содержит множественные держатели или имеет форму, которая не проходит непрерывно вдоль внешней окружности датчика 56. В другой примерной конфигурации изолированная несущая пластина 244 монтируется к капиллярной трубке 94 с использованием связующего вещества 250. Такая конфигурация может необязательно включать в себя держатель 248. В такой конфигурации, изолирующая несущая пластина 244 может или не может крепиться к держателю 248. Предпочтительно, держатель пластины 244 сконфигурирован, чтобы либо испытывать небольшое деформирование в ответ на давление в линии или деформироваться способом, который вносит вклад в Δd1 и/или Δd2, чтобы посредством этого повысить чувствительность устройства.
Обеспечиваются электрические соединения к электродам 240 и 242 и могут использоваться для измерения емкостей C1 и C2, которые образуются по отношению к корпусу 220 датчика.
Номинальное расстояние d0 между электродами 240 и 242 и датчиком может регулироваться при монтаже изолированной несущей пластины 244 относительно корпуса 220 датчика. Диэлектрическим материалом между электродами 240, 242 и корпусом датчика может быть окружающий газ, который окружает датчик 56, например азот. В одном предпочтительном варианте осуществления конденсаторы C1 и C2 имеют одинаковую величину (то есть, C1=C2) в исходном положении. В такой конфигурации номинальные изменения расстояния d0 или диэлектрической константы газа не влияют на разность между C1 и C2, поскольку в состоянии покоя C1-C2=0. Несколько улучшенную избыточность можно получить, помещая емкостные датчики на обеих сторонах датчика 56. В одной конфигурации термодатчик также обеспечивается и используется, чтобы обеспечивать температурную компенсацию по отношению к измерениям давления в линии вследствие изменений емкости C1, C2 на основе температуры. Датчик 59 деформации, иллюстрируемый на Фиг.2, как таковой образуется электродами, показанными на Фиг.5, которые внешне монтируются к корпусу датчика способом, посредством чего их емкость меняется в ответ на деформацию корпуса датчика.
Хотя настоящее изобретение было описано со ссылкой на предпочтительные варианты осуществления, специалисты в данной области техники признают, что могут делаться изменения по форме и деталям без выхода за рамки существа и объема изобретения. Например, корпус датчика и изолированная несущая пластина не обязательно должны иметь круглую форму. Могут использоваться различные способы крепления, чтобы уменьшить напряжение, которое прикладывается к несущей пластине. Как используется в документе, "текучая среда" включает в себя жидкости и газы, или смеси, которые могут включать в себя твердые вещества.
Claims (15)
1. Датчик давления в сборе для измерения давления технологической текучей среды, содержащий:
корпус датчика, имеющий сформированную в нем полость и первое и второе отверстия к полости, сконфигурированные для приложения первого и второго давлений;
диафрагму в полости, отделяющую первое отверстие от второго отверстия, чувствительную к дифференциальному давлению;
первый электрод, смонтированный наружно к корпусу датчика, выполненный с возможностью формировать первую емкость с корпусом датчика, причем первая емкость меняется в ответ на давление в линии технологической текучей среды вследствие деформации корпуса датчика; и
измерительную схему, связанную с электродом, выполненную с возможностью измерять давление в линии на основе первой емкости.
корпус датчика, имеющий сформированную в нем полость и первое и второе отверстия к полости, сконфигурированные для приложения первого и второго давлений;
диафрагму в полости, отделяющую первое отверстие от второго отверстия, чувствительную к дифференциальному давлению;
первый электрод, смонтированный наружно к корпусу датчика, выполненный с возможностью формировать первую емкость с корпусом датчика, причем первая емкость меняется в ответ на давление в линии технологической текучей среды вследствие деформации корпуса датчика; и
измерительную схему, связанную с электродом, выполненную с возможностью измерять давление в линии на основе первой емкости.
2. Датчик по п.1, включающий в себя второй электрод, смонтированный наружно к корпусу датчика, и при этом вторая емкость формируется между вторым смонтированным электродом и корпусом датчика.
3. Датчик по п.1, включающий в себя второй электрод, смонтированный наружно к корпусу датчика, и при этом измерительная схема имеет выход, относящийся к давлению в линии, на основании первой емкости, измеренной с использованием первого электрода, и второй емкости, использующей второй электрод.
4. Датчик по п.1, включающий в себя изоляционную пластину, сконфигурированную для несения электрода.
5. Датчик по п.4, в котором изоляционная пластина монтируется к корпусу датчика.
6. Датчик по п.5, в котором изоляционная пластина монтируется к держателю, который монтируется к корпусу датчика.
7. Датчик по п.4, в котором изоляционная пластина монтируется к капиллярной трубке, связанной с корпусом датчика.
8. Датчик по п.1, включающий в себя датчик дифференциального давления, связанный с диафрагмой, имеющей выход, относящийся к дифференциальному давлению, на основании перемещения диафрагмы внутри полости.
9. Датчик по п.8, в котором выход основывается на переменной емкости, которую образует диафрагма.
10. Датчик по п.1, в котором измерение давления в линии является компенсированным на основе температуры.
11. Передатчик параметров процесса для измерения давления технологической текучей среды, включающий в себя датчик давления по п.1.
12. Способ для измерения дифференциального давления и давления в линии технологической текучей среды, содержащий:
монтаж изгибаемой диафрагмы в полости в корпусе датчика;
приложение первого давления технологической текучей среды к одной стороне изгибаемой диафрагмы в полости;
приложение второго давления технологической текучей среды к другой стороне изгибаемой диафрагмы в полости;
определение дифференциального давления на основании прогиба изгибаемой диафрагмы;
формирование первой емкости с помощью первого электрода, позиционированного наружно к корпусу датчика, первая емкость образуется между электродом и корпусом датчика и имеет емкость, которая изменяется на основании деформации корпуса датчика вследствие давления в линии технологической текучей среды; и
определение давления в линии технологической текучей среды на основании изменений емкости.
монтаж изгибаемой диафрагмы в полости в корпусе датчика;
приложение первого давления технологической текучей среды к одной стороне изгибаемой диафрагмы в полости;
приложение второго давления технологической текучей среды к другой стороне изгибаемой диафрагмы в полости;
определение дифференциального давления на основании прогиба изгибаемой диафрагмы;
формирование первой емкости с помощью первого электрода, позиционированного наружно к корпусу датчика, первая емкость образуется между электродом и корпусом датчика и имеет емкость, которая изменяется на основании деформации корпуса датчика вследствие давления в линии технологической текучей среды; и
определение давления в линии технологической текучей среды на основании изменений емкости.
13. Способ по п.12, включающий в себя обеспечение второго электрода, смонтированного наружно к корпусу датчика, и при этом давление в линии определяется на основании первой емкости, измеренной с использованием первого электрода, и второй емкости, использующей второй электрод.
14. Способ по п.12, включающий в себя определение дифференциального давления путем измерения на основе перемещения диафрагмы внутри полости на основании емкости диафрагмы.
15. Способ по п.12, включающий в себя компенсирование измерения давления в линии на основании температуры.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/796,023 US8234927B2 (en) | 2010-06-08 | 2010-06-08 | Differential pressure sensor with line pressure measurement |
US12/796,023 | 2010-06-08 | ||
PCT/US2011/038688 WO2011156185A1 (en) | 2010-06-08 | 2011-06-01 | Differential pressure sensor with line pressure measurement |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2012157960A RU2012157960A (ru) | 2014-07-20 |
RU2538363C2 true RU2538363C2 (ru) | 2015-01-10 |
Family
ID=44259617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012157960/28A RU2538363C2 (ru) | 2010-06-08 | 2011-06-01 | Датчик дифференциального давления с измерением давления в линии |
Country Status (8)
Country | Link |
---|---|
US (1) | US8234927B2 (ru) |
EP (1) | EP2580565B1 (ru) |
JP (1) | JP5409965B2 (ru) |
CN (3) | CN202182796U (ru) |
CA (1) | CA2804988C (ru) |
MX (1) | MX2012013749A (ru) |
RU (1) | RU2538363C2 (ru) |
WO (1) | WO2011156185A1 (ru) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8234927B2 (en) * | 2010-06-08 | 2012-08-07 | Rosemount Inc. | Differential pressure sensor with line pressure measurement |
US9057659B2 (en) * | 2012-05-22 | 2015-06-16 | Rosemount Inc. | Pressure transmitter with hydrogen getter |
US20140260645A1 (en) * | 2013-03-15 | 2014-09-18 | Kulite Semiconductor Products, Inc. | Differential Sensor Assembly With Both Pressures Applied From One Side |
EP2824438A1 (en) * | 2013-07-12 | 2015-01-14 | Siemens Aktiengesellschaft | Pressure sensor |
KR102240813B1 (ko) * | 2013-09-06 | 2021-04-14 | 일리노이즈 툴 워크스 인코포레이티드 | 절대 압력 및 차압 변환기 |
DE102013113594A1 (de) * | 2013-12-06 | 2015-06-11 | Endress + Hauser Gmbh + Co. Kg | Differenzdrucksensor |
US9316553B2 (en) * | 2014-03-26 | 2016-04-19 | Rosemount Inc. | Span line pressure effect compensation for diaphragm pressure sensor |
DE102014104831A1 (de) * | 2014-04-04 | 2015-10-08 | Endress + Hauser Gmbh + Co. Kg | Differenzdrucksensor |
US10635064B2 (en) | 2014-06-30 | 2020-04-28 | Rosemount Inc. | Hysteretic process variable sensor compensation |
DE102014109491A1 (de) * | 2014-07-08 | 2016-02-11 | Endress + Hauser Gmbh + Co. Kg | Differenzdruckmesszelle |
CN104574796B (zh) * | 2015-02-03 | 2016-11-23 | 浙江三锋实业股份有限公司 | 一种链锯的供油监测报警系统 |
US10386001B2 (en) * | 2015-03-30 | 2019-08-20 | Rosemount Inc. | Multiple field device flange |
EP3112830B1 (en) | 2015-07-01 | 2018-08-22 | Sensata Technologies, Inc. | Temperature sensor and method for the production of a temperature sensor |
US20200204926A1 (en) * | 2015-08-18 | 2020-06-25 | Wizedsp Ltd. | Ultra-low distortion microphone buffer |
US9638559B1 (en) | 2016-02-10 | 2017-05-02 | Sensata Technologies Inc. | System, devices and methods for measuring differential and absolute pressure utilizing two MEMS sense elements |
US10428716B2 (en) | 2016-12-20 | 2019-10-01 | Sensata Technologies, Inc. | High-temperature exhaust sensor |
US10502641B2 (en) | 2017-05-18 | 2019-12-10 | Sensata Technologies, Inc. | Floating conductor housing |
US11371899B2 (en) | 2018-05-17 | 2022-06-28 | Rosemount Inc. | Measuring element with an extended permeation resistant layer |
US11480488B2 (en) | 2018-09-28 | 2022-10-25 | Rosemount Inc. | Industrial process transmitter with radiation shield |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3820878A1 (de) * | 1988-06-21 | 1989-12-28 | Wolfgang Dipl Phys Scholl | Kapazitives sensorelement zum aufbau mechanisch-elektrischer messwandler |
EP1418413A2 (en) * | 1999-05-14 | 2004-05-12 | Rosemount Inc. | Process pressure measurement devices with improved error compensation |
WO2006130425A1 (en) * | 2005-05-27 | 2006-12-07 | Rosemount Inc. | Line pressure measurement using differential pressure sensor |
Family Cites Families (109)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2533339A (en) | 1946-06-22 | 1950-12-12 | Jabez Burns & Sons Inc | Flammable vapor protection |
US3012432A (en) | 1957-09-23 | 1961-12-12 | Richard H Moore | Leak tester |
GB1023042A (en) | 1962-05-07 | 1966-03-16 | Wayne Kerr Lab Ltd | Improvements in or relating to pressure responsive apparatus |
US3232712A (en) | 1962-08-16 | 1966-02-01 | Continental Lab Inc | Gas detector and analyzer |
US3374112A (en) | 1964-03-05 | 1968-03-19 | Yeda Res & Dev | Method and apparatus for controlled deposition of a thin conductive layer |
US3249833A (en) | 1964-11-16 | 1966-05-03 | Robert E Vosteen | Capacitor transducer |
FR1438366A (fr) | 1965-03-22 | 1966-05-13 | B A R A | Appareil de mesure de force ou pression |
DE1932899A1 (de) | 1969-06-28 | 1971-01-07 | Rohrbach Dr Christof | Messwertgeber zum Umwandeln von Kraeften,mechanischen Spannungen oder Druecken in elektrische Widerstandsaenderungen |
US3557621A (en) | 1969-07-07 | 1971-01-26 | C G S Scient Corp Inc | Variable capacitance detecting devices |
US3618390A (en) | 1969-10-27 | 1971-11-09 | Rosemount Eng Co Ltd | Differential pressure transducer |
GB1354025A (en) | 1970-05-25 | 1974-06-05 | Medicor Muevek | Capacitive pressure transducer |
US3924219A (en) | 1971-12-22 | 1975-12-02 | Minnesota Mining & Mfg | Gas detection device |
US3808480A (en) | 1973-04-16 | 1974-04-30 | Bunker Ramo | Capacitive pressure transducer |
US4008619A (en) | 1975-11-17 | 1977-02-22 | Mks Instruments, Inc. | Vacuum monitoring |
US4177496A (en) | 1976-03-12 | 1979-12-04 | Kavlico Corporation | Capacitive pressure transducer |
US4158217A (en) | 1976-12-02 | 1979-06-12 | Kaylico Corporation | Capacitive pressure transducer with improved electrode |
US4120206A (en) | 1977-01-17 | 1978-10-17 | Rosemount Inc. | Differential pressure sensor capsule with low acceleration sensitivity |
US4168518A (en) | 1977-05-10 | 1979-09-18 | Lee Shih Y | Capacitor transducer |
US4172387A (en) * | 1978-06-05 | 1979-10-30 | The Foxboro Company | Pressure responsive apparatus |
US4227419A (en) | 1979-09-04 | 1980-10-14 | Kavlico Corporation | Capacitive pressure transducer |
US4244226A (en) | 1979-10-04 | 1981-01-13 | Honeywell Inc. | Distance measuring apparatus and a differential pressure transmitter utilizing the same |
US4322775A (en) | 1979-10-29 | 1982-03-30 | Delatorre Leroy C | Capacitive pressure sensor |
US4434451A (en) | 1979-10-29 | 1984-02-28 | Delatorre Leroy C | Pressure sensors |
US4287553A (en) | 1980-06-06 | 1981-09-01 | The Bendix Corporation | Capacitive pressure transducer |
US4336567A (en) | 1980-06-30 | 1982-06-22 | The Bendix Corporation | Differential pressure transducer |
US4370890A (en) | 1980-10-06 | 1983-02-01 | Rosemount Inc. | Capacitive pressure transducer with isolated sensing diaphragm |
US4358814A (en) | 1980-10-27 | 1982-11-09 | Setra Systems, Inc. | Capacitive pressure sensor |
US4422335A (en) | 1981-03-25 | 1983-12-27 | The Bendix Corporation | Pressure transducer |
US4458537A (en) | 1981-05-11 | 1984-07-10 | Combustion Engineering, Inc. | High accuracy differential pressure capacitive transducer |
US4389895A (en) | 1981-07-27 | 1983-06-28 | Rosemount Inc. | Capacitance pressure sensor |
US4466290A (en) | 1981-11-27 | 1984-08-21 | Rosemount Inc. | Apparatus for conveying fluid pressures to a differential pressure transducer |
US4455874A (en) | 1981-12-28 | 1984-06-26 | Paroscientific, Inc. | Digital pressure transducer |
US4422125A (en) | 1982-05-21 | 1983-12-20 | The Bendix Corporation | Pressure transducer with an invariable reference capacitor |
US4586382A (en) | 1982-09-29 | 1986-05-06 | Schlumberger Technology Corporation | Surface acoustic wave sensors |
CH658726A5 (de) | 1983-01-31 | 1986-11-28 | Standard St Sensortechnik Ag | Hydraulischer druckaufnehmer. |
DE3340834A1 (de) | 1983-11-11 | 1985-05-23 | Philips Patentverwaltung Gmbh, 2000 Hamburg | Schaltungsanordnung zur konstanthaltung der temperaturabhaengigen empfindlichkeit eines differenzdruckmessgeraetes |
US4739666A (en) | 1983-12-12 | 1988-04-26 | Pfister Gmbh | Flat-spread force measuring device |
US4490773A (en) | 1983-12-19 | 1984-12-25 | United Technologies Corporation | Capacitive pressure transducer |
JPS60133320A (ja) | 1983-12-22 | 1985-07-16 | Ishida Scales Mfg Co Ltd | 荷重検出器 |
US4542436A (en) | 1984-04-10 | 1985-09-17 | Johnson Service Company | Linearized capacitive pressure transducer |
US4562742A (en) | 1984-08-07 | 1986-01-07 | Bell Microcomponents, Inc. | Capacitive pressure transducer |
US4586108A (en) | 1984-10-12 | 1986-04-29 | Rosemount Inc. | Circuit for capacitive sensor made of brittle material |
US4670733A (en) | 1985-07-01 | 1987-06-02 | Bell Microsensors, Inc. | Differential pressure transducer |
US4860232A (en) | 1987-04-22 | 1989-08-22 | Massachusetts Institute Of Technology | Digital technique for precise measurement of variable capacitance |
US4785669A (en) | 1987-05-18 | 1988-11-22 | Mks Instruments, Inc. | Absolute capacitance manometers |
US4864874A (en) | 1987-08-05 | 1989-09-12 | Pfister Gmbh | Force measuring device |
US4875369A (en) | 1987-09-08 | 1989-10-24 | Panex Corporation | Pressure sensor system |
JPH01141328A (ja) | 1987-11-27 | 1989-06-02 | Hitachi Ltd | 差圧伝送器 |
US4878012A (en) | 1988-06-10 | 1989-10-31 | Rosemount Inc. | Charge balanced feedback transmitter |
US4977480A (en) | 1988-09-14 | 1990-12-11 | Fuji Koki Mfg. Co., Ltd. | Variable-capacitance type sensor and variable-capacitance type sensor system using the same |
US4926674A (en) | 1988-11-03 | 1990-05-22 | Innovex Inc. | Self-zeroing pressure signal generator |
US4951174A (en) | 1988-12-30 | 1990-08-21 | United Technologies Corporation | Capacitive pressure sensor with third encircling plate |
US5144841A (en) | 1990-02-23 | 1992-09-08 | Texas Instruments Incorporated | Device for measuring pressures and forces |
JPH03255327A (ja) * | 1990-03-03 | 1991-11-14 | Fuji Electric Co Ltd | 差圧検出器 |
US5194819A (en) | 1990-08-10 | 1993-03-16 | Setra Systems, Inc. | Linearized capacitance sensor system |
US5094109A (en) | 1990-12-06 | 1992-03-10 | Rosemount Inc. | Pressure transmitter with stress isolation depression |
DE59108490D1 (de) | 1991-01-31 | 1997-02-27 | Pfister Messtechnik | Übertragungselement für Kraft- oder Momentmessvorrichtungen |
US5163326A (en) * | 1991-03-08 | 1992-11-17 | Rosemount Inc. | Line pressure compensator for a pressure transducer |
JP2595829B2 (ja) * | 1991-04-22 | 1997-04-02 | 株式会社日立製作所 | 差圧センサ、及び複合機能形差圧センサ |
US5168419A (en) | 1991-07-16 | 1992-12-01 | Panex Corporation | Capacitor and pressure transducer |
DE4124662A1 (de) | 1991-07-25 | 1993-01-28 | Fibronix Sensoren Gmbh | Relativdrucksensor |
US5230250A (en) | 1991-09-03 | 1993-07-27 | Delatorre Leroy C | Capacitor and pressure transducer |
JP3182807B2 (ja) | 1991-09-20 | 2001-07-03 | 株式会社日立製作所 | 多機能流体計測伝送装置及びそれを用いた流体量計測制御システム |
GB9121581D0 (en) | 1991-10-11 | 1991-11-27 | Caradon Everest Ltd | Fire resistant glass |
JPH05296867A (ja) | 1992-04-23 | 1993-11-12 | Hitachi Ltd | 差圧伝送器 |
US5233875A (en) | 1992-05-04 | 1993-08-10 | Kavlico Corporation | Stable capacitive pressure transducer system |
US5329818A (en) | 1992-05-28 | 1994-07-19 | Rosemount Inc. | Correction of a pressure indication in a pressure transducer due to variations of an environmental condition |
US5492016A (en) | 1992-06-15 | 1996-02-20 | Industrial Sensors, Inc. | Capacitive melt pressure measurement with center-mounted electrode post |
US5471882A (en) | 1993-08-31 | 1995-12-05 | Quartzdyne, Inc. | Quartz thickness-shear mode resonator temperature-compensated pressure transducer with matching thermal time constants of pressure and temperature sensors |
WO1995008759A1 (en) | 1993-09-24 | 1995-03-30 | Rosemount Inc. | Pressure transmitter isolation diaphragm |
US5542300A (en) | 1994-01-24 | 1996-08-06 | Setra Systems, Inc. | Low cost, center-mounted capacitive pressure sensor |
US5642301A (en) | 1994-01-25 | 1997-06-24 | Rosemount Inc. | Transmitter with improved compensation |
US5583294A (en) * | 1994-08-22 | 1996-12-10 | The Foxboro Company | Differential pressure transmitter having an integral flame arresting body and overrange diaphragm |
AU4110596A (en) | 1994-11-30 | 1996-06-19 | Rosemount Inc. | Pressure transmitter with fill fluid loss detection |
US6484585B1 (en) | 1995-02-28 | 2002-11-26 | Rosemount Inc. | Pressure sensor for a pressure transmitter |
US5637802A (en) | 1995-02-28 | 1997-06-10 | Rosemount Inc. | Capacitive pressure sensor for a pressure transmitted where electric field emanates substantially from back sides of plates |
US5705978A (en) | 1995-09-29 | 1998-01-06 | Rosemount Inc. | Process control transmitter |
US5992240A (en) | 1995-11-21 | 1999-11-30 | Fuji Electric Co., Ltd. | Pressure detecting apparatus for measuring pressure based on detected capacitance |
US5757608A (en) | 1996-01-25 | 1998-05-26 | Alliedsignal Inc. | Compensated pressure transducer |
US6654697B1 (en) | 1996-03-28 | 2003-11-25 | Rosemount Inc. | Flow measurement with diagnostics |
US5668322A (en) | 1996-06-13 | 1997-09-16 | Rosemount Inc. | Apparatus for coupling a transmitter to process fluid having a sensor extension selectively positionable at a plurality of angles |
US20040015069A1 (en) | 1996-12-27 | 2004-01-22 | Brown David Lloyd | System for locating inflamed plaque in a vessel |
US5911162A (en) | 1997-06-20 | 1999-06-08 | Mks Instruments, Inc. | Capacitive pressure transducer with improved electrode support |
WO1999053286A1 (de) | 1998-04-09 | 1999-10-21 | Ploechinger Heinz | Kapazitive druck- oder kraftsensorstruktur und verfahren zur herstellung derselben |
US6003219A (en) | 1998-04-24 | 1999-12-21 | Rosemount Inc. | Method of making a pressure transmitter having pressure sensor having cohered surfaces |
US6701274B1 (en) | 1999-08-27 | 2004-03-02 | Rosemount Inc. | Prediction of error magnitude in a pressure transmitter |
US6520020B1 (en) | 2000-01-06 | 2003-02-18 | Rosemount Inc. | Method and apparatus for a direct bonded isolated pressure sensor |
US6662662B1 (en) | 2000-05-04 | 2003-12-16 | Rosemount, Inc. | Pressure transmitter with improved isolator system |
DE10117142A1 (de) * | 2001-04-05 | 2002-10-10 | Endress & Hauser Gmbh & Co Kg | Kapazitiver Differenz-Drucksensor |
US6516672B2 (en) | 2001-05-21 | 2003-02-11 | Rosemount Inc. | Sigma-delta analog to digital converter for capacitive pressure sensor and process transmitter |
US6675655B2 (en) | 2002-03-21 | 2004-01-13 | Rosemount Inc. | Pressure transmitter with process coupling |
AU2003287644A1 (en) | 2002-11-12 | 2004-06-03 | Cidra Corporation | An apparatus having an array of clamp on piezoelectric film sensors for measuring parameters of a process flow within a pipe |
US7197942B2 (en) | 2003-06-05 | 2007-04-03 | Cidra Corporation | Apparatus for measuring velocity and flow rate of a fluid having a non-negligible axial mach number using an array of sensors |
JP4624351B2 (ja) | 2003-07-18 | 2011-02-02 | ローズマウント インコーポレイテッド | プロセス診断法 |
US7215529B2 (en) | 2003-08-19 | 2007-05-08 | Schlegel Corporation | Capacitive sensor having flexible polymeric conductors |
JP2005069705A (ja) * | 2003-08-26 | 2005-03-17 | Fuji Electric Systems Co Ltd | 差圧・圧力検出器 |
US6901803B2 (en) * | 2003-10-02 | 2005-06-07 | Rosemount Inc. | Pressure module |
US7523667B2 (en) | 2003-12-23 | 2009-04-28 | Rosemount Inc. | Diagnostics of impulse piping in an industrial process |
US7577543B2 (en) | 2005-03-11 | 2009-08-18 | Honeywell International Inc. | Plugged impulse line detection |
US7401522B2 (en) | 2005-05-26 | 2008-07-22 | Rosemount Inc. | Pressure sensor using compressible sensor body |
US7379792B2 (en) * | 2005-09-29 | 2008-05-27 | Rosemount Inc. | Pressure transmitter with acoustic pressure sensor |
US7543501B2 (en) | 2005-10-27 | 2009-06-09 | Advanced Research Corporation | Self-calibrating pressure sensor |
US7467555B2 (en) * | 2006-07-10 | 2008-12-23 | Rosemount Inc. | Pressure transmitter with multiple reference pressure sensors |
US7624642B2 (en) * | 2007-09-20 | 2009-12-01 | Rosemount Inc. | Differential pressure sensor isolation in a process fluid pressure transmitter |
US7484416B1 (en) | 2007-10-15 | 2009-02-03 | Rosemount Inc. | Process control transmitter with vibration sensor |
US7779698B2 (en) * | 2007-11-08 | 2010-08-24 | Rosemount Inc. | Pressure sensor |
US7954383B2 (en) * | 2008-12-03 | 2011-06-07 | Rosemount Inc. | Method and apparatus for pressure measurement using fill tube |
US8429978B2 (en) * | 2010-03-30 | 2013-04-30 | Rosemount Inc. | Resonant frequency based pressure sensor |
US8234927B2 (en) * | 2010-06-08 | 2012-08-07 | Rosemount Inc. | Differential pressure sensor with line pressure measurement |
-
2010
- 2010-06-08 US US12/796,023 patent/US8234927B2/en active Active
-
2011
- 2011-04-14 CN CN201120112983XU patent/CN202182796U/zh not_active Expired - Lifetime
- 2011-04-14 CN CN201110097585XA patent/CN102279075A/zh active Pending
- 2011-04-14 CN CN201510547488.4A patent/CN105181224B/zh active Active
- 2011-06-01 JP JP2013514216A patent/JP5409965B2/ja active Active
- 2011-06-01 MX MX2012013749A patent/MX2012013749A/es active IP Right Grant
- 2011-06-01 CA CA2804988A patent/CA2804988C/en not_active Expired - Fee Related
- 2011-06-01 RU RU2012157960/28A patent/RU2538363C2/ru not_active IP Right Cessation
- 2011-06-01 WO PCT/US2011/038688 patent/WO2011156185A1/en active Application Filing
- 2011-06-01 EP EP11725284.1A patent/EP2580565B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3820878A1 (de) * | 1988-06-21 | 1989-12-28 | Wolfgang Dipl Phys Scholl | Kapazitives sensorelement zum aufbau mechanisch-elektrischer messwandler |
EP1418413A2 (en) * | 1999-05-14 | 2004-05-12 | Rosemount Inc. | Process pressure measurement devices with improved error compensation |
WO2006130425A1 (en) * | 2005-05-27 | 2006-12-07 | Rosemount Inc. | Line pressure measurement using differential pressure sensor |
Also Published As
Publication number | Publication date |
---|---|
US20110296926A1 (en) | 2011-12-08 |
CA2804988C (en) | 2016-01-12 |
CN105181224B (zh) | 2018-09-11 |
CN202182796U (zh) | 2012-04-04 |
EP2580565B1 (en) | 2019-03-27 |
CN102279075A (zh) | 2011-12-14 |
JP5409965B2 (ja) | 2014-02-05 |
JP2013531791A (ja) | 2013-08-08 |
RU2012157960A (ru) | 2014-07-20 |
EP2580565A1 (en) | 2013-04-17 |
MX2012013749A (es) | 2013-02-12 |
US8234927B2 (en) | 2012-08-07 |
WO2011156185A1 (en) | 2011-12-15 |
CA2804988A1 (en) | 2011-12-15 |
CN105181224A (zh) | 2015-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2538363C2 (ru) | Датчик дифференциального давления с измерением давления в линии | |
JP5416967B2 (ja) | 圧力センサアセンブリ、圧力センサおよびライン圧力測定方法 | |
EP2593766B1 (en) | Differential pressure transmitter with complimentary dual absolute pressure sensors | |
EP2761264B1 (en) | Process fluid pressure transmitter with separated sensor and sensor electronics | |
US9316553B2 (en) | Span line pressure effect compensation for diaphragm pressure sensor | |
EP1974195B1 (en) | Pressure sensor with deflectable diaphragm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20200602 |