RU2523130C2 - Интраокулярная линза с расширенной глубиной фокуса - Google Patents
Интраокулярная линза с расширенной глубиной фокуса Download PDFInfo
- Publication number
- RU2523130C2 RU2523130C2 RU2011129463/14A RU2011129463A RU2523130C2 RU 2523130 C2 RU2523130 C2 RU 2523130C2 RU 2011129463/14 A RU2011129463/14 A RU 2011129463/14A RU 2011129463 A RU2011129463 A RU 2011129463A RU 2523130 C2 RU2523130 C2 RU 2523130C2
- Authority
- RU
- Russia
- Prior art keywords
- lens
- profile
- iol
- sinusoidal
- pupil
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 54
- 210000001747 pupil Anatomy 0.000 claims description 34
- 230000004308 accommodation Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 7
- 239000003814 drug Substances 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 210000000695 crystalline len Anatomy 0.000 description 68
- 238000013461 design Methods 0.000 description 26
- 230000004438 eyesight Effects 0.000 description 8
- 238000001356 surgical procedure Methods 0.000 description 8
- 208000014733 refractive error Diseases 0.000 description 7
- 208000002177 Cataract Diseases 0.000 description 6
- 238000010276 construction Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000004075 alteration Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- 206010036346 Posterior capsule opacification Diseases 0.000 description 2
- 230000002350 accommodative effect Effects 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000000560 biocompatible material Substances 0.000 description 2
- 210000004087 cornea Anatomy 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000004304 visual acuity Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000004382 visual function Effects 0.000 description 2
- 206010020675 Hypermetropia Diseases 0.000 description 1
- 206010027646 Miosis Diseases 0.000 description 1
- 206010047571 Visual impairment Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 210000001742 aqueous humor Anatomy 0.000 description 1
- 201000009310 astigmatism Diseases 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000004305 hyperopia Effects 0.000 description 1
- 201000006318 hyperopia Diseases 0.000 description 1
- 230000001795 light effect Effects 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 208000001491 myopia Diseases 0.000 description 1
- 230000004379 myopia Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/14—Eye parts, e.g. lenses or corneal implants; Artificial eyes
- A61F2/16—Intraocular lenses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/14—Eye parts, e.g. lenses or corneal implants; Artificial eyes
- A61F2/16—Intraocular lenses
- A61F2/1613—Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/14—Eye parts, e.g. lenses or corneal implants; Artificial eyes
- A61F2/16—Intraocular lenses
- A61F2/1613—Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
- A61F2/1616—Pseudo-accommodative, e.g. multifocal or enabling monovision
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/14—Eye parts, e.g. lenses or corneal implants; Artificial eyes
- A61F2/16—Intraocular lenses
- A61F2/1613—Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
- A61F2/1616—Pseudo-accommodative, e.g. multifocal or enabling monovision
- A61F2/1618—Multifocal lenses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/14—Eye parts, e.g. lenses or corneal implants; Artificial eyes
- A61F2/16—Intraocular lenses
- A61F2/1613—Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
- A61F2/1624—Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus having adjustable focus; power activated variable focus means, e.g. mechanically or electrically by the ciliary muscle or from the outside
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/14—Eye parts, e.g. lenses or corneal implants; Artificial eyes
- A61F2/16—Intraocular lenses
- A61F2/1613—Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
- A61F2/1637—Correcting aberrations caused by inhomogeneities; correcting intrinsic aberrations, e.g. of the cornea, of the surface of the natural lens, aspheric, cylindrical, toric lenses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/14—Eye parts, e.g. lenses or corneal implants; Artificial eyes
- A61F2/16—Intraocular lenses
- A61F2/1613—Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
- A61F2/1637—Correcting aberrations caused by inhomogeneities; correcting intrinsic aberrations, e.g. of the cornea, of the surface of the natural lens, aspheric, cylindrical, toric lenses
- A61F2/164—Aspheric lenses
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/04—Contact lenses for the eyes
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/04—Contact lenses for the eyes
- G02C7/041—Contact lenses for the eyes bifocal; multifocal
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C2202/00—Generic optical aspects applicable to one or more of the subgroups of G02C7/00
- G02C2202/20—Diffractive and Fresnel lenses or lens portions
Landscapes
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- General Health & Medical Sciences (AREA)
- Vascular Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Transplantation (AREA)
- Cardiology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Prostheses (AREA)
- Eyeglasses (AREA)
Abstract
Изобретение относится к медицине. Офтальмологическая линза, содержит оптику с передней и задней поверхностями, расположенными по оптической оси, где одна из поверхностей имеет профиль, характеризуемый наложением базового профиля и вспомогательного синусоидального профиля. Причем вспомогательный синусоидальный профиль содержит непрерывный тип отклонений поверхности от базового профиля. При этом вспомогательный синусоидальный профиль модулирован косинусной функцией. Применение данного изобретения позволит увеличить глубину фокуса. 11 з.п. ф-лы, 7 ил.
Description
ОБЛАСТЬ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится в целом к офтальмологическим линзам, а конкретнее к офтальмологическим линзам, которые обеспечивают увеличенную глубину фокуса.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Интраокулярные линзы (ИОЛ) обычно имплантируются в глаза пациентов во время операции по поводу катаракты для замещения естественных кристаллических хрусталиков. Разнообразные офтальмологические линзы используются для коррекции расстройств зрения, таких как катаракта, миопия, гиперопия или астигматизм. Например, интраокулярная линза (ИОЛ) может имплантироваться в глаз пациента во время операции по поводу катаракты для компенсации утраченной оптической силы удаленной линзы. Однако во многих случаях имплантированная линза может не обеспечить наилучший фокус на целевом расстоянии объекта.
Конструкция современной обычной оптики ИОЛ главным образом сфокусирована на двух положениях: оптике, которая обеспечивает коррекцию аберрации для обеспечения четкого дистанционного зрения, или мультифокальной оптике, которая обеспечивает зрение на дальность, в то же время, удовлетворяя потребности зрительного восприятия близко расположенных объектов. Данные конструкции обычно не направлены на удовлетворение другой важной потребности пациента: у большинства пожилых пациентов большая часть зрительных потребностей сосредоточена вокруг определенных промежуточных расстояний. Эти пожилые пациенты, которые составляют большую процентную долю пациентов, получающих ИОЛ для замещения натурального хрусталика, требуют расширенного функционального зрения, от дистанционного до промежуточного, для выполнения повседневных бытовых манипуляций. Расширенное функциональное зрение недостаточно обеспечивается современными конструкциями ИОЛ.
Соответственно существует потребность в усовершенствованной офтальмической линзе, а конкретнее в усовершенствованной ИОЛ, которая может обеспечить увеличенную глубину фокуса по сравнению с ИОЛ предшествующего уровня техники.
КРАТКОЕ ОПИСАНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к офтальмологическим линзам, которые проявляют расширенную глубину поля, в то же время, обеспечивая достаточный контраст для разрешения изображения по выбранному диапазону расфокусированных расстояний. Варианты осуществления настоящего изобретения включают синусоидальные оптические конструкции в ИОЛ для обеспечения расширенной глубины фокуса в глазу пациента. На основании классической синусоидальной методики варианты осуществления настоящего изобретения включают методики модуляции амплитуды и модуляции частоты для обеспечения увеличенной глубины фокуса. Один вариант осуществления может обеспечить ослабление синусоидальной амплитуды от центра зрачка до периферии линзы, концентрируя больше световой энергии в одну фокальную плоскость. Другой вариант осуществления может обеспечить модуляцию синусоидальной периодичности оптики ИОЛ для изменения эффективной добавленной оптической силы линзы как функции радиуса зрачка. Вариант осуществления, комбинирующий модуляцию амплитуды и модуляцию частоты на синусоидальной кривой, может дополнительно увеличить трансфокальную функцию ИОЛ и генерировать желательный профиль глубины фокуса, лишенный определенных световых феноменов, испытываемых при обычных конструкциях. Варианты осуществления оптической конструкции по настоящему изобретению могут применяться к однофокусным, многофокусным и/или аккомодационным оптическим устройствам ИОЛ.
Раскрыты способы коррекции рефрактивных ошибок или иного усиления зрения по диапазону расстояний, а также способы изготовления линз по настоящему изобретению. Офтальмологические линзы по настоящему изобретению могут использоваться при различных видах применения для коррекции зрения, включая без ограничения ИОЛ, которые могут использоваться и для псевдофакических, и факических видов применения. Изобретение также может применяться в связи с контактными линзами, внутриглазными имплантатами и другими рефрактивными устройствами.
Термины «глубина поля» и «глубина фокуса» в контексте линзы/ИОЛ хорошо известны и вполне понятны специалистам в данной области как относящиеся к расстояниям до объекта и пространствам изображения, по которым может осуществляться разрешение приемлемого изображения. В той степени, в которой количественное измерение необходимо для описания настоящего изобретения, используемый в настоящем описании термин «глубина поля» или «глубина фокуса» более конкретно может быть измерен количеством дефокусирования, связанного с линзой, при которой модуляция функции трансфокальной передачи (MTF) линзы, измеренная при апертуре 3 мм и зеленом свете, например свете, имеющем длину волн примерно 550 нм, проявляет контраст, по меньшей мере, примерно 15% при пространственной частоте, равной примерно одной трети ограниченной дифракцией пространственной частоты, связанной с этой линзой. Могут также применяться другие определения, и должно быть понятно, что на глубину поля влияет множество факторов, включая, например, размер апертуры, хроматическое содержимое света от изображения и базовую силу самой линзы.
ИОЛ в соответствии с положениями изобретения может иметь любую номинальную силу, подходящую для конкретного применения. В одном варианте осуществления, особенно подходящем для видов применения ИОЛ у пациентов с катарактой, офтальмологическая линза по изобретению может проявлять номинальную оптическую силу в диапазоне от примерно 17 до примерно 25 диоптрий. При других видах применения факические линзы, имеющие отрицательную номинальную оптическую силу, могут быть образованы в соответствии с положениями изобретения.
Тело линз ИОЛ в соответствии с положениями изобретения может быть сформировано из любого подходящего биологически совместимого материала. Например, тело линзы может быть сформировано из мягкого акрилового материала, такого как материал AcrySoft, выпускаемый компанией Alcon Laboratories, Inc., of Fort Worth, TX, гидрогеля или силиконового материала. Например, тело линзы может быть сформировано из полиметилметакрилата (РММА). В некоторых вариантах осуществления, особенно когда желательна складываемая линза ИОЛ, линза может быть сформирована из сополимера акрилата и метакрилата. Иллюстративные примеры таких сополимерных композиций описаны, например, в патенте США №5922821, озаглавленном «Полимеры офтальмологических линз», выданном Lebouef et al. 13 июля 1999 г., и в патенте США №6353069, озаглавленном «Материалы для глазных устройств с высоким рефрактивным индексом», выданном Freeman et al. 5 марта 2002 г., положения которых включены в настоящее описание путем ссылки.
Согласно изобретению предусмотрена офтальмологическая линза, содержащая оптику, имеющую переднюю поверхность и заднюю поверхность, расположенные по оптической оси, где:
по меньшей мере, одна из поверхностей имеет профиль, характеризуемый наложением базового профиля и вспомогательного синусоидального профиля, причем вспомогательный синусоидальный профиль содержит непрерывный тип отклонений поверхности от базового профиля, при этом вспомогательный синусоидальный профиль модулирован косинусной функцией, как определяется, по меньшей мере, одним из следующих отношений:
при этом a обозначает амплитуду синусоидальной кривой и эффективность дифракции в различных фокусах; а
b обозначает периодичность и добавленную оптическую силу;
r обозначает радиальное расстояние от оптической оси линзы;
r0 представляет конечный радиус зрачка косинусной модуляции;
и
f(r) представляет квадратный корень радиуса зрачка.
При этом у линзы передняя поверхность и задняя поверхность являются выпуклыми или вогнутыми.
Кроме того, базовый профиль линзы согласно изобретению является в целом сферическим и симметричным по оптической оси офтальмологической линзы.
Кроме того, базовый профиль линзы является в целом асферическим, а вспомогательный профиль является симметричным по оптической оси офтальмологической линзы.
При этом офтальмологическая линза представляет собой интраокулярную линзу (ИОЛ)и ИОЛ может представлять собой монофокальную ИОЛ, аккомодационную ИОЛ или мультифокальную ИОЛ.
При этом передняя поверхность и задняя поверхность линзы представляют собой рефрактивные поверхности.
Изобретение можно, кроме того, понять из следующего детального описания и прилагаемых чертежей, которые кратко описаны ниже.
КРАТКОЕ ОПИСАНИЕ ФИГУР ЧЕРТЕЖЕЙ
На фиг.1 схематически изображена линза в соответствии с положениями настоящего изобретения;
на фиг.1A и 1B показаны графики профиля поверхности синусоидальной оптической конструкции;
фиг.2A-2D иллюстрируют трансфокальную функцию синусоидальной конструкции линзы для различных размеров зрачка;
фиг.3A-3I иллюстрируют трансфокальную функцию внутри глаза человека для синусоидальной оптической конструкции (фиг.3A-3C), конструкции сферической линзы (фиг.3D-3F) и конструкции асферической линзы (фиг.3G-3I);
на фиг.4A и 4B показаны графики профиля поверхности модулированной по амплитуде синусоидальной оптической конструкции;
на фиг.5A и 5B показаны графики профиля поверхности модулированной по частоте синусоидальной оптической конструкции;
на фиг.6A и 6B показаны графики профиля поверхности варианта осуществления модулированной по амплитуде и модулированной по частоте синусоидальной оптической конструкции по настоящему изобретению; и
фиг.7A-7I иллюстрируют трансфокальную функцию внутри глаза человека для синусоидальной оптической конструкции (фиг.7A-7C), для модулированной по амплитуде синусоидальной оптической конструкции (фиг.7D-7F) и для варианта осуществления модулированной по амплитуде и модулированной по частоте синусоидальной оптической конструкции по настоящему изобретению (фиг.7G-7I).
ДЕТАЛЬНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к офтальмологической линзе, которая проявляет расширенную глубину поля путем комбинирования амплитудной модуляции и частотной модуляции на синусоидальной кривой. Линза по изобретению может, таким образом, корректировать рефрактивные ошибки или иным образом усиливать зрение путем обеспечения достаточного контраста для разрешения изображения по выбранному диапазону расстояний дефокусирования, которые соответствуют увеличенной глубине поля, проявляемой линзой.
На фиг.1 схематически показана иллюстративная линза 10 в соответствии с положениями настоящего изобретения, которая включает оптику 12 линзы, имеющую две рефрактивных поверхности 14 и 16. Хотя рефрактивные поверхности изображены как являющиеся в целом выпуклыми, любая поверхность может иметь в целом вогнутую форму. Альтернативно, поверхности 14 и 16 могут быть выбраны для получения плоско-выпуклой или плоско-вогнутой линзы. Следовательно, линза в соответствии с положениями изобретения может иметь положительную или отрицательную номинальную оптическую силу.
Оптика 12 линзы может быть образована из разнообразных биологически совместимых мягких материалов. Например, оптика 12 линзы может быть образована из мягкого акрилового материала, например, сополимера акрилата и метакрилата, или гидрогеля или силикона. Средним специалистам в данной области понятно, что в действительности любой мягкий биологически совместимый материал, который проявляет необходимый показатель преломления для конкретного вида применения линзы, может использоваться для получения линзы по изобретению, такой как описанная выше иллюстративная линза 10.
Рефрактивная поверхность 16 имеет волнистую топографию. В целях иллюстрации модуляции поверхности были преувеличены. Конкретнее, рефрактивная поверхность 16 может характеризоваться базовой кривизной или профилем 18, изображенным пунктирными линиями, на которые наложена непрерывная картина 20 отклонений поверхности. Иллюстративный базовый профиль 18 является в целом сферическим и радиально-симметричным вокруг оптической оси 22 тела/оптики 12 линзы. Аналогичным образом, в данном иллюстративном варианте осуществления непрерывный тип отклонений поверхности также является радиально-симметричным вокруг оптической оси 22. Хотя базовый профиль 18 в данном варианте осуществления является сферическим, в других вариантах осуществления асферические базовые профили могут использоваться при практическом исполнении изобретения.
Варианты осуществления модулированной по амплитуде и/или частоте синусоидальной оптической конструкции по настоящему изобретению могут обеспечить желательную оптическую конструкцию с увеличенной глубиной фокуса. На основании классической синусоидальной методики обсуждаются две конструкции, основанные на модуляции амплитуды и модуляции частоты. Первая конструкция ослабляет синусоидальную амплитуду оптического устройства от центра зрачка к оптической периферии для концентрации большего количества энергии в одной фокальной плоскости. Вторая конструкция модулирует синусоидальную периодичность оптики для варьирования эффективной добавленной оптической силы как функции радиуса зрачка. Варианты осуществления настоящего изобретения комбинируют указанные два типа конструкции для дополнительного усиления трансфокусной оптической функции и генерирования желательного профиля глубины фокуса. Варианты осуществления настоящего изобретения могут осуществляться в виде монофокальных, аккомодационных и/или мультифокальных внутриглазных линз.
Вычисления, используемые для модулирования вариантов осуществления по настоящему изобретению, выполняли с использованием программы Matlab. Подход с использованием волновой оптики был выбран для моделирования синусоидальной оптической структуры, и оценка функции главным образом сосредоточена на функции передачи трансфокальной модуляции при 50 (20/40 VA (реактивная мощность ВА)) и 100 lp/mm (разрешение в парах линий/мм) (20/20 VA).
Классическая синусоидальная конструкция была предложена в качестве альтернативного пути для генерирования трифокального поведения без неблагоприятных световых эффектов резких дифрактивных стадий в оптике, такой как оптика ИОЛ. Синусоидальная кривая может быть описана уравнением 1.
где a представляет параметр, определяющий амплитуду синусоидальной кривой и эффективность дифракции в различных фокусах, a b представляет параметр, определяющий периодичность и добавленную оптическую силу.
В исследовании использовали величины параметров a=0,5877 и b=2,2, которые дали добавленную оптическую силу ±0,5 диоптрий. Параметр а может регулироваться для учета изменения среды конструкции от воздуха к водянистой влаге, как будет обсуждено ниже в настоящем описании. Оптический профиль поверхности синусоидальной оптической конструкции иллюстрируется на фиг.1A и 1B. Фиг.1A представляет собой график одномерного профиля поверхности, а фиг.1B представляет собой карту высоты поверхности. Синусоидальная кривая становится все более плотной от оптического/зрачкового центра к оптической периферии, подобно тому, как это происходит в типичной мультифокальной линзе. Трансфокальную функцию линзы, имеющей данную конструкцию, при допущении аберраций высокого порядка рассчитывали для зрачка 3,0 мм, 4,5 мм и 5,0 мм внутри обычного элемента с жидким электролитом. Фиг.2A, 2C и 2D соответственно иллюстрируют данные результаты.
Результаты расчета справедливо отражают уникальные характеристики синусоидальной оптической конструкции. Для маленьких зрачков (например, примерно 3 мм) открытая центральная часть доминирует рефрактивным эффектом (добавленная оптическая сила +0,5 диоптрий) перед тем, как происходит интерференция между периодическими структурами. Трансфокальные MTF достигали пика при дефокусировании -0,57 D (соответствующем добавленной оптической силе +0,57 D), проявляющем данный эффект. MTF, как показано на фиг.2В, подтверждает хорошее оптическое качество при данном уровне дефокусирования. При больших зрачках (4,5 мм и 5,0 мм) дифрактивные эффекты были все более очевидны, что указывают три отчетливых трансфокальных пика при 100 lp/mm. По оценкам длина волн составляет 550 нм.
Трансфокальную функцию синусоидальной конструкции, описанной выше, сравнивали с оптическими конструкциями существующих сферических и асферических ИОЛ. Результаты показаны на фиг.3A-3I. Трансфокальную функцию внутри глаза человека (роговицы со сферической аберрацией 0,28 мкм) рассчитывали для синусоидальной конструкции (фиг.3A-3C), сферической конструкции линзы (фиг.3D-3F) и асферической конструкции линзы (фиг.3G-3I). Оценивали функцию при трех различных размерах зрачка: зрачка 3,5 мм (фиг.3A, 3D, 3G); зрачка 4,5 мм (фиг.3B, 3E, 3H) и зрачка 6,0 мм (фиг.3C, 3F, 3I). Для оценки использовали четыре типичных пространственных частоты: 25, 50, 75 и 100 lp/mm.
В целом синусоидальная конструкция расширяет глубину фокуса по сравнению с оптическими конструкциями сферических и асферических ИОЛ предшествующего уровня техники. Большое количество сферической аберрации в сферической конструкции оптики быстро уменьшает модуляцию для больших зрачков. Конструкция оптики асферической ИОЛ поддерживает хорошую максимальную оптическую функцию для всех зрачков. Однако асферическая конструкция линзы имеет ограниченную глубину фокуса.
Для больших зрачков дифрактивный эффект классической синусоидальной конструкции приводит к функциям передачи модуляции, являющимся достаточно низкими ввиду расщепления света на три различных фокуса. Сниженные передачи модуляции обычно приводят к сниженной контрастной чувствительности и нарушают выполнение вождения транспорта в ночное время. В прошлом на эффект низких передач модуляции в конструкциях мультифокальных ИОЛ воздействовали схемой аподизации. Аналогичным образом синусоидальная амплитуда синусоидальной оптики может модулироваться косинусной функцией, которая может сдвинуть больше света к выбранному порядку дифракции, например нулевому порядку дифракции, по мере увеличения размера зрачка (например, в условиях темноты).
Модулированная по амплитуде (AM) синусоидальная конструкция оптики иллюстрируется на фиг.4A и 4B. На фиг.4A показан график одномерного профиля поверхности, а на фиг.4B показана двухмерная карта высоты поверхности. Косинусная функция модуляции начинается от 1,0 в центре (оптики) зрачка и постепенно уменьшается до 0 при диаметре зрачка 5,0 мм. Аналитическое описание амплитудной модуляции представлено уравнением 2.
где r0 представляет конечный радиус зрачка косинусной модуляции.
Фиг.7D-7F иллюстрируют трансфокальную функцию модулированной по амплитуде синусоидальной конструкции, как будет далее обсуждено ниже. Как показано на фиг.7F, пиковая функция 100 lp/mm для входного зрачка 6,0 мм улучшилась с 0,28 синусоидальной конструкции до 0,40 (увеличение на ~40%).
Увеличенная глубина фокуса может иметь меньшее преимущество для большого зрачка (состояние вождения транспортных средств ночью), и поэтому уменьшенная глубина фокуса для большого зрачка может помочь концентрировать большее количество энергии на дальний фокус. Новая методика, частотная модуляция, помогла уменьшить добавленную оптическую силу синусоидальной конструкции по мере увеличения зрачка. Профиль поверхности модулированной по частоте синусоидальной конструкции оптики показан на фиг.5A и 5B. На фиг.5A показан график одномерного профиля поверхности, а на фиг.5B показана двухмерная карта высоты профиля. На фиг.5A также показана немодулированная синусоидальная конструкция оптики для сравнения. Ввиду природы уменьшения добавленной оптической силы, промежуток между пиками становится шире от центра линзы/зрачка до периферии линзы, что аналитически выражено представленным ниже уравнением 3.
где f(r) представляет квадратный корень радиуса зрачка.
Для дальнейшего усиления оптической функции при большом размере зрачка варианты осуществления настоящего изобретения комбинируют амплитудную модуляцию и частотную модуляцию на синусоидальной конструкции оптики, концентрируя световую энергию в одну фокальную плоскость. Профиль поверхности варианта осуществления конструкции модифицированной по амплитуде и частоте синусоидальной оптики может быть описан уравнением (4), и профиль поверхности показан на фиг.6A и 6B.
На фиг.6A показан одномерный график профиля поверхности, а на фиг.6B показана карта высоты поверхности одного варианта осуществления конструкции модулированной по амплитуде и модулированной по частоте синусоидальной оптики по настоящему изобретению. Комбинация амплитудной модуляции и частотной модуляции значительно улучшает трансфокальную функцию оптики. Передачи пиковой модуляции (MTF) повторно центрируются в эмметропическое состояние для маленьких (3,5 мм) и средних (4,5 мм) зрачков в значительной степени ввиду эффекта частотной модуляции. Максимальная функция MTF достигла грубо 0,30, 0,40 и 0,50 для 3,5 мм, 4,5 мм и 6,0 мм соответственно.
Фиг.7A-7I иллюстрируют трансфокальную функцию внутри глаза человека (роговица со сферической аберрацией 0,28 мкм) для конструкции синусоидальной оптики (фиг.7A-7C), для конструкции модулированной по амплитуде синусоидальной оптики (фиг.7D-7F) и для варианта осуществления конструкции модулированной по амплитуде и модулированной по частоте синусоидальной оптики по настоящему изобретению (фиг.7G-7I). Оценивали функцию при трех различных размерах зрачка: зрачке 3,5 мм (фиг.7A, 7D, 7G); зрачке 4,5 мм (фиг.7B, 7E, 7H) и зрачке 6,0 мм (фиг.7C, 7F, 7I). Для оценки использовали четыре типичные пространственные частоты: 25, 50, 75 и 100 lp/mm.
Офтальмологическая линза в соответствии с положениями изобретения может использоваться при разнообразных видах применения для коррекции зрения. Такие виды применения включают без ограничения внутриглазные линзы (ИОЛ), контактные линзы, интрастромальные имплантаты и другие рефрактивные устройства. Например, линзы по изобретению могут использоваться в качестве усовершенствованных ИОЛ, которые смягчают остаточные рефрактивные ошибки, которые обычно присутствуют после операции по поводу катаракты. В практике хирургического лечения катаракты хорошо известно, что такие факторы, как прецизионность хирургического инструмента, прецизионность изделия ИОЛ, предоперационные биометрические данные, уровень навыков хирурга и различия капсулярного мешка среди индивидов, могут вызвать изменения желательной рефрактивной ошибки после операции. Одно стандартное отклонение таких изменений рефрактивной ошибки может достигать 0,5 диоптрий. Такая остаточная рефрактивная ошибка, которая может сохраняться в течение длительного времени, может снижать остроту зрения пациента. Следовательно, многим пациентам требуются очки для достижения усиленной остроты зрения после операции.
ИОЛ, образованная в соответствии с положениями изобретения, может использоваться для того, чтобы придать исходам операций по поводу катаракты большую прогнозируемость и, таким образом, снизить зависимость от очков после операции по поводу катаракты. В частности, ИОЛ по изобретению может включать рефрактивную поверхность, имеющую отклонения поверхности, которые вызывают усиление глубины поля ИОЛ и, следовательно, снижают чувствительность ИОЛ к описанным выше ошибкам. Другими словами, глаз пациента, в который имплантирована ИОЛ по изобретению, проявляет увеличенную глубину фокуса и, следовательно, обеспечивает улучшенную зрительную функцию в пределах более широкого диапазона дефокусирования. Соответственно, послеоперационные изменения рефрактивной ошибки оказывают меньшее воздействие на зрительную функцию пациента.
Средним специалистам в данной области понятно, что различные модификации могут быть внесены в описанные выше варианты осуществления без отхода от объема изобретения.
Claims (12)
1. Офтальмологическая линза, содержащая
оптику, имеющую переднюю поверхность и заднюю поверхность, расположенные по оптической оси, где:
по меньшей мере, одна из поверхностей имеет профиль, характеризуемый наложением базового профиля и вспомогательного синусоидального профиля, причем вспомогательный синусоидальный профиль содержит непрерывный тип отклонений поверхности от базового профиля, при этом вспомогательный синусоидальный профиль модулирован косинусной функцией, как определяется по меньшей мере одним из следующих отношений:
и
,
при этом a обозначает амплитуду синусоидальной кривой и эффективность дифракции в различных фокусах; а
b обозначает периодичность и добавленную оптическую силу;
r обозначает радиальное расстояние от оптической оси линзы; и
r0 представляет конечный радиус зрачка косинусной модуляции; и
f(r) представляет квадратный корень радиуса зрачка.
оптику, имеющую переднюю поверхность и заднюю поверхность, расположенные по оптической оси, где:
по меньшей мере, одна из поверхностей имеет профиль, характеризуемый наложением базового профиля и вспомогательного синусоидального профиля, причем вспомогательный синусоидальный профиль содержит непрерывный тип отклонений поверхности от базового профиля, при этом вспомогательный синусоидальный профиль модулирован косинусной функцией, как определяется по меньшей мере одним из следующих отношений:
и
,
при этом a обозначает амплитуду синусоидальной кривой и эффективность дифракции в различных фокусах; а
b обозначает периодичность и добавленную оптическую силу;
r обозначает радиальное расстояние от оптической оси линзы; и
r0 представляет конечный радиус зрачка косинусной модуляции; и
f(r) представляет квадратный корень радиуса зрачка.
2. Линза по п.1, в которой передняя поверхность и задняя поверхность являются выпуклыми.
3. Линза по п.1, в которой передняя поверхность и задняя поверхность являются вогнутыми.
4. Линза по п.1, в которой базовый профиль является в целом сферическим.
5. Линза по п.1, в которой базовый профиль является симметричным по оптической оси офтальмической линзы.
6. Линза по п.1, в которой базовый профиль является в целом асферическим.
7. Линза по п.1, в которой вспомогательный профиль является симметричным по оптической оси офтальмической линзы.
8. Линза по п.1, в которой офтальмологическая линза представляет собой интраокулярную линзу (ИОЛ).
9. Линза по п.8, в которой ИОЛ представляет собой монофокальную ИОЛ.
10. Линза по п.8, в которой ИОЛ представляет собой аккомодационную ИОЛ.
11. Линза по п.8, в которой ИОЛ представляет собой мультифокальную ИОЛ.
12. Линза по п.1, в которой передняя поверхность и задняя поверхность представляют собой рефрактивные поверхности.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13881608P | 2008-12-18 | 2008-12-18 | |
US61/138,816 | 2008-12-18 | ||
PCT/US2009/067287 WO2010071751A1 (en) | 2008-12-18 | 2009-12-09 | Intraocular lens with extended depth of focus |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2011129463A RU2011129463A (ru) | 2013-01-27 |
RU2523130C2 true RU2523130C2 (ru) | 2014-07-20 |
Family
ID=42267230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011129463/14A RU2523130C2 (ru) | 2008-12-18 | 2009-12-09 | Интраокулярная линза с расширенной глубиной фокуса |
Country Status (15)
Country | Link |
---|---|
US (2) | US20100161051A1 (ru) |
EP (1) | EP2358306B1 (ru) |
JP (1) | JP5513521B2 (ru) |
KR (1) | KR101436300B1 (ru) |
CN (1) | CN102256567B (ru) |
AR (1) | AR076831A1 (ru) |
AU (1) | AU2009327455C1 (ru) |
BR (1) | BRPI0923031B1 (ru) |
CA (1) | CA2744049C (ru) |
ES (1) | ES2441946T3 (ru) |
IL (1) | IL213036A (ru) |
MX (1) | MX2011006007A (ru) |
RU (1) | RU2523130C2 (ru) |
TW (1) | TWI496567B (ru) |
WO (1) | WO2010071751A1 (ru) |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8974526B2 (en) | 2007-08-27 | 2015-03-10 | Amo Groningen B.V. | Multizonal lens with extended depth of focus |
WO2012073112A1 (en) | 2010-12-01 | 2012-06-07 | Amo Groningen B.V. | A multifocal lens having an optical add power progression, and a system and method of providing same |
JP6041401B2 (ja) | 2011-08-04 | 2016-12-07 | グラハム バレット | 拡張焦点深度眼内レンズを含む方法および装置 |
TWI588560B (zh) | 2012-04-05 | 2017-06-21 | 布萊恩荷登視覺協會 | 用於屈光不正之鏡片、裝置、方法及系統 |
CA2880429C (en) | 2012-07-03 | 2021-11-02 | Abbott Medical Optics Inc. | High efficiency optic |
AU2013308109B2 (en) | 2012-08-31 | 2018-04-19 | Amo Groningen B.V. | Multi-ring lens, systems and methods for extended depth of focus |
US9201250B2 (en) | 2012-10-17 | 2015-12-01 | Brien Holden Vision Institute | Lenses, devices, methods and systems for refractive error |
TWI600418B (zh) | 2012-10-17 | 2017-10-01 | 布萊恩荷登視覺協會 | 用於屈光不正之鏡片、裝置、方法及系統 |
KR102171529B1 (ko) | 2014-09-09 | 2020-10-30 | 스타 서지컬 컴퍼니 | 확장된 피사계 심도 및 향상된 원거리 시력의 안과용 임플란트 |
US12127934B2 (en) | 2014-09-09 | 2024-10-29 | Staar Surgical Company | Method of Providing Modified Monovision to a Subject with a First Lens and a Second Lens |
JP6374345B2 (ja) * | 2015-04-20 | 2018-08-15 | 伊藤光学工業株式会社 | 視力矯正用レンズの設計方法及び視力矯正用レンズ |
ES2673296T3 (es) * | 2015-10-02 | 2018-06-21 | Rayner Intraocular Lenses Limited | Lente multifocal |
WO2017137841A1 (en) | 2016-02-09 | 2017-08-17 | Amo Groningen B.V. | Progressive power intraocular lens, and methods of use and manufacture |
US11083566B2 (en) | 2016-02-29 | 2021-08-10 | Alcon Inc. | Ophthalmic lens having an extended depth of focus |
US9968440B2 (en) * | 2016-02-29 | 2018-05-15 | Novartis Ag | Ophthalmic lens having an extended depth of focus |
BR112018068184B1 (pt) | 2016-03-09 | 2023-02-14 | Staar Surgical Company | Lente configurada para implantação em um olho de um ser humano |
EP3470019A4 (en) * | 2016-06-09 | 2020-02-26 | Santen Pharmaceutical Co., Ltd. | MONOFOCAL INTRAOCULAR LENS |
JP6826843B2 (ja) * | 2016-08-31 | 2021-02-10 | Hoya株式会社 | 眼内レンズ、その設計方法、およびその製造方法 |
US10531950B2 (en) * | 2016-11-16 | 2020-01-14 | Tatvum LLC | Intraocular lens having an extended depth of focus |
CN106491244B (zh) * | 2016-12-05 | 2018-12-28 | 南开大学 | 大焦深非球面衍射型人工晶体 |
AU2018235011A1 (en) | 2017-03-17 | 2019-10-24 | Amo Groningen B.V. | Diffractive intraocular lenses for extended range of vision |
US11523897B2 (en) | 2017-06-23 | 2022-12-13 | Amo Groningen B.V. | Intraocular lenses for presbyopia treatment |
EP3646110B1 (en) | 2017-06-28 | 2024-11-27 | Amo Groningen B.V. | Methods for designing and manufacturing a diffractive intraocular lens |
AU2018292030B2 (en) | 2017-06-28 | 2024-02-08 | Amo Groningen B.V. | Extended range and related intraocular lenses for presbyopia treatment |
US11327210B2 (en) | 2017-06-30 | 2022-05-10 | Amo Groningen B.V. | Non-repeating echelettes and related intraocular lenses for presbyopia treatment |
AU2018306502B2 (en) | 2017-07-24 | 2024-04-04 | Alcon Inc. | Ophthalmic lens having morphed sinusoidal phase shift structures |
ES2803225T3 (es) * | 2017-07-26 | 2021-01-25 | Vsy Biyoteknoloji Ve Ilac Sanayi Anonim Sirketi | Lente difractiva multifocal oftálmica |
FR3072020B1 (fr) * | 2017-10-05 | 2019-11-08 | Cristalens Industrie | Ensemble constitue d'une paire d'implants oculaires multifocaux |
CN109009567B (zh) * | 2018-09-05 | 2024-06-25 | 爱博诺德(北京)医疗科技股份有限公司 | 人工晶状体及其制造方法 |
JP6504332B1 (ja) | 2018-08-09 | 2019-04-24 | 株式会社ニコン | 眼科用レンズ及び眼科用レンズの製造方法 |
CN112867944A (zh) | 2018-08-17 | 2021-05-28 | 斯塔尔外科有限公司 | 呈现折射率纳米梯度的聚合物组合物 |
WO2020045567A1 (ja) * | 2018-08-31 | 2020-03-05 | ホヤ レンズ タイランド リミテッド | 眼鏡レンズ、眼鏡レンズの製造方法および眼鏡レンズ用被膜 |
WO2020079642A1 (en) * | 2018-10-18 | 2020-04-23 | Alcon Inc. | Extended depth of focus intraocular lens |
WO2020115104A1 (en) | 2018-12-06 | 2020-06-11 | Amo Groningen B.V. | Diffractive lenses for presbyopia treatment |
WO2020194712A1 (ja) * | 2019-03-28 | 2020-10-01 | 株式会社ニコン | 眼科用レンズ及び眼科用レンズの製造方法 |
WO2020194713A1 (ja) * | 2019-03-28 | 2020-10-01 | 株式会社ニコン | 眼科用レンズ及び眼科用レンズの製造方法 |
US11886046B2 (en) | 2019-12-30 | 2024-01-30 | Amo Groningen B.V. | Multi-region refractive lenses for vision treatment |
EP4085292A1 (en) | 2019-12-30 | 2022-11-09 | AMO Groningen B.V. | Lenses having diffractive profiles with irregular width for vision treatment |
EP4157146A1 (en) | 2020-06-01 | 2023-04-05 | Icares Medicus, Inc. | Double-sided aspheric diffractive multifocal lens, manufacture, and uses thereof |
US12239529B2 (en) | 2021-03-09 | 2025-03-04 | Amo Groningen B.V. | Refractive extended depth of focus intraocular lens, and methods of use and manufacture |
CN113599021B (zh) * | 2021-06-04 | 2024-04-16 | 天津世纪康泰生物医学工程有限公司 | 一种对抗术后残余屈光不正的非球面人工晶状体 |
EP4115850A1 (en) * | 2021-07-05 | 2023-01-11 | Nidek Co., Ltd. | Intraocular lens |
US20240233940A1 (en) * | 2023-01-05 | 2024-07-11 | Legacy Innovative Technologies, LLC | Interactive medical communication device |
WO2024154066A1 (en) * | 2023-01-17 | 2024-07-25 | Amo Groningen B.V. | Lenses changing optical performance in response to an accommodative stimulus |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6338559B1 (en) * | 2000-04-28 | 2002-01-15 | University Of Rochester | Apparatus and method for improving vision and retinal imaging |
RU2186417C2 (ru) * | 2000-02-22 | 2002-07-27 | Институт автоматики и электрометрии СО РАН | Дифракционная интраокулярная линза |
US6884263B2 (en) * | 2001-07-17 | 2005-04-26 | Medennium, Inc. | Accommodative intraocular lens |
RU2306117C2 (ru) * | 2004-07-07 | 2007-09-20 | Сергей Леонидович Кузнецов | Интраокулярная линза |
US20070258143A1 (en) * | 2006-05-08 | 2007-11-08 | Valdemar Portney | Aspheric multifocal diffractive ophthalmic lens |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1316727C (en) * | 1988-07-20 | 1993-04-27 | Allen L. Cohen | Multifocal optical device |
US5760871A (en) * | 1993-01-06 | 1998-06-02 | Holo-Or Ltd. | Diffractive multi-focal lens |
US5699142A (en) * | 1994-09-01 | 1997-12-16 | Alcon Laboratories, Inc. | Diffractive multifocal ophthalmic lens |
US5669142A (en) * | 1996-05-31 | 1997-09-23 | Beckers; William J. | Knife for cutting insulation batts |
US5922821A (en) * | 1996-08-09 | 1999-07-13 | Alcon Laboratories, Inc. | Ophthalmic lens polymers |
US6786928B2 (en) * | 1997-08-20 | 2004-09-07 | Thinoptx, Inc. | Small incision lens |
US6353069B1 (en) * | 1998-04-15 | 2002-03-05 | Alcon Manufacturing, Ltd. | High refractive index ophthalmic device materials |
US6533416B1 (en) * | 2001-07-20 | 2003-03-18 | Ocular Sciences, Inc. | Contact or intraocular lens and method for its preparation |
US7063422B2 (en) * | 2003-04-16 | 2006-06-20 | Novartis Ag | Multifocal ophthalmic lens |
US6923539B2 (en) * | 2003-05-12 | 2005-08-02 | Alcon, Inc. | Aspheric lenses |
US7156516B2 (en) * | 2004-08-20 | 2007-01-02 | Apollo Optical Systems Llc | Diffractive lenses for vision correction |
-
2009
- 2009-12-09 US US12/634,026 patent/US20100161051A1/en not_active Abandoned
- 2009-12-09 AU AU2009327455A patent/AU2009327455C1/en active Active
- 2009-12-09 CA CA2744049A patent/CA2744049C/en active Active
- 2009-12-09 EP EP09833807.2A patent/EP2358306B1/en active Active
- 2009-12-09 ES ES09833807.2T patent/ES2441946T3/es active Active
- 2009-12-09 MX MX2011006007A patent/MX2011006007A/es active IP Right Grant
- 2009-12-09 KR KR1020117016403A patent/KR101436300B1/ko not_active Expired - Fee Related
- 2009-12-09 RU RU2011129463/14A patent/RU2523130C2/ru not_active IP Right Cessation
- 2009-12-09 WO PCT/US2009/067287 patent/WO2010071751A1/en active Application Filing
- 2009-12-09 JP JP2011542250A patent/JP5513521B2/ja active Active
- 2009-12-09 CN CN200980150723.7A patent/CN102256567B/zh active Active
- 2009-12-09 BR BRPI0923031-9A patent/BRPI0923031B1/pt not_active IP Right Cessation
- 2009-12-17 AR ARP090104949A patent/AR076831A1/es unknown
- 2009-12-17 TW TW098143330A patent/TWI496567B/zh not_active IP Right Cessation
-
2011
- 2011-05-19 IL IL213036A patent/IL213036A/en not_active IP Right Cessation
-
2014
- 2014-08-07 US US14/454,251 patent/US9101466B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2186417C2 (ru) * | 2000-02-22 | 2002-07-27 | Институт автоматики и электрометрии СО РАН | Дифракционная интраокулярная линза |
US6338559B1 (en) * | 2000-04-28 | 2002-01-15 | University Of Rochester | Apparatus and method for improving vision and retinal imaging |
US6884263B2 (en) * | 2001-07-17 | 2005-04-26 | Medennium, Inc. | Accommodative intraocular lens |
RU2306117C2 (ru) * | 2004-07-07 | 2007-09-20 | Сергей Леонидович Кузнецов | Интраокулярная линза |
US20070258143A1 (en) * | 2006-05-08 | 2007-11-08 | Valdemar Portney | Aspheric multifocal diffractive ophthalmic lens |
Also Published As
Publication number | Publication date |
---|---|
ES2441946T3 (es) | 2014-02-07 |
RU2011129463A (ru) | 2013-01-27 |
KR20110102903A (ko) | 2011-09-19 |
US20140350672A1 (en) | 2014-11-27 |
BRPI0923031A2 (pt) | 2015-12-15 |
CN102256567B (zh) | 2015-05-27 |
EP2358306A4 (en) | 2012-05-30 |
TW201029639A (en) | 2010-08-16 |
CA2744049A1 (en) | 2010-06-24 |
IL213036A0 (en) | 2011-07-31 |
AU2009327455B2 (en) | 2013-11-28 |
US9101466B2 (en) | 2015-08-11 |
MX2011006007A (es) | 2011-06-28 |
TWI496567B (zh) | 2015-08-21 |
KR101436300B1 (ko) | 2014-09-01 |
AR076831A1 (es) | 2011-07-13 |
AU2009327455C1 (en) | 2014-04-24 |
CA2744049C (en) | 2014-09-23 |
US20100161051A1 (en) | 2010-06-24 |
EP2358306B1 (en) | 2013-10-23 |
AU2009327455A1 (en) | 2010-06-24 |
JP5513521B2 (ja) | 2014-06-04 |
JP2012512709A (ja) | 2012-06-07 |
IL213036A (en) | 2015-06-30 |
BRPI0923031B1 (pt) | 2019-10-15 |
WO2010071751A1 (en) | 2010-06-24 |
CN102256567A (zh) | 2011-11-23 |
EP2358306A1 (en) | 2011-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2523130C2 (ru) | Интраокулярная линза с расширенной глубиной фокуса | |
US9987127B2 (en) | Toric lens with decreased sensitivity to cylinder power and rotation and method of using the same | |
EP1838245B1 (en) | Contrast-enhancing aspheric intraocular lens | |
CA2590085C (en) | Apodized aspheric diffractive lenses | |
AU2011343581B2 (en) | Ophthalmic lens, systems and methods having at least one rotationally asymmetric diffractive structure | |
GB2517531A (en) | Intraocular lens system | |
JP2010515551A (ja) | 代用光学系:両眼視力を最大にする光学素子の組み合わせ及びマッチング | |
AU2021283398A1 (en) | Double-sided aspheric diffractive multifocal lens, manufacture, and uses thereof | |
US20200121448A1 (en) | Extended depth of focus intraocular lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC43 | Official registration of the transfer of the exclusive right without contract for inventions |
Effective date: 20200724 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20201210 |