RU2522737C1 - Автономный приемник рентгеновского и ультрафиолетового излучения - Google Patents
Автономный приемник рентгеновского и ультрафиолетового излучения Download PDFInfo
- Publication number
- RU2522737C1 RU2522737C1 RU2012157959/28A RU2012157959A RU2522737C1 RU 2522737 C1 RU2522737 C1 RU 2522737C1 RU 2012157959/28 A RU2012157959/28 A RU 2012157959/28A RU 2012157959 A RU2012157959 A RU 2012157959A RU 2522737 C1 RU2522737 C1 RU 2522737C1
- Authority
- RU
- Russia
- Prior art keywords
- ray
- ultraviolet radiation
- radiation
- receiver
- photosensitive layer
- Prior art date
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 38
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 13
- 239000002184 metal Substances 0.000 claims abstract description 13
- 238000000576 coating method Methods 0.000 claims abstract description 12
- 239000011248 coating agent Substances 0.000 claims abstract description 11
- -1 osmium-scandium-silicon Chemical compound 0.000 claims description 6
- OCMGBVSGSRCCFG-UHFFFAOYSA-N [Si].[Os] Chemical compound [Si].[Os] OCMGBVSGSRCCFG-UHFFFAOYSA-N 0.000 claims description 5
- 230000035945 sensitivity Effects 0.000 abstract description 6
- 239000000126 substance Substances 0.000 abstract 1
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 12
- 239000011521 glass Substances 0.000 description 5
- 230000004907 flux Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 3
- 239000002210 silicon-based material Substances 0.000 description 3
- 238000002083 X-ray spectrum Methods 0.000 description 2
- 230000002547 anomalous effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229910004613 CdTe Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 101100043469 Metarhizium anisopliae SSGA gene Proteins 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- FDQTWKFALJTJSL-UHFFFAOYSA-N [Cd].[Os] Chemical compound [Cd].[Os] FDQTWKFALJTJSL-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical class [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Measurement Of Radiation (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Использование: для регистрации рентгеновского и ультрафиолетового излучения. Сущность изобретения заключается в том, что автономный приемник для регистрации рентгеновского и ультрафиолетового излучения включает металлический корпус, прозрачную диэлектрическую подложку, фоточувствительный слой из АФН-пленки и металлические контакты, при этом между прозрачной диэлектрической подложкой и металлическим корпусом помещено отражающее покрытие, приемник снабжен полусферической зеркальной крышкой, имеющей окно, прозрачное для рентгеновского и ультрафиолетового излучения. Технический результат: повышение чувствительности при регистрации рентгеновского и ультрафиолетового излучения. 1 з.п. ф-лы, 2 ил.
Description
Изобретение относится к интегрально-чувствительным приемникам оптического излучения и может использоваться для регистрации рентгеновского и ультрафиолетового излучения.
Известен автономный приемник рентгеновского и ультрафиолетового излучения, содержащий чувствительный элемент в виде пленок с аномальным фотонапряжением (АФН-пленок), металлические контакты создаются сплавом олова с примесью 1% сурьмы или 1% галлия и в качестве чувствительного элемента были использованы АФН-пленки из соединений CdSe или CdTe:Ag размером 4×2 мм [Рахимов Н.Р., Касымахунова A.M., Усманов Ш.Ю. Способ получения фотогенераторов / Патент РУз IAP 02610 от 25.02.2003 г.].
Недостатком этого автономного приемника рентгеновского и ультрафиолетового излучения является низкая чувствительность и недостаточно широкий диапазон частот регистрируемого излучения, особенно для регистрации рентгеновского и ультрафиолетового излучения в оптоэлектронных и робототехнических устройствах для приема различных световых потоков.
Известен автономный приемник рентгеновского и ультрафиолетового излучения на основе пленок с аномальным фотонапряжением (АФН-пленок), принятый за прототип, состоящий из металлического корпуса, стеклянной крышки, металлические контакты и фоточувствительной слой из АФН-пленки, нанесенной на прозрачную диэлектрическую подложку [Рахимов Н.Р., Серьезнов А.Н. АФН-пленки и их применение / монография. - Новосибирск: СибНИА, 2005].
Недостатком этого автономного приемника рентгеновского и ультрафиолетового излучения является низкая чувствительность из-за прохождения потока излучения через светочувствительный слой не более одного раза.
Заявляемое изобретение направлено на повышение чувствительности.
Указанный результат достигается тем, что между прозрачной диэлектрической подложкой и металлическим корпусом помещено отражающее покрытие, автономный приемник рентгеновского и ультрафиолетового излучения снабжен полусферической зеркальной крышкой, имеющей окно, прозрачное для рентгеновского и ультрафиолетового излучения.
На фиг.1 приведено изображение автономного приемника оптического излучения: 1 - фоточувствительный слой из АФН-пленки; 2 - прозрачная диэлектрическая подложка, 3 - металлические контакты; 4 - отражающее покрытие; 5 - полусферическая зеркальная крышка; 6 - металлический корпус; 7 - окно, прозрачное для рентгеновского и ультрафиолетового излучения. Отражающие покрытие (4) и полусферическая зеркальная крышка (5) выполнены из материалов осмий-кремний и осмий-скандий-кремний. Фоточувствительный слой выполнен как сцинтилляционный слой на основе АФН-пленок из ZnSe и CdTe.
На фиг.2 приведено изображение схемы сцинтилляционного фоточувствительного слоя на основе Te-ZnSe. На этом рисунке: 9 - слой из цинк-селена (ZnSe), 10 - слой из теллурида кадмия (CdTe), 11 - токопроводящие контакты.
Принцип действия автономного приемника рентгеновского и ультрафиолетового (фиг.1) заключается в следующем. Через окошко (7) поступает направленное излучение Фо от источника рентгеновского или ультрафиолетовая излучения. Попадая на фоточувствительный слой (1), это излучение частично преобразуется в фототек, а частично проходит этот слой насквозь, затем отражается от отражающего покрытия (4). Отраженная часть также проходит через фоточувствительный слой и частично преобразуется в фототок, а оставшаяся часть попадает на полусферическую зеркальную крышку (5). Это остаточное излучение, отражаясь от этой крышки, вновь попадает на фоточувствительный слой и преобразуется в фототок. За счет многократного переотражения эффективность преобразования рентгеновского или ультрафиолетового излучения в фототок существенно возрастает.
Таким образом, чувствительность автономного приемника рентгеновского и ультрафиолетового излучения возрастает.
Принцип действия фоточувствительного слоя заключается в следующем. Рентгеновское или ультрафиолетовое излучение проходит оба слоя, (10 и 9) сцинтиллятора (фиг.2), ионизирует атомы и молекулы и возбуждает их. Возбужденные атомы и молекулы, возвращаясь в исходное состояние, испускают свет, который попадает на слой из теллурида кадмия (10), представляющий собой АФН-пленку (CdTe). В этом слое (10) за счет накопления зарядов порождается фототок. При освещении чувствительного слоя потоками ультрафиолетового или рентгеновского луча порождается люминесценция в слое из цинк-селена (ZnSe) (9).
Ультрафиолетовый или рентгеновский луч, проходя через сцинтиллятор, переводит электроны из валентной зоны в зону проводимости или с глубоких уровней в зону проводимости. Возвращаясь в исходное состояние вследствие того, что происходит излучательная рекомбинация, эти атомы испускают фотоны света, которые попадают на АФН-пленку слоя (10) CdTe, при этом возникает фотосигнал, который снимают с контактов (11) и, например, регистрируют электрометром.
АФН-пленка CdTe детектирует люминесценцию цинк-селена с малыми потерями на отражение от границы ZnSe-CdTe.
Коэффициент отражения рассчитывают по формуле
где R- коэффициент отражения от границы раздела между ZnSe и CdTe; n1 -показатель преломления ZnSe; n2 - показатель преломления CdTe.
Коэффициент отражения известных сцинтилляционных фотодетекторов учитывает отражение на границе ZnSe и воздуха (n0=1), тогда R=0,5. В обсуждаемом случае потеря фотосигналов на отражение незначительна по сравнению с известными приемниками. Оценим изменение эффективности приемника с АФН-пленкой:
LR=R·L0,
L'R=(R-ΔR)L0,
где R - коэффициент отражения, L0 - интенсивность падающего света,
где Т - коэффициент пропускания. Тогда
т.е. эффективность на 80% увеличивается.
Для определения значения фотосигнала фоточувствительный слой на основе АФН-пленки теллурида кадмия освещают ультрафиолетовым светом со стороны сцинтиллятора ZnSe и спектрометром СФ-26 измеряют фото-ЭДС, она была равна 200 мВ (без АФН-слоя - 120 мВ). Затем сцинтиллятор возбуждают мягким рентгеновскими лучами (УРС-60 с трубкой 0,4 ВСВ-4С, напряжение на трубке равно 20 кВ), при этом оказалось, что амплитуда сигнала равна 500 мВ (без АФН-слоя - 280 мВ). Фотосигнал между контактами измеряют электрометром.
Рентгеновское зеркало покрывает изнутри полусферическую зеркальную крышку (5). Также из рентгеновского зеркала изготавливается отражающее покрытие (4). Это рентгеновское зеркало имеет многослойную структуру (до нескольких сотен слоев), их производство требует особых условий. Материалы для создания отражающих покрытий должны иметь сверхвысокую чистоту и осаждаются на основу зеркала напылением в вакууме. Диапазон длин волн, в котором будет работать зеркало, и дополнительные условия и требования определяют выбор материалов. Например, это может быть осмий-кадмий и осмий-скандий-кремний. Коэффициент отражения таких материалов крайне высок.
Для получения АФН-пленок и отражающих поверхностей используется вакуумная установка ВУП-2к. В рабочей камере достигается вакуум порядка 10-4-10-5 мм рт.ст., температура подложки 410-480°С. В качестве подложек используются стеклянные пластины размером 4×20 мм, толщиной 2-5 мм. Перед началом процесса вакуумного испарения стеклянные подложки промываются 2-3 раза в кипящей дистиллированной воде в течение 20-25 минут и просушиваются в сушильном шкафу при температуре 150°С в течение 30 минут, затем обжигаются при 250-300°С в вакууме в течение 10 минут.
Первоначально для получения отражающего слоя проводится нанесение на противоположные стороны подложки отражающего слоя из материалов осмий-кремний и осмий-скандий-кремний. Процесс напыления проводится при вакууме 10-4-10-5 мм рт.ст., температура подложки 450°С.
При этом эффективная толщина пленок составляет ~1 мкм.
В последнем этапе изготавливается отражающая полусферическая крышка (интегрирующая полость) по той же технологии, что и отражающая подложка. Процесс напыления проводится при вакууме 10-4-10-5 мм рт.ст., температуре крышки 450°С.
Толщина отражающего покрытия также составляет ~1 мкм.
На основе полученных элементов можно разработать автономный приемник оптического излучения.
По мере развития рентгеновской оптики спектр применяемых материалов значительно шире, чем указанный выше, так, например, в длинноволновой части спектра мягкого рентгеновского излучения весьма эффективны композиции осмий-кремний и осмий-скандий-кремний, а в более жесткой части рентгеновского спектра весьма эффективен гафний и его композиции с другими элементами.
Рентгеновское излучение и оптическое имеют родственную природу. Оба типа излучения являются электромагнитным излучением. Рентгеновские лучи испускаются при участии находящихся в атомах, либо свободных электронов. Фотоны рентгеновского излучения имеют энергию от 100 эВ до 250 КэВ, что соответствует излучению с частотой от 3×1016 Гц до 6×1019 Гц (то есть с длиной волны 0,005-10 нм). Мягкое рентгеновское излучение характеризуется наименьшей энергией фотона и частотой излучения (и наибольшей длиной волны), а жесткое рентгеновское излучение обладает наибольшей энергией фотона и частотой излучения (и наименьшей длиной волны). Жесткое рентгеновское излучение используется преимущественно в промышленных целях.
Таким образом, предлагаемый приемник может обеспечивать прием как рентгеновского, так и ультрафиолетового излучения.
Поэтому остаточное рентгеновское или ультрафиолетовое излучение, которое не преобразовалось по пути через фоточувствительный слой (1) в фототок, будет отражено сначала от отражающего покрытия (4), затем от полусферической зеркальной крышки (5), после чего вновь попадет на фоточувствительный слой (1). Это увеличивает часть света, которая преобразуется в фототок. Пропорционально увеличится и сам фототок, то есть при той же самой величине рентгеновского или ультрафиолетового излучения, попавшего в окно (7) фотоприемника, фототок, порождаемый этим излучением, увеличится. Следовательно, увеличится чувствительность приемника, поскольку она определяется как отношение фототока к световому потоку, который этот фототек вызвал.
В результате поставленная задача решена.
Фоточувствительный слой (1) может быть сделан, как в прототипе, в виде АФН-пленок из кристаллического теллурида кадмия [Рахимов Н.Р., Ушаков O.K. Оптоэлектронные датчики на основе АФН-эффекта / монография. - Новосибирск: СГГА, 2010 г.]. Отражающее покрытие (4) и полусферическая зеркальная крышка (5) выполнены из материалов осмий-кремний и осмий-скандий-кремний. Остальные элементы могут быть выполнены по традиционным технологиям, как в прототипе. Прозрачная диэлектрическая подложка (2) может быть выполнена, например, из стеклянной пластинки. Металлический корпус (6) может быть выполнен как в прототипе, или, например, в форме неглубокого стакана, снабженного кронштейном для закрепления.
Claims (2)
1. Автономный приемник для регистрации рентгеновского и ультрафиолетового излучения, включающий металлический корпус, прозрачную диэлектрическую подложку, фоточувствительный слой из АФН-пленки и металлические контакты, отличающийся тем, что между прозрачной диэлектрической подложкой и металлическим корпусом помещено отражающее покрытие, приемник снабжен полусферической зеркальной крышкой, имеющей окно, прозрачное для рентгеновского и ультрафиолетового излучения.
2. Автономный приемник рентгеновского и ультрафиолетового излучения по п.1, отличающийся тем, что отражающее покрытие и полусферическая зеркальная крышка выполнены из осмий-кремния или осмий-скандий-кремния.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012157959/28A RU2522737C1 (ru) | 2012-12-27 | 2012-12-27 | Автономный приемник рентгеновского и ультрафиолетового излучения |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012157959/28A RU2522737C1 (ru) | 2012-12-27 | 2012-12-27 | Автономный приемник рентгеновского и ультрафиолетового излучения |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2522737C1 true RU2522737C1 (ru) | 2014-07-20 |
Family
ID=51217472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012157959/28A RU2522737C1 (ru) | 2012-12-27 | 2012-12-27 | Автономный приемник рентгеновского и ультрафиолетового излучения |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2522737C1 (ru) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5907426A (en) * | 1996-06-28 | 1999-05-25 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Stabilizing device for optical modulator |
RU2181491C2 (ru) * | 1996-07-19 | 2002-04-20 | Вариан Медикал Системз, Инк. | Устройство и способ получения рентгеновского изображения с применением плоской панели изображения из аморфного кремния |
US20030160185A1 (en) * | 2000-09-11 | 2003-08-28 | Takuya Homme | Scintillator panel, radiation image sensor and methods of producing them |
RU63945U1 (ru) * | 2006-12-19 | 2007-06-10 | Общество с ограниченной ответственностью предприятие "МЕДТЕХ" (ООО предприятие "МЕДТЕХ") | Приемник рентгеновский матричный |
-
2012
- 2012-12-27 RU RU2012157959/28A patent/RU2522737C1/ru not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5907426A (en) * | 1996-06-28 | 1999-05-25 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Stabilizing device for optical modulator |
RU2181491C2 (ru) * | 1996-07-19 | 2002-04-20 | Вариан Медикал Системз, Инк. | Устройство и способ получения рентгеновского изображения с применением плоской панели изображения из аморфного кремния |
US20030160185A1 (en) * | 2000-09-11 | 2003-08-28 | Takuya Homme | Scintillator panel, radiation image sensor and methods of producing them |
RU63945U1 (ru) * | 2006-12-19 | 2007-06-10 | Общество с ограниченной ответственностью предприятие "МЕДТЕХ" (ООО предприятие "МЕДТЕХ") | Приемник рентгеновский матричный |
Non-Patent Citations (1)
Title |
---|
Рахимов Н.Р., Серьезнов А.Н. АФН-пленки и их применение, монография, Новосибирск, СибНИА, 2005. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6595074B2 (ja) | ホウ素層を有するシリコン基板を含むフォトカソード | |
US6995375B2 (en) | Split-electrode radiation detector free of sensibility variations and after-outputs | |
US9091768B2 (en) | Scintillator material and radiation detector using same | |
US8803099B2 (en) | Compound, scintillator, and radiation detector | |
JP2008051793A5 (ja) | 放射線検出装置、シンチレータパネル、放射線検出システム及び放射線検出装置の製造方法 | |
CN108140533B (zh) | 光电倍增管及其制造方法 | |
Canfield et al. | Silicon photodiodes with integrated thin-film filters for selective bandpasses in the extreme ultraviolet | |
IL260271A (en) | scintillator and electron beam | |
JP6266324B2 (ja) | シンチレータパネルおよびその製造方法 | |
RU2522737C1 (ru) | Автономный приемник рентгеновского и ультрафиолетового излучения | |
Yahlali et al. | Imaging with SiPMs in noble-gas detectors | |
KR101784118B1 (ko) | 방사선 검출기, 신틸레이터 패널, 및 그 제조 방법 | |
KR101788999B1 (ko) | 방사선 검출기, 신틸레이터 패널, 및 그것들의 제조방법 | |
US20070102647A1 (en) | Multi-radiation large area detector | |
Alijanov et al. | Receiver For Registration Of X-Ray And Ultraviolet Radiation | |
JP2001523383A (ja) | 薄膜による光電陰極の保護 | |
JP2024139290A (ja) | 放射線検出器 | |
Hsu | Luminescence efficiency and optical property of CsI and NaI films | |
JP6734035B2 (ja) | シンチレータパネルおよびその製造方法 | |
JP2015096819A (ja) | シンチレータパネルおよびその製造方法 | |
Hoenk et al. | Subnanosecond Scintillation Detector | |
KR20090102133A (ko) | 알파입자 검출기 및 알파입자 검출기의 제조 방법 | |
JP2015038461A (ja) | シンチレータパネルおよびその製造方法 | |
Martinengo et al. | Position Sensitive Gaseous Photomultipliers | |
Szilagyi | Extreme ultraviolet spectral streak camera |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20171228 |