RU2536988C2 - Реактор анаэробной переработки биомассы - Google Patents
Реактор анаэробной переработки биомассы Download PDFInfo
- Publication number
- RU2536988C2 RU2536988C2 RU2013107920/05A RU2013107920A RU2536988C2 RU 2536988 C2 RU2536988 C2 RU 2536988C2 RU 2013107920/05 A RU2013107920/05 A RU 2013107920/05A RU 2013107920 A RU2013107920 A RU 2013107920A RU 2536988 C2 RU2536988 C2 RU 2536988C2
- Authority
- RU
- Russia
- Prior art keywords
- biomass
- reactor
- fermentation
- sections
- section
- Prior art date
Links
- 239000002028 Biomass Substances 0.000 title claims abstract description 34
- 230000029087 digestion Effects 0.000 title abstract 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 44
- 238000005192 partition Methods 0.000 claims abstract description 28
- 238000000855 fermentation Methods 0.000 claims abstract description 27
- 230000004151 fermentation Effects 0.000 claims abstract description 27
- 238000012545 processing Methods 0.000 claims abstract description 17
- 230000002378 acidificating effect Effects 0.000 claims abstract description 9
- 230000007935 neutral effect Effects 0.000 claims abstract description 8
- 239000002253 acid Substances 0.000 claims abstract description 6
- 239000012491 analyte Substances 0.000 claims abstract 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 241000894006 Bacteria Species 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 11
- 239000007788 liquid Substances 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 238000005276 aerator Methods 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 239000002657 fibrous material Substances 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 239000003895 organic fertilizer Substances 0.000 claims description 3
- 230000008707 rearrangement Effects 0.000 claims 1
- 230000008859 change Effects 0.000 abstract description 5
- 210000003608 fece Anatomy 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 4
- 239000003337 fertilizer Substances 0.000 abstract description 4
- 239000010871 livestock manure Substances 0.000 abstract description 4
- 241001465754 Metazoa Species 0.000 abstract description 2
- 239000002154 agricultural waste Substances 0.000 abstract description 2
- 239000003513 alkali Substances 0.000 abstract description 2
- 239000010791 domestic waste Substances 0.000 abstract 1
- 244000144977 poultry Species 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 238000009434 installation Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- -1 hydrogen ions Chemical class 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000013049 sediment Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 241000283690 Bos taurus Species 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000010815 organic waste Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 241000271566 Aves Species 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000008236 heating water Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000010819 recyclable waste Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/20—Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Processing Of Solid Wastes (AREA)
- Fertilizers (AREA)
- Treatment Of Sludge (AREA)
Abstract
Изобретение относится к биоэнергетике и может быть использовано качестве универсального метантенка для переработки навоза животных, птиц, бытовых и сельскохозяйственных отходов в метан и в органическое удобрение. Реактор анаэробной переработки биомассы содержит корпус 1 в виде герметично закрытой емкости, включающей четыре секции: подготовительную (кислую) 2, нейтрального 3, щелочного 4 и метанового брожения 5, разделенные вертикальными перегородками 6, 7, 8. Реактор дополнительно оснащен диафрагменным электролизером 12, один выход 18 которого с раствором аналита подключен к секции кислого брожения 2, а другой его выход 21 с раствором католита соединен с секциями нейтрального 3 и щелочного брожения 4. В корпусе 1 реактора по его длине выполнены дополнительные узлы 11 крепления вертикальных перегородок 6, 7, 8, выполненных с возможностью перестановки с изменением объемов секций брожения. Изобретение позволяет увеличить эффективность реактора анаэробной переработки биомассы. 5 з.п. ф-лы, 1 ил.
Description
Предлагаемое изобретение относится к биоэнергетике и может быть использовано в качестве универсального метантенка для переработки в метан и в органическое удобрение навоза животных, птиц, бытовых и других сельскохозяйственных отходов.
Известны устройства аналогичного назначения [1, 2, 3, 4], например «Способ приготовления органических удобрений» по авторскому свидетельству №433114, «Метантенк» по авторскому свидетельству №1353753, «Метановый биокультиватор» по патенту №2093567, «Комплекс по переработке и обезвреживанию отходов» по патенту №2162380 и др.
Данные устройства содержат корпус матантенка, разделенный на секции, нагреватели биомассы, системы подачи сырья и удаления готового продукта, систему перемешивания осадка в метантенках и систему отвода газа.
Перечисленные выше устройства имеют разное конструктивное оформление, но не являются универсальными и предназначены, как правило, для переработки одного какого-либо вида отходов.
Например, птичий помет и спиртовая барда не перерабатываются в биогаз в обычном реакторе-ферментаторе и в него требуется дополнительно устанавливать реактор гидролиза, чтобы управлять уровнем кислотности, иначе бактерии могут погибнуть из-за повышенного содержания кислот или щелочей. Управление балансом «кислота-щелочь» также позволяет увеличить выход метана.
Подобные нововведения в перечисленных аналогах отсутствуют.
Наиболее близким по сути техническим решением (прототипом) является «Способ анаэробной переработки органических отходов и установка для его осуществления» [5] по патенту РФ №2315721.
Данная установка содержит анаэробный биореактор с нагревателем биомассы, систему подачи исходного сырья, систему удаления биогаза, систему удаления жидкого органического удобрения, систему управления процессом, причем биореактор разделен перегородками на четыре секции брожения, введена система подготовки исходного сырья с устройством измельчения, подогрева и смешения с переброженным шламом, а также устройство интенсивного перемешивания биомассы внутри анаэробного реактора.
Недостатком этой установки является ее сложность, что снижает надежность работы установки и увеличивает себестоимость. В данном устройстве не предусмотрено взаимное изменение объемов секций брожения в зависимости от видов сырья, что снижает его эффективность, в том числе и в связи с переходом с одного режима сбраживания на другой. В работе [6] на стр.6 указывается целесообразный объем реактора в зависимости от количества навоза, получаемого от крупного рогатого скота, свиней, лошадей или кур.
Кроме того, в работе [7] на стр.21 также подтверждается мнение, что «… ввиду разнообразия перерабатываемых отходов и других факторов в настоящее время нельзя ограничиваться одной или несколькими конструкциями метантенков …».
Другим недостатком прототипа является невозможность управления в нем балансом «кислота-щелочь» в соответствующих секциях метантенка, что не позволяет оптимально влиять на выход биогаза.
Также недостатком прототипа является использование насосов для интенсивного перемешивания биомассы с целью выравнивания температуры в биореакторе. В работе [7], стр.21 указано: «… Максимальное выделение метана обнаружено при весьма низкой интенсивности перемешивания, обеспечивающей лишь гомогенизацию бродящей жидкости… Таким образом, основной задачей перемешивания является предотвращение оседания материала, разрушение верхней корки, десорбция биогаза и обеспечение гомогенности культуральной жидкости по физико-химическим параметрам; прямого влияния перемешивания на интенсивность метанового брожения через механизмы массопередачи в наших экспериментах обнаружить не удалось». В других работах также подтверждается, что интенсивное перемешивание биомассы разрушает уже сложившееся кластеры метановых бактерий и ухудшает их адгезию к внутренним поверхностям метантенка.
Задачей настоящего изобретения является устранение указанных недостатков.
Технический результат предлагаемого решения заключается в следующем:
- увеличение эффективности реактора за счет использования диафрагменного электрохимического электролизера и управления баланса «кислота-щелочь» путем ускорения создания в соответствующих секциях оптимального для них кислого, нейтрального, щелочного или метанового брожения. Кроме того, увеличение эффективности реактора достигается за счет создания оптимального соотношения объемов секций реактора путем переустановки перегородок внутри метантенка под конкретные виды сырья и условия сбраживания. Например, ОАО «Агромед» рекомендует при использовании навоза крупного рогатого скота соотношение объемов секций гидролиза - кислого брожения - метанообразования как 1:2:4. Для другого типа сырья соотношение объемов камер изменится;
- увеличение эффективности за счет выполнения перегородок из эластичных токопроводящих материалов, подключенных к низковольтному источнику тока, что позволяет создать на их поверхности оптимальную температуру для адгезии и размножения метановых бактерий, а также прогревать слой сбраживаемой биомассы по высоте реактора, не увеличивая интенсивность работы мешалок;
- увеличение эффективности реактора за счет размещения внутри секций подвешенных мелкоячеистых сеток из волокнистого материала, иммобилизирующих на своих поверхностях соответствующий данной секции класс бактерий;
- увеличение эффективности реактора за счет выполнения мелкоячеистой сетки из токопроводящего графитового войлока, подключенного к источнику питания, что позволяет дополнительно нагревать биомассу и улучшать иммобилизацию бактерий на их поверхности;
- увеличение эффективности реактора за счет ввода в подготовительную (кислую) секцию воздушного аэратора жидкости и ввода части отсепарированной от твердого осадка жидкости из секции метанового брожения;
- увеличение эффективности реактора за счет использования дополнительного теплообменника, две теплообменные поверхности которого подключены к выходу твердого осадка и к выходу биогаза, обладающих накопленной теплотой, а третья теплообменная поверхность - ко входу добавочной воды из магистрали, что позволяет экономить энергию на нагрев ее до требуемой температуры.
В результате поиска по источникам патентной и научно-технической информации, совокупность признаков, характеризующая описываемый «Реактор анаэробной переработки биомассы», нами не обнаружена.
Таким образом, предлагаемое техническое решение соответствует критерию «новое».
На основании сравнительного анализа предложенного решения с известным уровнем техники можно утверждать, что между совокупностью отличительных признаков, выполняемых ими функций и достигаемой задачи, предложенное техническое решение не следует явным образом из уровня техники и соответствует, по нашему мнению, критерию охраноспособности «изобретательский уровень».
Предложенное техническое решение может найти применение в качестве универсального метантенка для сбраживания различной биомассы.
На чертеже в разрезе изображена конструкция «Реактора анаэробной переработки биомассы».
Реактор содержит термостатированный корпус 1 с секциями 2, 3, 4, 5 соответственно: подготовительного (кислого), нейтрального, щелочного и метанового брожения, разделенных перегородками 6, 7, 8, причем конструктивно жесткая перегородка 6 утеплена, например, графитированным войлоком [8, 9], чтобы более низкая температура секции 2 при загрузке ее новой порцией биомассы не дестабилизировала установившуюся оптимальную температуру в соседней секции 3. Перегородки 7 и 8 могут быть также выполнены виде жестких плоскостей, покрытых токопроводящей углеродной тканью, либо могут быть изготовлены из эластичной токопроводящей углеродной ткани [8, 9, 11] типа ВВКН-46-110 по ТУ 3497-005-11590737 или же жесткие плоскости покрываются углеродным войлоком по ТУ 3497-029-11590373-04.
Если перегородки 7 и 8 выполнены из эластичной ткани, то в вертикальной плоскости перегородки удерживают поплавок 9 и груз 10. Изменение объема секций достигается перестановкой перегородок на новые электрически изолированные узлы 11 их крепления.
Электрохимический электролизер 12 имеет емкость 13 с пористой диафрагмой и электроды 14 и 15, подключенные соответственно к положительному и отрицательному полюсам источника питания. Вода на входы электролизера поступает через вентили 16, 17, а с выхода 18 ионы водорода (анолит) подаются через вентиль 19 в секцию 2 (кислая вода), причем их избыток через вентиль 20 выпускается на слив в атмосферу. С другого выхода 21 гидролизера 12 ионы гидроксильной группы (католит - щелочная вода) через вентили 22 и 23 подаются в другие секции реактора, при этом по датчикам pH (не показаны на чертеже) осуществляется непрерывный контроль концентрации водородных ионов. В работе [10] на стр.9 указывается, что «… Как правило, бактерии более активны при pH 6,4÷7,2. При 8<pH<6 скорость роста бактерий быстро падает». По максимально контролируемой скорости выхода биогаза процесс брожения разделяется на фазы кислотного, регрессии кислотного (нейтрального) и щелочного брожения с оптимальным pH для каждой секции.
Излишки щелочной воды удаляются через вентиль 24. В секции гидролиза установлен аэратор 25, на вход 26 которого подается сжатый воздух, а в каждую секцию введены вертикальные мелкоячеистые сетки 27 из волокнистого материала с большой развитой поверхностью.
Если сетки выполнены не из стекловолокнистого материала, а из электропроводной ткани [11], то они крепятся на электроизоляторах, а их концы, так же как и концы токопроводящих перегородок 7 и 8, подключаются к низковольтному источнику питания 28.
Вода из магистрали подается через теплообменник 29 в электролизер 12 и через вентиль 30 - на вход реактора, причем с одного выхода 31 реактора биогаз, а с другого его выхода 32 переброженная биомасса, обладающие накопленной тепловой энергией, проходят через разные теплообменные поверхности теплообменника, подогревая воду из магистрали. Это позволяет экономить энергию на подогрев и поддержание оптимальной температуры в реакторе.
Биогаз передается далее на очистку и в газгольдер (не показано на чертеже). Переброженная биомасса поступает в систему удаления жидкого удобрения на сепаратор 33, где отделяется твердый осадок, а жидкая фаза, еще сохраняющая тепло, насосом 34 подается через вентили 35 и 36 в разные секции реактора.
Реактор также содержит систему подачи исходного сырья в виде пресс-экструдера 37 для диспергирования поступающего сырья, компрессор 38 или источник сжатого воздуха, насосы 39, мешалки 40 с электроприводом в каждой секции, систему основного нагрева биомассы, например, по схеме «теплого пола» 41, датчики pH уровня интенсивности выхода биогаза. Датчики контроля параметров реактора и система его автоматического управления не показаны.
Реактор анаэробной переработки биомассы работает следующим образом.
В зависимости от вида перерабатываемого сырья устанавливается требуемый объем секций 3, 4, 5 в корпусе 1 реактора. Для этого перегородки 7 и 8 переустанавливаются на новые электрически изолированные узлы 11 их крепления. Если перегородки 7 и 8 выполняются из эластичного материала, то перегородка 7, закрепленная внизу в вертикальной плоскости, удерживается поплавком 9, а перегородка 8, закрепленная вверху, натягивается и устанавливается в вертикальной плоскости грузом 10.
Биомасса диспергируется в пресс-экструдере 37 и поступает в секцию 2, в которую также подается вода из магистрали через вентиль 30, а через вентиль 19 поступает кислая вода (анолит) с выхода 18 электролизера и часть сброженной воды через вентиль 36 с выхода реактора.
При первоначальном запуске реактора, а также при пониженных температурах поступающего воздуха основной нагрев биомассы осуществляется системой подогрева 41, а дополнительный подогрев с целью точного и равномерного поддержания температуры обеспечивается токопроводящими поверхностями перегородок 7, 8 и сеток 27 с развитой волокнистой поверхностью.
Для активизации жизнедеятельности кислотных бактерий в секцию 2 через аэратор 25 подается от компрессора 38 сжатый воздух в виде множества мелких всплывающих пузырьков [12, 13]. Аэраторы широко используются во флотационной технике.
Подготовленный в секции 2 раствор биомассы насосом 39 подается в секцию 3 нейтрального брожения. В эту же секцию с выхода 21 электролизера 12 через вентиль 22 поступает католит (щелочная вода), а через вентиль 35 - часть сброженной воды с выхода реактора.
При выборе по показаниям датчиков оптимального pH в секциях 2 и 3 излишняя кислая вода сливается через вентиль 20, а щелочная излишняя - через вентиль 24.
Через вентиль 35 поступает основная часть жидкости, отсепарированной сепаратором 33, что позволяет сохранить в обороте тепловую энергию и полезные метановые бактерии.
Добавление холодной биомассы и воды из магистрали влияет на температуру раствора в секции 2, поэтому чтобы уменьшить его влияние на температуру раствора секции 3 перегородка 6 между этими секциями утепляется.
Метановые бактерии в секции 3 накапливаются на развитых поверхностях сеток 27 и перегородки 7. При работе мешалок 40 в каждой секции происходят колебательные движения сеток и перегородок, что увеличивает время контакта со свободноплавающими метановыми бактериями и ускоряет процесс формирования кластеров бактерий, оседающих на их поверхностях.
При очередной дозагрузке раствора из секции 2 в секцию 3 в последней происходит перемещение аналогичного объема раствора через верх и боковые неплотности перегородки 7 в секцию 4 щелочного брожения. Через вентиль 23 в эту секцию также можно добавить по показаниям датчиков pH и датчиков выхода метана необходимое количество щелочной воды с выхода 21 электролизера 12, чтобы усилить метановое брожение.
Суточное изменение температуры раствора в метатенках, обеспечивающее оптимальное размножение метановых бактерий, должно находиться [7, 10] в пределах 1…3°C.
В предлагаемом реакторе более точное поддержание температуры раствора достигается за счет нагрева токопроводящих поверхностей перегородок 7, 8 и сеток 27 от низковольтного источника питания 28.
Из секции 4 раствор поступает между дном корпуса и нижним концом перегородки 8 (грузом 10), а также через боковые неплотности перегородки в секцию 5 на окончательное дображивание.
Подключение на выходе реактора теплообменника 29 дает возможность использовать тепло вырабатываемого биогаза и тепло сброженного раствора для подогрева воды из магистрали, что позволяет также экономить часть энергетических ресурсов.
При обеспечении оптимального контроля pH и температуры раствора в каждой секции реактора может быть достигнута максимальная производительность установки.
Предложенный реактор найдет широкое применение в качестве универсального метантенка для анаэробной переработки биомасс с различными свойствами.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Авторское свидетельство СССР №433114, МПК C05F 3/00. Способ приготовления органических удобрений. В.П. Лосяков. - №1835755; заявл. 12.10.72, опубл. 25.06.74. (аналог).
2. Авторское свидетельство СССР №1353753, МПК C02F 11/04. Метантенк. А.А. Ковалев и В.П. Лосяков - №4036561; заявл. 12.03.86, опубл. 23.11.87 (аналог).
3. Патент №2093567 Российская Федерация. МПК С12М 1/107. Метановый биокультиватор. В.И. Тумченок. - №95101288; заявл. 30.01.95, опубл. 20.10.97 (аналог).
4. Патент №2162380 Российская Федерация, МПК В09В 3/00, A61L 11/00, C05F 9/00, C05F 9/04. Комплекс по переработке и обезвреживанию отходов. Р.Ф. Чиж, А.Н. Чумаков, В.В. Дегтярев - №99115398; заявл. 21.07.99, опубл. 27.01.2001 (аналог).
5. Патент №2315721 Российская Федерация, МПК C02F 3/28, C02F 11/04. Способ анаэробной переработки органических отходов и установка для его осуществления. В.В. Мохов, Е.В.Фомичева. - №2006110378; заявл. 03.04.2006, опубл. 27.01.2008 (прототип).
6. Строительство биогазовых установок. Краткое руководство. Программа развития Организации Объединенных Наций. UNDP, Бишкек, 2006, с.27.
7. У.Э. Виестур, A.M. Кузнецов, В.В. Савенков. Системы ферментации. - Рига: Зинатне, 1986, 174 с.
8. Продукция ФГУП НПЦ «Углерод», 129090, Москва, Протопоповский пер., д. 9.
9. Ткани углеродные РУП СПО «Химволокно». 247400, Светлогорск, ул. Заводская, 5 [Электронный ресурс] www.sohim.open.by.
10. Янко В.Г., Янко Ю.Г. Обработка сточных вод и осадка в метатенках, К., 1978, 120 с.
11. Журнал «Изобретатель и рационализатор», №6, 2001, с.13, «Этот многогранный сорбент».
12. Авторское свидетельство №1139713 СССР, МПК C02F 3/20. Н.Ф. Мещеряков. Устройство для аэрации жидкости.
13. Авторское свидетельство №1341167 СССР, МПК C02F 3/20. А.Р. Гросс. Устройство для аэрации жидкости.
Claims (6)
1. Реактор анаэробной переработки биомассы, содержащий корпус в виде герметично закрытой емкости, четыре секции: подготовительную (кислую), нейтрального, щелочного и метанового брожения, разделенные вертикальными перегородками, основной нагреватель биомассы, систему подачи исходного сырья, систему удаления биогаза, систему удаления жидкого органического удобрения, устройство перемешивания биомассы, датчики контроля рН, датчики уровня раствора в корпусе, датчики интенсивности образования биогаза, отличающийся тем, что введен диафрагменный электролизер, один выход которого с раствором аналита подключен к секции кислого брожения, а другой его выход с раствором католита соединен с секциями нейтрального и щелочного брожения, причем в корпусе реактора выполнены по его длине дополнительные узлы крепления вертикальных перегородок, выполненных с возможностью перестановки с изменением объемов секций брожения.
2. Реактор анаэробной переработки биомассы по п.1, отличающийся тем, что перегородки выполнены в виде эластичных токопроводящих перегородок, подключенных к источнику питания для дополнительного нагрева биомассы и соединенных для поддержания вертикального положения с поплавком и с грузом.
3. Реактор анаэробной переработки биомассы по п.1, отличающийся тем, что в каждую секцию реактора введены расположенные вертикально мелкоячеистые сетки из волокнистого материала с развитой поверхностью.
4. Реактор анаэробной переработки биомассы по п.3, отличающийся тем, что мелкоячеистые сетки, выполненные из токопроводящего графитового войлока, подключены к источнику питания для дополнительного нагрева биомассы и иммобилизации на их поверхности бактерий.
5. Реактор анаэробной переработки биомассы по п.1, отличающийся тем, что в секцию кислого брожения введен аэратор, подключенный к воздушному компрессору.
6. Реактор анаэробной переработки биомассы по п.1, отличающийся тем, что к выходу секции метанового брожения присоединен теплообменник, одна теплообменная поверхность которого подключена на выход биогаза, другая - на выход переброженной биомассы, а третья теплообменная поверхность присоединена к входу воды в реактор из магистрали.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013107920/05A RU2536988C2 (ru) | 2013-02-21 | 2013-02-21 | Реактор анаэробной переработки биомассы |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013107920/05A RU2536988C2 (ru) | 2013-02-21 | 2013-02-21 | Реактор анаэробной переработки биомассы |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2013107920A RU2013107920A (ru) | 2014-08-27 |
RU2536988C2 true RU2536988C2 (ru) | 2014-12-27 |
Family
ID=51456089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013107920/05A RU2536988C2 (ru) | 2013-02-21 | 2013-02-21 | Реактор анаэробной переработки биомассы |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2536988C2 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018135952A1 (en) | 2017-01-18 | 2018-07-26 | Högskolen I Söröst-Norge | Apparatus and method for treatment of wet organic matter to produce biogas |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2107043C1 (ru) * | 1995-01-17 | 1998-03-20 | Виктор Игнатьевич Тумченок | Аккумулирующий метантенк |
RU2149897C1 (ru) * | 1998-12-30 | 2000-05-27 | Тумченок Виктор Игнатьевич | Аппарат метанового брожения |
RU56151U1 (ru) * | 2006-03-24 | 2006-09-10 | Владимир Николаевич Канюков | Устройство для самоконтроля состояния зрения |
RU2315721C1 (ru) * | 2006-04-03 | 2008-01-27 | Виктор Валентинович Мохов | Способ анаэробной переработки органических отходов и установка для его осуществления |
WO2011000084A1 (en) * | 2009-07-02 | 2011-01-06 | National Research Council Of Canada | Microbially-assisted water electrolysis for improving biomethane production |
-
2013
- 2013-02-21 RU RU2013107920/05A patent/RU2536988C2/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2107043C1 (ru) * | 1995-01-17 | 1998-03-20 | Виктор Игнатьевич Тумченок | Аккумулирующий метантенк |
RU2149897C1 (ru) * | 1998-12-30 | 2000-05-27 | Тумченок Виктор Игнатьевич | Аппарат метанового брожения |
RU56151U1 (ru) * | 2006-03-24 | 2006-09-10 | Владимир Николаевич Канюков | Устройство для самоконтроля состояния зрения |
RU2315721C1 (ru) * | 2006-04-03 | 2008-01-27 | Виктор Валентинович Мохов | Способ анаэробной переработки органических отходов и установка для его осуществления |
WO2011000084A1 (en) * | 2009-07-02 | 2011-01-06 | National Research Council Of Canada | Microbially-assisted water electrolysis for improving biomethane production |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018135952A1 (en) | 2017-01-18 | 2018-07-26 | Högskolen I Söröst-Norge | Apparatus and method for treatment of wet organic matter to produce biogas |
Also Published As
Publication number | Publication date |
---|---|
RU2013107920A (ru) | 2014-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102964149B (zh) | 一种畜禽养殖场污染治理方法 | |
Zieliński et al. | Advantages and limitations of anaerobic wastewater treatment—Technological basics, development directions, and technological innovations | |
EP2628712A1 (en) | Adiabatic, mechanical-biological sewage treatment plant | |
Ratusznei et al. | Effect of feeding strategy on a stirred anaerobic sequencing fed-batch reactor containing immobilized biomass | |
Rao et al. | Decentralized application of anaerobic digesters in small poultry farms: Performance analysis of high rate self mixed anaerobic digester and conventional fixed dome anaerobic digester | |
RU2595670C9 (ru) | Система для разложения органических соединений и способ ее эксплуатации | |
El-Bakhshwan et al. | Effect of mechanical stirring on biogas production efficiency in large scale digesters | |
CN104291518B (zh) | 一种高浓度畜禽废水达标排放的处理系统及处理方法 | |
CN103819052A (zh) | 一种养殖场废水零排放系统 | |
RU2536988C2 (ru) | Реактор анаэробной переработки биомассы | |
CN202116413U (zh) | 一种污泥减量反应器 | |
CN104261644B (zh) | 一种提高废水污泥厌氧消化效率的方法 | |
KR100911835B1 (ko) | 다단계 혐기성 소화조 및 이를 이용한 유기성폐기물의 바이오가스 생산방법 | |
RU187317U1 (ru) | Метантенк | |
CN104787999A (zh) | 一种规模猪场粪污处理装置及方法 | |
CN204588774U (zh) | 一种电催化氧化装置 | |
CN106957134A (zh) | 一种黄连素生产废水处理装置 | |
RU132437U1 (ru) | Станция глубокой биохимической очистки хозяйственно-бытовых сточных вод | |
KR101294375B1 (ko) | 고효율 교반 혐기 소화조를 이용한 바이오 가스 생산 장치 | |
Friedl et al. | AnSBBR applied to organic matter and sulfate removal: interaction effect between feed strategy and COD/sulfate ratio | |
CN205429079U (zh) | 微生物电解池装置 | |
RU226583U1 (ru) | Комбинированный биореактор | |
RU122088U1 (ru) | Анаэробный биореактор | |
KR20040072315A (ko) | 상향류 혐기성 부유 필터를 이용한 폐수 처리 공정 | |
RU194837U1 (ru) | Метантенк |