RU2529865C2 - Устройство для нанесения однородных гладких тонких пленок различных материалов на твердые подложки - Google Patents
Устройство для нанесения однородных гладких тонких пленок различных материалов на твердые подложки Download PDFInfo
- Publication number
- RU2529865C2 RU2529865C2 RU2012144845/07A RU2012144845A RU2529865C2 RU 2529865 C2 RU2529865 C2 RU 2529865C2 RU 2012144845/07 A RU2012144845/07 A RU 2012144845/07A RU 2012144845 A RU2012144845 A RU 2012144845A RU 2529865 C2 RU2529865 C2 RU 2529865C2
- Authority
- RU
- Russia
- Prior art keywords
- target
- substrate
- thin films
- production
- different materials
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 31
- 239000000463 material Substances 0.000 title claims abstract description 12
- 239000010409 thin film Substances 0.000 title claims abstract description 12
- 239000007787 solid Substances 0.000 title claims description 7
- 239000010408 film Substances 0.000 claims abstract description 26
- 238000001704 evaporation Methods 0.000 claims abstract description 19
- 230000008020 evaporation Effects 0.000 claims abstract description 15
- 229910052751 metal Inorganic materials 0.000 claims abstract description 8
- 239000002184 metal Substances 0.000 claims abstract description 8
- 239000000126 substance Substances 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 11
- 230000007246 mechanism Effects 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 4
- 239000007788 liquid Substances 0.000 abstract description 3
- 239000002887 superconductor Substances 0.000 abstract description 3
- 230000005540 biological transmission Effects 0.000 abstract description 2
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 2
- 230000003287 optical effect Effects 0.000 abstract description 2
- 230000005855 radiation Effects 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract 1
- 238000010327 methods by industry Methods 0.000 abstract 1
- 230000007723 transport mechanism Effects 0.000 abstract 1
- 238000000151 deposition Methods 0.000 description 16
- 230000008021 deposition Effects 0.000 description 16
- 239000002245 particle Substances 0.000 description 5
- 238000001914 filtration Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000000889 atomisation Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910009203 Y-Ba-Cu-O Inorganic materials 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 238000004549 pulsed laser deposition Methods 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Изобретение относится к области технологии сверхпроводящих тонких пленок и может найти применение в производстве сверхпроводящих лент на основе высокотемпературных сверхпроводников для сверхпроводящих кабелей передачи электрической энергии, работающих при температуре жидкого азота. Устройство для нанесения однородных гладких тонких пленок различных материалов на твердые подложки методом импульсного лазерного испарения содержит мощный импульсный лазер, обычную оптическую систему, фокусирующую излучение на мишени, и вакуумную камеру. В вакуумной камере расположены узел мишени, скоростной фильтр и узел подложки. В качестве подложки использована длинномерная гибкая металлическая лента на катушке с механизмом протяжки, а скоростной фильтр выполнен в виде вращающегося диска с отверстием для прохождения испаренного вещества. Узел мишени выполнен с возможностью смены мишени в процессе нанесения пленки, что позволяет создавать многослойные структуры без вынесения подложки из вакуума на воздух. Изобретение обеспечивает получение однородных гладких тонких пленок различных материалов на длинномерных металлических лентах. 1 з.п. ф-лы, 2 ил.
Description
Изобретение относится к области технологии сверхпроводящих тонких пленок и может найти применение в производстве сверхпроводящих лент на основе высокотемпературных сверхпроводников для сверхпроводящих кабелей передачи электрической энергии, работающих при температуре жидкого азота.
Известен метод импульсного лазерного испарения [1], который применяется для напыления пленок различных материалов на твердые подложки, в частности высокотемпературных сверхпроводников (ВТСП). Метод импульсного лазерного испарения обладает рядом преимуществ, которые особенно значительны при осаждении пленок сложного состава [2], таких как ВТСП Y-Ba-Cu-O и ему подобных. В работе [2] детально рассмотрены преимущества метода импульсного лазерного испарения, отметим важнейшие из них.
Прежде всего, импульсное лазерное испарение применимо к широчайшему классу материалов, при этом импульсный характер процесса обеспечивает хороший перенос даже сложного химического состава мишени.
Мишень не меняет своего агрегатного состояния, она не нуждается ни в тигле, ни в специальном охлаждении. Низкая температура мишени в процессе распыления и отсутствие необходимости в тигле обеспечивает чистоту получаемой пленки, это особенно важно в случае мишеней из химически активных материалов.
При импульсном лазерном испарении подложка обычно расположена перпендикулярно потоку распыленного вещества. Поэтому процесс испарения не связан непосредственно с атмосферой осаждения и может применяться в вакууме. Так как метод некритичен к атмосфере распыления, то он идеален для реактивного распыления, и в то же время может применяться в инертной атмосфере.
Указанные особенности метода импульсного лазерного испарения приводят к тому, что необходимое для него вакуумное оборудование относительно несложно и позволяет в камерах небольшого объема использовать несколько мишеней одновременно или последовательно для получения многослойных структур.
Метод весьма экономичен в расходе материала мишени. Это свойство особенно ценно при осаждении пленок из редких элементов или специального изотопного состава.
Недостатком метода импульсного лазерного испарения является наличие в полученных пленках неоднородностей в виде включений размером от 0,05 до 10 мкм. Неоднородная, нерегулярная структура и неровная поверхность получаемых пленок ухудшает свойства пленок и делает их непригодными или ограниченно пригодными для целого ряда важных применений. Так, при осаждении ВТСП на длинномерные подложки включения нарушают однородность структуры пленки, вносят области с ослабленной сверхпроводимостью, в пленке возникают области с пониженным критическим током. Так как критический ток всей ленты определяется областью с самым низким значением по длине проводника, то это прямо ухудшает характеристики получаемых сверхпроводниковых лент как длинномерного проводника.
Эти неоднородности образуются из-за того, что при импульсном испарении мишени под действием лазерного импульса большой мощности происходит не только испарение вещества, но и образование многочисленных мелких капель и твердых частиц. Они обычно попадают на подложку и делают ее поверхность неровной, а структуру неоднородной. Механизм образования этих капель в области распыления на поверхности мишени, по-видимому, различен для разных материалов и условий распыления и осаждения [2].
Для борьбы с осаждением капель применяют ряд методов. Наиболее близким к данному изобретению является метод фильтрации компонент потока испаряемого вещества по скоростям (скоростной фильтрации) [3-6].
Метод скоростной фильтрации основан на том, что крупные капли и фрагменты вещества мишени движутся от мишени гораздо медленнее газообразного вещества - полезной компоненты, из которой и осаждается собственно пленка. При этом специальный механический скоростной фильтр улавливает микроскопические твердые и жидкие частицы, генерируемые при испарении мишени [3, 4], пропуская при этом к подложке газообразное вещество. В отличие от других методов, это позволяет получать гладкие пленки в традиционной, гибкой в применении, «осевой» геометрии мишень-подложка. При этом возможно применение как эксимерного ультрафиолетового [5], так и более простого и дешевого твердотельного инфракрасного лазера [6].
Принцип работы скоростного фильтра показан на Фиг.1. При испарении мишени 1 под действием лазерного импульса частицы вылетают с мишени с разными скоростями и разделяются по времени пролета. Время пролета легких молекулярных частиц 2 с большой скоростью от мишени 1 к подложке 4 короче времени пролета более массивных капель 3, движущихся с меньшей скоростью, которые отсекаются быстрой механической заслонкой - скоростным фильтром 5.
Однако конструкция такого скоростного фильтра не позволяет работать с длинномерными подложками в силу того, что область осаждения пленки необходимого состава весьма невелика - около 1 кв.см.
Задачей, решаемой предлагаемым изобретением, является создание устройства для нанесения однородных гладких тонких пленок различных материалов на длинномерные подложки, в частности, металлические ленты, что необходимо для изготовления сверхпроводящих кабелей.
Поставленная задача решается следующим образом.
Предложено устройство для нанесения однородных гладких тонких пленок различных материалов на твердые подложки методом импульсного лазерного испарения. В состав устройства входят мощный импульсный лазер, обычная оптическая система, фокусирующая излучение на мишени, и вакуумная камера. В вакуумной камере расположены узел мишени, скоростной фильтр и узел подложки. Устройство отличается тем, что в качестве подложки использована длинномерная гибкая металлическая лента на катушке с механизмом протяжки, а скоростной фильтр выполнен в виде вращающегося диска с отверстием для прохождения испаренного вещества.
Кроме того, узел мишени выполнен с возможностью смены мишени в процессе нанесения пленки, что позволяет создавать многослойные структуры без вынесения подложки из вакуума на воздух.
Предлагаемая схема устройства показана на Фиг.2. На Фиг.2 показан узел мишени 1, узел подложки 5,6 с подложкой 4 и скоростной фильтр 7-11. Скоростной фильтр состоит из вращающегося диска 7 из алюминиевого сплава, установленного между мишенью 1 и подложкой 4 и устройства синхронизации 9,10,11. Этот диск имеет отверстие для прохода газообразного вещества 3 диаметром около 2,5 см на расстоянии 6 см от центра и вращается мотором 8 со скоростью до 500 оборотов в секунду. Форма диска, его размер и скорость вращения диска гарантируют удаление практически всех капель из потока вещества, испаряемого с мишени.
Устройство синхронизации состоит из миниатюрной лампы накаливания 9 и фотодиода 10, расположенных в вакуумной камере с противоположной от мишени стороны двигателя, и устройства задержки 11. Лампа накаливания и фотодиод установлены так, чтобы при прохождении отверстия в диске напротив лампы открывался путь свету к фотодиоду (Фиг.2). Импульсы фототока с фотодиода поступают в электронное устройство задержки 11, которое вырабатывает синхроимпульсы, запускающие лазер. Эти синхроимпульсы задержаны относительно сигнала с фотодиода так, чтобы в момент лазерного импульса отверстие в диске находилось перед мишенью.
В устройстве в качестве подложки 4 использована длинномерная гибкая металлическая лента. Так как при лазерном испарении область осаждения на подложку ограничена площадью около 10×10 кв.мм, то узел подложки обеспечивает последовательную по всей длине экспозицию ленты для нанесения пленки. Узел подложки состоит из нагревателя 5 и катушек 6 с механизмом протяжки ленты.
Лента 4 помещается в вакуумную камеру на подающей катушке, ее конец пропускается через зону осаждения и закрепляется в приемной катушке. При работе устройства при помощи механизма протяжки лента последовательно по всей длине пропускается через зону осаждения, в которой и происходит нанесение пленки. На Фиг.2 механизм протяжки не показан. Скорость протяжки определяется скоростью осаждения и необходимой толщиной пленки. В зоне осаждения расположен нагреватель 5, обеспечивающий температуру подложки (ленты) на уровне, оптимальном для осаждения требуемой пленки (для эпитаксиального роста обычно 700-900°С).
В узел мишени входит устройство, обеспечивающее вращение мишени в процессе лазерного испарения. Вращение мишени необходимо для более полного использования поверхности мишени и обеспечения длительного времени работы устройства и большей длины получаемых лент.
В устройстве узел мишени обеспечивает также смену мишеней без остановки устройства и без вскрытия вакуумной камеры. Это позволяет наносить пленки различных материалов последовательно без вскрытия установки, так что поверхность пленки не подвергается действию атмосферного воздуха между осаждениями смежных слоев многослойной структуры.
Все компоненты устройства, показанные на Фиг.2, кроме устройства задержки 11, находятся внутри вакуумной камеры, обеспечивающей нанесение в вакууме или, при необходимости, при некотором давлении газа.
В результате предлагаемое устройство способно наносить тонкие пленки различных материалов методом импульсного лазерного испарения, действие скоростного фильтра обеспечивает однородность и гладкость получаемых пленок, а узел мишени последовательно протягивает гибкую длинномерную подложку (металлическую ленту) для нанесения пленки последовательно по всей длине подложки. Таким образом, данное изобретение решает задачу нанесения однородных гладких тонких пленок различных материалов на длинномерные металлические подложки методом импульсного лазерного испарения.
Список литературы
1. Н.М.Smith and A.F.Turner. Vacuum deposited thin films using a ruby laser. Appl. Opt, v.4, p.147 (1965).
2. J.T.Chaung and H.Sankur, Growth of thin films by laser-induced evaporation. CRC Crit. Rev. Solid State Mater. Sci., v.15, p.63-109 (1988).
3. W.P.Barr. The production of low scattering dielectric mirrors using rotating vane particle filtration. J. Phys. E, v.2, p.2 (1969).
4. D.Lubben, S.A.Barnett, K.Suzuki, S.Gorbatkin and J.E.Greene. Laser-induced plasmas for primary ion deposition of epitaxial Ge and Si films. J. Vac. Sci. Technol, v.3(4), p.968-973 (1985).
5. E.V.Pechen, A.V.Varlashkin, S.I.Krasnosvobodtsev, B. Brunner and K.F.Renk. Pulsed-laser deposition of smooth high-Tc superconducting films using a synchronous velocity filter. Appl. Phys. Lett., v.66(17), p.2292-94 (1995).
6. E.V.Pechen, A.V.Varlashkin and A.I.Golovashkin. On-axis YAG:Nd3+ laser deposition of smooth high-Tc YBa2Cu3O7-δ films. Physica B, v.284-288, p.1025-1026 (2000).
7. А.В. Варлашкин, С.И. Красносвободцев, М.Л. Чухаркин, О.В. Снигирев, А.В. Цикунов, Н.П. Шабанова. Напыление гладких пленок ВТСП твердотельным АИГ:Nd3+ лазером. - ЖТФ, т.77(5), с.127-129 (2007).
Claims (2)
1. Устройство для нанесения однородных гладких тонких пленок различных материалов на твердые подложки методом импульсного лазерного испарения,
включающее вакуумную камеру с расположенными в ней узлом мишени, скоростным фильтром и узлом подложек,
отличающееся тем, что
в качестве подложки использована длинномерная гибкая металлическая лента на катушке с механизмом протяжки,
скоростной фильтр выполнен в виде вращающегося диска с отверстием для прохождения испаренного вещества и снабжен устройством синхронизации лазера.
включающее вакуумную камеру с расположенными в ней узлом мишени, скоростным фильтром и узлом подложек,
отличающееся тем, что
в качестве подложки использована длинномерная гибкая металлическая лента на катушке с механизмом протяжки,
скоростной фильтр выполнен в виде вращающегося диска с отверстием для прохождения испаренного вещества и снабжен устройством синхронизации лазера.
2. Устройство по п.1, отличающееся тем, что узел мишени выполнен с возможностью смены мишени в процессе нанесения пленки.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012144845/07A RU2529865C2 (ru) | 2012-10-23 | 2012-10-23 | Устройство для нанесения однородных гладких тонких пленок различных материалов на твердые подложки |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012144845/07A RU2529865C2 (ru) | 2012-10-23 | 2012-10-23 | Устройство для нанесения однородных гладких тонких пленок различных материалов на твердые подложки |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2012144845A RU2012144845A (ru) | 2014-04-27 |
RU2529865C2 true RU2529865C2 (ru) | 2014-10-10 |
Family
ID=50515252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012144845/07A RU2529865C2 (ru) | 2012-10-23 | 2012-10-23 | Устройство для нанесения однородных гладких тонких пленок различных материалов на твердые подложки |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2529865C2 (ru) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5320881A (en) * | 1991-08-27 | 1994-06-14 | Northeastern University | Fabrication of ferrite films using laser deposition |
RU2020025C1 (ru) * | 1990-12-11 | 1994-09-30 | Киевское научно-производственное объединение по автоматизации и механизации технологии производства "Камет" | Линия для изготовления отливок в вакуумно-пленочных формах |
RU2030483C1 (ru) * | 1987-07-15 | 1995-03-10 | Дзе Бок Груп, Инк. | Способ нанесения пленок на основе оксида кремния |
RU2386732C1 (ru) * | 2008-12-18 | 2010-04-20 | Закрытое акционерное общество "СуперОкс" | Способ получения двухстороннего сверхпроводника второго поколения |
-
2012
- 2012-10-23 RU RU2012144845/07A patent/RU2529865C2/ru not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2030483C1 (ru) * | 1987-07-15 | 1995-03-10 | Дзе Бок Груп, Инк. | Способ нанесения пленок на основе оксида кремния |
RU2020025C1 (ru) * | 1990-12-11 | 1994-09-30 | Киевское научно-производственное объединение по автоматизации и механизации технологии производства "Камет" | Линия для изготовления отливок в вакуумно-пленочных формах |
US5320881A (en) * | 1991-08-27 | 1994-06-14 | Northeastern University | Fabrication of ferrite films using laser deposition |
RU2386732C1 (ru) * | 2008-12-18 | 2010-04-20 | Закрытое акционерное общество "СуперОкс" | Способ получения двухстороннего сверхпроводника второго поколения |
Also Published As
Publication number | Publication date |
---|---|
RU2012144845A (ru) | 2014-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4340752C2 (de) | Vorrichtung zur Herstellung einer gleichförmigen Dünnschicht auf einer großen Substratfläche unter Verwendung eines Lasers | |
Zheng et al. | Low resistivity indium tin oxide films by pulsed laser deposition | |
Pechen et al. | Pulsed‐laser deposition of smooth high‐T c superconducting films using a synchronous velocity filter | |
US5290761A (en) | Process for making oxide superconducting films by pulsed excimer laser ablation | |
CN108179386B (zh) | 脉冲激光镀膜装置 | |
Boyd | Thin film growth by pulsed laser deposition | |
Morintale et al. | Thin films development by pulsed laser-assisted deposition | |
Selinder et al. | Resputtering effects on the stoichiometry of YBa2Cu3O x thin films | |
Rao | Pulsed laser deposition—Ablation mechanism and applications | |
CN108220888B (zh) | 适用于脉冲激光镀膜的加热装置及其脉冲激光镀膜装置 | |
US7838061B2 (en) | Method and apparatus for fabricating high temperature superconducting film through auxiliary cluster beam spraying, and high temperature superconducting film fabricated using the method | |
Lee et al. | Deposition angle‐dependent morphology of laser deposited YBa2Cu3O7 thin films | |
RU2529865C2 (ru) | Устройство для нанесения однородных гладких тонких пленок различных материалов на твердые подложки | |
Horwitz | Pulsed-laser deposition | |
US5264412A (en) | Laser ablation method for forming oxide superconducting thin films using a homogenized laser beam | |
Shrivastava | Deposition techniques for high-tc superconducting YBCO thin films | |
JPH04331795A (ja) | 多結晶薄膜の製造方法 | |
Venkatesan | Pulsed-laser deposition of high-temperature superconducting thin films | |
Izumi et al. | Cumulative laser irradiation effects on ions in the plume of YBa2Cu3O7− δ and particulates at the film surface | |
Wördenweber | Physical vapor thin-film deposition techniques | |
Varlashkin et al. | Deposition of smooth high-T c superconducting films with a solid-state YAG: Nd3+ laser | |
JP2588971B2 (ja) | レーザ蒸着方法及び装置 | |
JP3080096B2 (ja) | 大面積薄膜の作製方法 | |
JP2013163847A (ja) | 超電導薄膜作製用ターゲットおよびその製造方法 | |
Atanasov et al. | Laser processing of Y1Ba2Cu3O7 superconducting thin films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20151024 |