RU2532635C2 - Аккумуляция электроэнергии тепловым аккумулятором и обратное получение электроэнергии посредством термодинамического кругового процесса - Google Patents
Аккумуляция электроэнергии тепловым аккумулятором и обратное получение электроэнергии посредством термодинамического кругового процесса Download PDFInfo
- Publication number
- RU2532635C2 RU2532635C2 RU2010141759/06A RU2010141759A RU2532635C2 RU 2532635 C2 RU2532635 C2 RU 2532635C2 RU 2010141759/06 A RU2010141759/06 A RU 2010141759/06A RU 2010141759 A RU2010141759 A RU 2010141759A RU 2532635 C2 RU2532635 C2 RU 2532635C2
- Authority
- RU
- Russia
- Prior art keywords
- heat
- steam
- accumulator
- power plant
- power
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 125000004122 cyclic group Chemical group 0.000 title abstract 2
- 238000009825 accumulation Methods 0.000 title description 3
- 238000004519 manufacturing process Methods 0.000 title description 3
- 238000010438 heat treatment Methods 0.000 claims abstract description 23
- 239000000446 fuel Substances 0.000 claims abstract description 17
- 238000002485 combustion reaction Methods 0.000 claims abstract description 13
- 230000000694 effects Effects 0.000 abstract 1
- 230000005611 electricity Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 239000007789 gas Substances 0.000 description 15
- 238000013021 overheating Methods 0.000 description 7
- 239000002918 waste heat Substances 0.000 description 6
- 238000009434 installation Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 3
- 239000003245 coal Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C1/00—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
- F02C1/04—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
- F02C1/05—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
- F01K13/006—Auxiliaries or details not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K3/00—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
- F01K3/18—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
- F01K3/186—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters using electric heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
- F02C6/14—Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/60—Application making use of surplus or waste energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/60—Application making use of surplus or waste energy
- F05D2220/64—Application making use of surplus or waste energy for domestic central heating or production of electricity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- High Energy & Nuclear Physics (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Способ использования избыточных мощностей электрической сети заключается в том, что в случае превышения предложения над спросом на энергию ее отводят через нагревательный элемент непосредственно в тепловой аккумулятор и в случае разрядки этого теплового аккумулятора от него отбирают тепло и посредством теплообменного процесса вводят опосредственно в термодинамический круговой процесс. При этом генерируется электрическая энергия. Тепло теплового аккумулятора направляют в энергетическую установку и используют для подогрева воздуха в воздухопроводе камеры сгорания энергетической установки или теплом теплового аккумулятора газовой турбины подогревают топливо для камеры сгорания энергетической установки. Изобретение направлено на снижение расхода топлива и повышение общего кпд энергетической установки. 2 н.п. ф-лы, 5 ил.
Description
Изобретение относится к устройству и способу использования избыточных мощностей электрической сети.
В электрической сети произведенная мощность и ее потребление всегда должны находиться в равновесии. В результате интенсивного развития возобновляемых источников энергии иногда возникают избыточные мощности в сети. Превышение предложения над спросом на контролируемые возобновляемые источники энергии можно предупредить разными способами: колебания предложения могут быть компенсированы повышением или снижением мощности на традиционных электростанциях, энергия, вырабатываемая возобновляемым источником, могла бы сначала не подаваться в сеть, т.е., например, ветровые турбины отключают или же энергию подают в систему ее накопления, т.е. на гидроаккумулирующие, пневмоаккумулирующие электростанции или в аккумуляторные батареи, при известных условиях при высокой сложности оборудования и больших затратах.
В EP 1577548 A1 и EP 1577549 A1 раскрыты устройство и метод аккумуляции энергии и генерирование тока. Электрическая энергия, произведенная возобновляемыми источниками, такими как ветер и солнце, используется для нагрева теплового аккумулятора. При необходимости тепло теплового аккумулятора может использоваться для производства пара, направляемого непосредственно в термодинамический процесс в паровой турбине, при этом в случае необходимости выработка пара может быть дополнена традиционным способом.
В US 5,384,489 описано устройство, в котором электрическая энергия генерируется за счет энергии ветра, посредством которой приводится, в действие нагревательный элемент для нагрева текучей среды в накопительной емкости, а также устройство для отбора аккумулированной энергии из этой емкости. Отводимая из накопительной емкости энергия используется для обогревания/охлаждения помещений, для охлаждения в целом, для обессоливания, однако преимущественно для выработки пара при генерировании электрического тока.
Задачей изобретения является создание устройства и способа использования избыточных мощностей электрической сети.
Недостаток известных из уровня техники устройств и способов состоит в том, что для работы паровой турбины используется полученный в тепловом аккумуляторе пар не всегда достаточного качества и в достаточном количестве, вследствие чего требуется традиционный дополнительный нагрев. Кроме того, при генерировании тока известные из уровня техники устройства и способы ограничиваются одной средой, а именно паром.
Напротив устройство согласно изобретению направлено на использование избыточных мощностей электрической сети целым рядом потребителей тепла и поэтому в нем предусматриваются тепловой аккумулятор и нагревательный элемент для аккумуляции энергии из электрической сети в тепловом аккумуляторе, а также теплообменник с первичной и вторичной сторонами, при этом первичная сторона соединена с тепловым аккумулятором для отбора из него тепла, а вторичная сторона заведена в энергетическую установку, причем энергетическая установка, в которую заведен теплообменник, содержит газовую турбину.
Следовательно, тепловой аккумулятор используется не только для производства пара, непосредственно подаваемого в паровую турбину.
Согласно оптимальному варианту выполнения изобретения теплообменник врезан для подогрева воздуха на вторичной стороне в воздухопровод горелки.
Также целесообразно, чтобы теплообменник был врезан для подогрева топлива на вторичной стороне в топливопровод.
Кроме того, целесообразно, чтобы теплообменник заходил на вторичной стороне в поток отработавших газов для их промежуточного перегрева.
В еще одном предпочтительном варианте выполнения изобретения теплообменник может быть врезан в энергетическую установку с паровой турбиной.
В этом случае целесообразно расположить теплообменник на вторичной стороне в потоке пара для промежуточного перегрева.
Также целесообразно врезать теплообменник на вторичной стороне в качестве подогревателя в водопаровой контур.
Кроме того, целесообразно использовать теплообменник для сушки угля.
При использовании особо предпочтительной комбинации из газовой и паровой турбин, содержащей парогенератор на отходящем тепле для выработки пара для паровой турбины с использованием тепла отработавших газов, подогреватель питательной воды может быть заменен или дополнен в парогенераторе на отходящем тепле теплообменником, который на первичной стороне врезан в тепловой аккумулятор.
Согласно изобретению в способе использования избыточных мощностей электросети при наличии превышения предложения над спросом на энергию эту энергию направляют через нагревательный элемент непосредственно в тепловой аккумулятор и в случае разрядки этого теплового аккумулятора производится отбор тепла из него, которое направляется в термодинамический круговой процесс, например, в энергетический процесс, причем тепло теплового аккумулятора используется для подогрева воздуха в воздухопроводе камеры сгорания, в частности, газотурбинной установки, или же теплом теплового аккумулятора подогревают топливо.
Оба эти вида подогрева снижают расход топлива. Следовательно при почти постоянной отдаваемой мощности газовой турбины подогрев способствует повышению общего кпд газотурбинной установки.
Высокий выход энергии может быть также достигнут за счет того, что поток отработавшего газа подвергают промежуточному перегреву в турбине газовой турбины.
Согласно другому оптимальному варианту выполнения изобретения тепло теплового аккумулятора используется для промежуточного перегрева потока пара паровой турбины.
Однако может оказаться целесообразным использование тепла теплового аккумулятора для подогрева воды на другом участке водопарового контура, например, в том случае, когда энтальпия теплового аккумулятора не достаточна для промежуточного перегрева внутри турбины.
При помощи тепла теплового аккумулятора можно также сушить уголь, в результате чего отпадает необходимость в изъятии высокоценного пара из рабочего процесса паровой турбины.
Благодаря низким потерям на преобразование особо оптимально использовать воду в качестве теплоносителя на вторичной стороне теплообменника, который первичной стороной врезан в тепловой аккумулятор, а произведенный с помощью тепла теплового аккумулятора пар поступает непосредственно в паровую турбину.
Ниже изобретение подробнее поясняется в качестве примера с помощью чертежей.
При этом изображено:
фиг.1 - схематически концепция аккумуляции электрической энергии тепловым аккумулятором и обратное генерирование тока посредством термодинамического кругового процесса;
фиг.2 - схематически устройство согласно изобретению с нагревательным элементом, тепловым аккумулятором и теплообменником;
фиг.3 - газотурбинная установка с подогревом воздуха и топлива и с промежуточным перегревом;
фиг.4 - паротурбинная установка, в которой пар, полученный посредством тепла теплового аккумулятора, поступает непосредственно в паровую турбину, подогревает конденсат и/или предварительно сушит топливо;
фиг.5 - парогенератор на отходящем тепле в газопаровой установке с острым паром и с промежуточным перегревом.
В принципе одинаковые элементы обозначены в основном одинаковыми позициями.
На фиг.1 представлен способ использования избыточных мощностей электрической сети согласно изобретению. Если в момент времени t1 произведенная мощность 1 в сети превышает потребление 3, то энергия, производство 2 которой превышает потребление, непосредственно направляется через нагревательный элемент в тепловой аккумулятор, например солевой аккумулятор или бетонный тепловой аккумулятор 4.
В случае разрядки такой аккумулирующей энергию системы, например при большой потребной мощности в электрической сети, тепло снова отбирается из теплового аккумулятора и через теплообменник, первичная сторона которого термически связана с тепловым аккумулятором, а вторичная сторона которого врезана в энергетическую установку, подается в энергетическую установку 5, вследствие чего произведенная в момент времени t2 мощность 6 покроет потребность 7 в момент времени t2.
На фиг.2 показаны основные компоненты устройства для использования избыточных мощностей электросети согласно изобретению. Через нагревательный элемент 8 электрическая энергия из электросети 9 может непосредственно поступать в тепловой аккумулятор 10. Первичная сторона теплообменника 11 термически связана с тепловым аккумулятором 10. Вторичная же сторона теплообменника 11 врезана в энергетическую установку 12.
Энергетическая установка 12, показанная на фиг.3, представляет собой газовую турбину 13 и содержит компрессор 14 для сжатия воздуха, который затем подается в камеру сгорания 15 и сгорает вместе с топливом. Горячие отработавшие газы приводят в действие турбину 16, которая через вал 17 связана с компрессором 14. Тепло теплового аккумулятора 10 может использоваться через теплообменник 11 как для подогрева 18 сжатого воздуха, так и для подогрева 19 топлива.
Факультативно камера сгорания 15 может быть полностью отключена, и турбина 16 будет приводиться в действие только сжатым воздухом, нагретым теплообменником 11. Целесообразно, чтобы промежуточный перегрев 20 происходил в зоне турбины 16.
Энергетическая установка, представленная на фиг.4, является паротурбинной электростанцией 21 и содержит камеру 15 сгорания, в которую через питающую систему подаются топливо и окислитель. Выделяющееся при сжигании топлива тепло из камеры 15 сгорания может подаваться в парогенератор 22. В примере выполнения это показано посредством того, что трубопровод 23 отработавшего газа пропущен из камеры 15 сгорания через теплообменник 24, расположенный в парогенераторе 22. Само собой разумеется, что возможен также любой другой вид приемлемой теплопередачи от камеры 15 сгорания в парогенератор 22, например прямым нагревом.
К парогенератору 22 через водопаровой контур 25 подключена паровая турбина 26, которая через вал 17 приводит в действие не показанный детально генератор. В примере выполнения паровая турбина 26 выполнена трехступенчатой и содержит часть 27 высокого давления, которая на стороне входа соединена через паропровод 28 с парогенератором 22. На стороне выхода часть 27 высокого давления связана через проходящий через парогенератор 22 трубопровод 29 перегревателя с расположенной за ней частью 30 среднего давления паровой турбины 26. Делительные турбины части 30 среднего давления связаны, в свою очередь, на выходной стороне с частями 31 низкого давления паровой турбины 26.
Разумеется, вместо трехступенчатой паровой турбины 26 может применяться также двухступенчатая или же иная подобранная соответствующим образом паровая турбина.
Часть 31 низкого давления паровой турбины 26 связана на стороне выходящего потока с конденсатором 32, в котором конденсируется мятый пар, выходящий из паровой турбины 26.
В свою очередь конденсатор 32 сообщен на выходной стороне через конденсатный трубопровод 33, в который врезан конденсатный насос 34, с емкостью 35 питательной воды, в которой временно хранится конденсационная вода. Эта емкость сообщена на стороне питательной воды через трубопровод 36 питательной воды, в который врезан насос 37 для питательной воды, с парогенератором 22, в результате чего вода повторно поступает в паровой котел и, таким образом, создается замкнутый водопаровой контур 25.
Для повышения кпд обычно проводится регенеративный подогрев питательной воды, при котором она подогревается паром 54, отобранным, например, из части 31 низкого давления паровой турбины 26 до того, как она обратно поступит в парогенератор 22.
В устройстве согласно изобретению необходимость в подогреве питательной воды отсутствует, вследствие чего обычно необходимый для этого пар может использоваться для выработки энергии. Вместо этого с конденсатным трубопроводом 33 и трубопроводом 36 питательной воды связаны на вторичной стороне теплообменники 11, которые на первичной стороне врезаны в тепловой аккумулятор 10 и которые должны обеспечить ввод тепла теплового аккумулятора 10 в водопаровой контур 25 парогенератора 22.
Тепло теплового аккумулятора может также использоваться для производства пара, непосредственно поступающего в паровую турбину 26. Возможным местом 48 его ввода является трубопровод 28, подведенный к части 27 высокого давления. Однако и произведенный пар может быть направлен 49 в трубопровод 29 перегревателя. Наконец, имеется возможность для ввода 50 пара в паропроводы на участке между частью 30 среднего давления и частью 31 низкого давления турбины 26.
Для предварительной сушки топлива обычно применяются паровые сушилки, частично обогреваемые высокотемпературным паром из пароводяного контура энергетического процесса. Для сокращения доли требуемого пара 51, отбираемого из энергетического процесса, здесь может использоваться 52 тепло теплового аккумулятора 10 для предварительной сушки топлива.
На фиг.5 схематически показаны кругооборот 38 пара на газопаровой электростанции с парогенератором 39 на отходящем тепле и его основные компоненты: подогреватель 40 питательной воды, испаритель 41 и перегреватель 42. Отработавшие газы не показанной газовой турбины нагревают воду в парогенераторе 39 на отходящем тепле в несколько последовательных стадий и вырабатывают пар.
В подогревателе 40 питательной воды остаточное тепло отработавшего газа газовой турбины используется для подогрева питательной воды до ее поступления в паровой котел 43, благодаря чему снижается расход энергии испарителем 41. По сборному трубопроводу 44 в потолочной части парового котла 43 пар поступает в перегреватель 42, в котором дополнительно повышаются температура и давление.
Пар направляют в турбину 45 высокого давления на первой из нескольких стадий турбинного процесса.
В устройстве согласно изобретению подогреватель 40 питательной воды может либо дополнительно использовать тепло 46 теплового аккумулятора 10, либо он может быть даже заменен. В качестве альтернативы или дополнительной меры может также непосредственно вырабатываться пар с использованием тепла теплового аккумулятора 10 и добавляться 47 в пар, произведенный в парогенераторе на отходящем тепле.
Claims (2)
1. Устройство для использования избыточных мощностей электрической сети (9), содержащее тепловой аккумулятор (10), нагревательный элемент (8) для аккумуляции энергии из электрической сети (9) в тепловом аккумуляторе (10) и теплообменник (11) с первичной и вторичной сторонами, при этом для отбора тепла из теплового аккумулятора (10) первичная сторона теплообменника термически связана с тепловым аккумулятором (10), а вторичная сторона теплообменника врезана в энергетическую установку (12), отличающееся тем, что энергетическая установка (12) включает в себя компрессор (14), камеру (15) сгорания и газовую турбину (13), причем теплообменник (11) на вторичной стороне врезан для подогрева топлива в топливопровод для камеры (15) сгорания энергетической установки (12) или для подогрева воздуха в воздухопровод камеры (15) сгорания энергетической установки (12).
2. Способ использования избыточных мощностей электрической сети, в котором в случае превышения предложения над спросом на энергию ее отводят через нагревательный элемент непосредственно в тепловой аккумулятор и в случае разрядки этого теплового аккумулятора от него отбирают тепло и посредством теплообменного процесса вводят опосредственно в термодинамический круговой процесс, при этом генерируется электрическая энергия, отличающийся тем, что тепло теплового аккумулятора направляют в энергетическую установку, причем тепло теплового аккумулятора используют для подогрева воздуха в воздухопроводе камеры сгорания энергетической установки или теплом теплового аккумулятора газовой турбины подогревают топливо для камеры сгорания энергетической установки.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08004589A EP2101051A1 (de) | 2008-03-12 | 2008-03-12 | Speicherung elektrischer Energie mit Wärmespeicher und Rückverstromung mittels eines thermodynamischen Kreisprozesses |
EP08004589.1 | 2008-03-12 | ||
PCT/EP2009/052604 WO2009112421A1 (de) | 2008-03-12 | 2009-03-05 | Speicherung elektrischer energie mit wärmespeicher und rückverstromung mittels eines thermodynamischen kreisprozesses |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2010141759A RU2010141759A (ru) | 2012-04-20 |
RU2532635C2 true RU2532635C2 (ru) | 2014-11-10 |
Family
ID=39645361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2010141759/06A RU2532635C2 (ru) | 2008-03-12 | 2009-03-05 | Аккумуляция электроэнергии тепловым аккумулятором и обратное получение электроэнергии посредством термодинамического кругового процесса |
Country Status (7)
Country | Link |
---|---|
US (1) | US8938966B2 (ru) |
EP (2) | EP2101051A1 (ru) |
CN (1) | CN101970832B (ru) |
DK (1) | DK2250356T3 (ru) |
ES (1) | ES2401849T3 (ru) |
RU (1) | RU2532635C2 (ru) |
WO (1) | WO2009112421A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2827808C2 (ru) * | 2019-06-05 | 2024-10-02 | Басф Се | Гибридный высокотемпературный способ с электрическим нагревом |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8590802B2 (en) | 2009-12-17 | 2013-11-26 | Battelle Memorial Institute | Water heater control module |
US9331483B2 (en) * | 2009-12-17 | 2016-05-03 | Battelle Memorial Institute | Thermal energy storage apparatus, controllers and thermal energy storage control methods |
CN102865112B (zh) * | 2011-05-17 | 2016-02-17 | 成都奥能普科技有限公司 | 背热循环发电及多级背热循环发电及多联产系统 |
EP2574740A1 (de) | 2011-09-29 | 2013-04-03 | Siemens Aktiengesellschaft | Anlage zur Speicherung thermischer Energie |
US20140366536A1 (en) * | 2011-11-08 | 2014-12-18 | Abengoa Solar Llc | High temperature thermal energy for grid storage and concentrated solar plant enhancement |
DE102012204081A1 (de) | 2012-03-15 | 2013-09-19 | Siemens Aktiengesellschaft | Energiespeicherkraftwerk |
CN103670942A (zh) * | 2012-09-07 | 2014-03-26 | 重庆大学 | 风电场汽液两相储能功率补偿系统 |
EP2738458B2 (de) | 2012-11-30 | 2023-05-24 | Lumenion AG | Kraftwerksanlage und Verfahren zum Erzeugen von elektrischem Strom |
DE102013004330A1 (de) | 2013-02-12 | 2014-08-14 | Carbon-Clean Technologies Gmbh | Wärmespeicher und Wärmespeicherkraftwerk |
DE202013002455U1 (de) | 2013-02-12 | 2014-05-16 | Carbon-Clean Technologies Ag | Wärmespeicher und Wärmespeicherkraftwerk |
DE102013008445B4 (de) * | 2013-05-20 | 2022-12-29 | Witt Solar Ag | Wärmespeicherkraftwerk |
DE102013210430B4 (de) * | 2013-06-05 | 2015-07-09 | Siemens Aktiengesellschaft | Energiespeichervorrichtung zur Vorwärmung von Speisewasser |
EP2894303A1 (de) * | 2014-01-10 | 2015-07-15 | Siemens Aktiengesellschaft | Verfahren zum Zwischenspeichern von elektrischer Überschussenergie |
EP3280605A4 (en) * | 2015-04-06 | 2018-11-21 | Solarreserve Technology, LLC | Electrical power systems incorporating thermal energy storage |
NL2015295B1 (nl) * | 2015-08-12 | 2017-02-28 | Johannes Maria Van Nimwegen Cornelis | Systeem voor het opslaan van elektrische energie. |
WO2017137227A1 (de) * | 2016-02-12 | 2017-08-17 | Siemens Aktiengesellschaft | Gasturbinen-strang mit startmotor |
EP3269948B1 (de) * | 2016-07-15 | 2022-03-30 | Carbon-Clean Technologies GmbH | Verfahren zur anpassung der leistung einer dampfturbinen-kraftwerksanlage und dampfturbinen-kraftwerksanlage |
ES2861551T3 (es) * | 2017-03-20 | 2021-10-06 | Lumenion Gmbh | Central eléctrica para generar energía eléctrica y procedimiento para operar una central eléctrica |
DE102017126959A1 (de) * | 2017-11-16 | 2019-05-16 | B+S Entwicklungsgesellschaft mbH | Heizmodul für einen fluiden Wärmeüberträger sowie Vorrichtung zur Energiespeicherung |
CN110274218B (zh) * | 2018-03-13 | 2020-09-29 | 神华集团有限责任公司 | 从在变化的负荷条件下运行的发电站生产电力的方法和发电站 |
EP3909088A4 (en) | 2019-01-07 | 2022-10-19 | Board Of Trustees Of Michigan State University | SYSTEM AND PLANT FOR STORING THERMOCHEMICAL RENEWABLE ENERGY |
DE102019210737A1 (de) * | 2019-07-19 | 2021-01-21 | Siemens Aktiengesellschaft | Gasturbine mit thermischem Energiespeicher, Verfahren zum Betreiben und Verfahren zur Modifikation |
DE102020201068A1 (de) | 2020-01-29 | 2021-07-29 | Siemens Aktiengesellschaft | Anlage mit thermischem Energiespeicher, Verfahren zum Betreiben und Verfahren zur Modifikation |
WO2021257333A1 (en) * | 2020-06-15 | 2021-12-23 | Bechtel Infrastructure and Power Corporation | Air energy storage with internal combustion engines |
EP4248068A4 (en) * | 2020-11-23 | 2024-11-27 | Pintail Power LLC | Start-up and control of liquid salt energy storage combined cycle systems |
US11913362B2 (en) | 2020-11-30 | 2024-02-27 | Rondo Energy, Inc. | Thermal energy storage system coupled with steam cracking system |
US12146424B2 (en) | 2020-11-30 | 2024-11-19 | Rondo Energy, Inc. | Thermal energy storage system coupled with a solid oxide electrolysis system |
IL303311A (en) | 2020-11-30 | 2023-07-01 | Rondo Energy Inc | Energy storage system and applications |
US11913361B2 (en) | 2020-11-30 | 2024-02-27 | Rondo Energy, Inc. | Energy storage system and alumina calcination applications |
DE102021112050A1 (de) | 2021-05-07 | 2022-11-10 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Verfahren zum Betreiben einer Speicheranlage, Speicheranlage, Steuerungsprogramm und computerlesbares Medium |
DE102022000765A1 (de) | 2022-03-04 | 2023-09-07 | Alexander Lapin | Das Energiewärmespeicherkraftwerk |
WO2024138195A1 (en) * | 2022-12-22 | 2024-06-27 | Rondo Energy, Inc. | Thermal energy storage systems for use in material processing |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU46497A1 (ru) * | 1925-06-24 | 1936-03-31 | Рутс И.К. | Силова дл электрических станций установка с тепловым аккумул тором |
US5384489A (en) * | 1994-02-07 | 1995-01-24 | Bellac; Alphonse H. | Wind-powered electricity generating system including wind energy storage |
EP1577548A1 (en) * | 2004-03-16 | 2005-09-21 | Abb Research Ltd. | Apparatus and method for storing thermal energy and generating electricity |
RU2325551C1 (ru) * | 2006-12-26 | 2008-05-27 | ФГОУ ВПО "Челябинский государственный агроинженерный университет" | Устройство для автономного энергоснабжения потребителей |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3974642A (en) * | 1973-01-26 | 1976-08-17 | Fives-Cail Babcock Societe Anonyme | Hybrid cycle power plant with heat accumulator for storing heat exchange fluid transferring heat between cycles |
US4262484A (en) * | 1977-10-18 | 1981-04-21 | Rolls-Royce Limited | Gas turbine engine power plant using solar energy as a heat source |
DE2757306A1 (de) * | 1977-12-22 | 1979-07-05 | Wilhelm Jakobi | Energiespeicher |
US4229661A (en) * | 1979-02-21 | 1980-10-21 | Mead Claude F | Power plant for camping trailer |
US4347706A (en) * | 1981-01-07 | 1982-09-07 | The United States Of America As Represented By The United States Department Of Energy | Electric power generating plant having direct coupled steam and compressed air cycles |
SU1521284A3 (ru) * | 1985-02-02 | 1989-11-07 | Проф.Др.-Инж.Др.-Инж. Е.Х.Клаус Книциа (Фирма) | Энергетическа установка |
DE3731627A1 (de) * | 1987-09-19 | 1989-03-30 | Klaus Prof Dr Ing Dr In Knizia | Verfahren zur leistungsregelung eines kohlekombiblocks mit integrierter kohlevergasung und nach dem verfahren betriebenes kohlekraftwerk |
DE4103362C1 (ru) * | 1991-02-05 | 1992-04-23 | Voest Alpine Ind Anlagen | |
US5284489A (en) * | 1992-08-19 | 1994-02-08 | United States Surgical Corporation | Filament fabricated from a blend of ionomer resin and nonionic thermoplastic resin |
US5375410A (en) | 1993-01-25 | 1994-12-27 | Westinghouse Electric Corp. | Combined combustion and steam turbine power plant |
US5685155A (en) * | 1993-12-09 | 1997-11-11 | Brown; Charles V. | Method for energy conversion |
US5634340A (en) * | 1994-10-14 | 1997-06-03 | Dresser Rand Company | Compressed gas energy storage system with cooling capability |
US5778675A (en) * | 1997-06-20 | 1998-07-14 | Electric Power Research Institute, Inc. | Method of power generation and load management with hybrid mode of operation of a combustion turbine derivative power plant |
DE19745272C2 (de) * | 1997-10-15 | 1999-08-12 | Siemens Ag | Gas- und Dampfturbinenanlage und Verfahren zum Betreiben einer derartigen Anlage |
US6065280A (en) * | 1998-04-08 | 2000-05-23 | General Electric Co. | Method of heating gas turbine fuel in a combined cycle power plant using multi-component flow mixtures |
DE10041413B4 (de) * | 1999-08-25 | 2011-05-05 | Alstom (Switzerland) Ltd. | Verfahren zum Betrieb einer Kraftwerksanlage |
US7086231B2 (en) * | 2003-02-05 | 2006-08-08 | Active Power, Inc. | Thermal and compressed air storage system |
EP1577549A1 (en) | 2004-03-16 | 2005-09-21 | Abb Research Ltd. | Apparatus for storing thermal energy and generating electricity |
WO2006007733A1 (en) * | 2004-07-23 | 2006-01-26 | New World Generation Inc. | Electric power plant with thermal storage medium |
US7274111B2 (en) * | 2005-12-09 | 2007-09-25 | General Electric Company | Methods and apparatus for electric power grid frequency stabilization |
WO2007134466A1 (en) * | 2006-05-24 | 2007-11-29 | Abb Research Ltd | Thermoelectric energy storage system and method for storing thermoelectric energy |
-
2008
- 2008-03-12 EP EP08004589A patent/EP2101051A1/de not_active Withdrawn
-
2009
- 2009-03-05 EP EP09718910A patent/EP2250356B1/de active Active
- 2009-03-05 US US12/921,415 patent/US8938966B2/en active Active
- 2009-03-05 CN CN200980108788.5A patent/CN101970832B/zh active Active
- 2009-03-05 ES ES09718910T patent/ES2401849T3/es active Active
- 2009-03-05 WO PCT/EP2009/052604 patent/WO2009112421A1/de active Application Filing
- 2009-03-05 RU RU2010141759/06A patent/RU2532635C2/ru active
- 2009-03-05 DK DK09718910.4T patent/DK2250356T3/da active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU46497A1 (ru) * | 1925-06-24 | 1936-03-31 | Рутс И.К. | Силова дл электрических станций установка с тепловым аккумул тором |
US5384489A (en) * | 1994-02-07 | 1995-01-24 | Bellac; Alphonse H. | Wind-powered electricity generating system including wind energy storage |
EP1577548A1 (en) * | 2004-03-16 | 2005-09-21 | Abb Research Ltd. | Apparatus and method for storing thermal energy and generating electricity |
RU2325551C1 (ru) * | 2006-12-26 | 2008-05-27 | ФГОУ ВПО "Челябинский государственный агроинженерный университет" | Устройство для автономного энергоснабжения потребителей |
Non-Patent Citations (1)
Title |
---|
МАНУШИН Э.А. Газовые турбины: проблемы и перспективы, Москва, Энергоатомиздат, 1986, стр.16, рис.1.5. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2827808C2 (ru) * | 2019-06-05 | 2024-10-02 | Басф Се | Гибридный высокотемпературный способ с электрическим нагревом |
Also Published As
Publication number | Publication date |
---|---|
EP2250356A1 (de) | 2010-11-17 |
RU2010141759A (ru) | 2012-04-20 |
CN101970832B (zh) | 2014-09-03 |
EP2250356B1 (de) | 2013-02-27 |
WO2009112421A1 (de) | 2009-09-17 |
DK2250356T3 (da) | 2013-05-27 |
ES2401849T3 (es) | 2013-04-25 |
US20110083443A1 (en) | 2011-04-14 |
US8938966B2 (en) | 2015-01-27 |
EP2101051A1 (de) | 2009-09-16 |
CN101970832A (zh) | 2011-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2532635C2 (ru) | Аккумуляция электроэнергии тепловым аккумулятором и обратное получение электроэнергии посредством термодинамического кругового процесса | |
CN104963776B (zh) | 一种太阳能热互补联合循环发电系统 | |
CN101680649A (zh) | 当在太阳能热电厂中太阳能直接汽化时中间再热器燃烧的方法和设备 | |
KR102326406B1 (ko) | 개선된 효율을 갖는 조합형 순환 발전소 | |
CN100543275C (zh) | 炼钢转炉余热废气发电装置 | |
CN101806445A (zh) | 槽式太阳能多级热利用装置 | |
KR101140126B1 (ko) | 하이브리드형 태양열 화력발전 시스템 | |
CN201680347U (zh) | 槽式太阳能多级热利用装置 | |
JP6243700B2 (ja) | 吸収熱変換器を備えたコンバインドサイクル発電プラント | |
JP4486391B2 (ja) | 余剰蒸気の有効利用装置 | |
RU2326246C1 (ru) | Парогазовая установка для комбинированного производства тепловой и электрической энергии | |
RU2409746C2 (ru) | Парогазовая установка с паротурбинным приводом компрессора и регенеративной газовой турбиной | |
WO2014147547A1 (en) | Solar collector plant with thermal storage | |
KR20150094190A (ko) | 소형 열병합 orc발전시스템 | |
RU2349764C1 (ru) | Теплоэлектроцентраль, надстроенная газотурбинной установкой | |
KR101488656B1 (ko) | 폐열 회수 발전 시스템 | |
RU126373U1 (ru) | Парогазовая установка | |
RU121863U1 (ru) | Парогазовая установка | |
CN102213118A (zh) | 汽轮机机组 | |
RU2420664C2 (ru) | Многорежимная теплофикационная установка | |
WO2015187064A2 (ru) | Всережимная парогазовая установка | |
RU167924U1 (ru) | Бинарная парогазовая установка | |
JP3199309U (ja) | ラジアルアウトフロータービン及びこれを用いた熱電併給システム | |
RU2261338C1 (ru) | Паросиловая установка с дополнительными паровыми турбинами | |
RU2774553C1 (ru) | Система производства экологически чистого топлива на тэц с паровым котлом |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC41 | Official registration of the transfer of exclusive right |
Effective date: 20211201 |