RU2509967C2 - Способ сжижения природного газа с предварительным охлаждением охлаждающей смеси - Google Patents
Способ сжижения природного газа с предварительным охлаждением охлаждающей смеси Download PDFInfo
- Publication number
- RU2509967C2 RU2509967C2 RU2011101884/06A RU2011101884A RU2509967C2 RU 2509967 C2 RU2509967 C2 RU 2509967C2 RU 2011101884/06 A RU2011101884/06 A RU 2011101884/06A RU 2011101884 A RU2011101884 A RU 2011101884A RU 2509967 C2 RU2509967 C2 RU 2509967C2
- Authority
- RU
- Russia
- Prior art keywords
- cooling mixture
- cooling
- natural gas
- heat exchange
- mixture
- Prior art date
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 133
- 239000000203 mixture Substances 0.000 title claims abstract description 126
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 88
- 239000003345 natural gas Substances 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 29
- 239000007791 liquid phase Substances 0.000 claims abstract description 9
- 239000003949 liquefied natural gas Substances 0.000 claims abstract description 5
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 20
- 239000001294 propane Substances 0.000 claims description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 7
- 239000007789 gas Substances 0.000 claims description 7
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims description 6
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 claims description 6
- 239000012071 phase Substances 0.000 claims description 5
- 239000001273 butane Substances 0.000 claims description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 4
- 238000003860 storage Methods 0.000 claims description 4
- 230000005494 condensation Effects 0.000 claims description 3
- 238000009833 condensation Methods 0.000 claims description 3
- 238000004781 supercooling Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 14
- 238000009826 distribution Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 238000009835 boiling Methods 0.000 description 9
- 101000828537 Homo sapiens Synaptic functional regulator FMR1 Proteins 0.000 description 7
- 102100023532 Synaptic functional regulator FMR1 Human genes 0.000 description 7
- 208000003173 lipoprotein glomerulopathy Diseases 0.000 description 7
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000005265 energy consumption Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000001282 iso-butane Substances 0.000 description 4
- NNPPMTNAJDCUHE-UHFFFAOYSA-N trimethylmethane Natural products CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000002826 coolant Substances 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- -1 for example Substances 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000012432 intermediate storage Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0211—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
- F25J1/0214—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0262—Details of the cold heat exchange system
- F25J1/0264—Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
- F25J1/0265—Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0292—Refrigerant compression by cold or cryogenic suction of the refrigerant gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0294—Multiple compressor casings/strings in parallel, e.g. split arrangement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0296—Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/64—Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/12—Particular process parameters like pressure, temperature, ratios
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Способ сжижения природного газа, в котором природный газ охлаждается, конденсируется и переохлаждается в результате непрямого теплообмена с двумя охлаждающими смесями, циркулирующими в контурах. Первая охлаждающая смесь сжимается, охлаждается и конденсируется, по меньшей мере частично, посредством теплообмена с внешней средой (вода, воздух). Первая охлаждающая смесь переохлаждается в результате теплообмена так, чтобы первая охлаждающая смесь находилась в жидкой фазе, чтобы обеспечить хорошее распределение охлаждающей смеси в серии теплообменников. Охлаждающую смесь далее переохлаждают в первом теплообменнике посредством теплообмена с частью охлаждающей смеси, причем указанная часть дросселируется перед теплообменом. Во втором теплообменнике охлаждают природный газ и одновременно вторую охлаждающую смесь путем теплообмена с переохлажденной охлаждающей смесью, при этом первый теплообменник отличается от второго теплообменника. Затем сжижают и переохлаждают природный газ путем теплообмена со второй охлаждающей смесью до получения жидкого природного газа. Использование изобретения позволит повысить КПД при меньших выбросах СО2. 4 з.п. ф-лы, 3 ил.
Description
Настоящее изобретение относится к области сжижения природного газа.
Сжижение природного газа состоит в конденсации природного газа и его переохлаждении до достаточно низкой температуры, чтобы он мог оставаться жидким при атмосферном давлении. Затем его транспортируют в танкерах для перевозки сжиженного метана.
В настоящее время быстро развивается международная торговля жидким природным газом (ЖПГ), но совокупная производства ЖПГ в совокупности требует значительных инвестиций. Приоритетной целью является снизить уровень этих инвестиций и снизить энергетический (и, следовательно, экологический) фактор, связанный с производством ЖПГ.
В патенте US 6 105 389 раскрыт способ сжижения, содержащий две охлаждающие смеси, циркулирующие в двух независимых замкнутых контурах. Каждый из этих контуров функционирует благодаря компрессору, сообщающему охлаждающей смеси мощность, необходимую, чтобы охладить природный газ.
Настоящее изобретение предлагает усовершенствовать способ, раскрытый в патенте US 6 105 389, чтобы улучшить работу и энергетический кпд, то есть получать больший кпд, при меньших выбросах CO2, и при сохранении по существу идентичного оборудования.
В широком смысле настоящее изобретение относится к способу сжижения природного газа, в котором осуществляются следующие этапы:
a) сжатие охлаждающей смеси,
b) конденсация, посредством теплообмена, сжатой охлаждающей смеси,
c) помещение конденсированной охлаждающей смеси в резервуар-хранилище, причем резервуар содержит в равновесии жидкую фазу охлаждающей смеси и газовую фазу охлаждающей смеси,
d) отведение охлаждающей смеси в жидкой фазе из резервуара-хранилища,
e) проведение этапа, на котором только охлаждающая смесь, отведенная на этапе d), переохлаждается посредством теплообмена,
f) охлаждение природного газа по меньшей мере теплообменом с переохлажденной охлаждающей смесью, полученной на этапе e).
Согласно изобретению, на этапе e) охлаждающую смесь можно переохлаждать теплообменом с внешней текучей средой, выбранной из воздуха и воды.
В качестве альтернативы, на этапе e) охлаждающую смесь можно переохлаждать теплообменом с частью охлаждающей смеси, причем указанная часть перед теплообменом дросселируется. Например, указанная часть охлаждающей смеси может быть отобрана из указанной отведенной охлаждающей смеси перед осуществлением теплообмена на этапе e). Альтернативно, указанная часть охлаждающей смеси может быть отобрана из охлаждающей смеси, полученной после осуществления теплообмена на этапе e) и перед осуществлением теплообмена на этапе f).
Согласно изобретению, этап e) может проводиться в первом теплообменнике, этап f) может быть проведен в по меньшей мере одном втором теплообменнике, причем первый теплообменник отличается от второго теплообменника.
Охлаждающая смесь может содержать (в мольных процентах): от 0 до 5% метана, от 30 до 70% этана, от 30 до 70% пропана и от 0 до 20% бутана.
На этапе f) природный газ можно охладить до получения жидкого природного газа.
В качестве альтернативы, на этапе f) можно охлаждать природный газ и, одновременно, вторую охлаждающую смесь путем теплообмена с переохлажденной охлаждающей смесью, полученной на этапе e), а после этапа f) можно сжижать и можно переохлаждать природный газ путем теплообмена со второй охлаждающей смесью до получения жидкого природного газа.
Вторая охлаждающая смесь может содержать (в мольных процентах): от 0 до 12% азота, от 20 до 80% метана, от 20 до 80% этана и от 0 до 10% пропана.
Другие характеристики и преимущества изобретения станут более понятными из описания, приводимого со ссылками на фигуры чертежей, на которых:
- Фигура 1 иллюстрирует способ согласно изобретению,
- Фигуры 2 и 3 схематически изображают другие варианты осуществления изобретения.
Фигура 1 иллюстрирует способ сжижения, в котором применяется первый контур охлаждения, изображенный в рамке, показанной пунктирной линией, и помеченный позицией (I), и второй контур охлаждения, указанный позицией (II).
Первый контур охлаждения (I) использует первую охлаждающую смесь, обозначаемую далее MR1, которая может состоять из смеси углеводородов, как смесь этана и пропана, но может также содержать метан и/или бутан. Содержания (в мольных процентах) компонентов MR1 могут быть следующими:
- Метан: 0-5%
- Этан: 30-70%
- Пропан: 30-70%
- Бутан: 0-20%
Второй контур охлаждения (II) использует вторую охлаждающую смесь, обозначаемую далее MR2, которая может состоять, например, из смеси углеводородов и азота, как смесь метана, этана, пропана и азота, но может также содержать бутан. Содержания (в мольных процентах) компонентов MR2 могут быть следующими:
- Азот: 0-12%
- Метан: 20-80%
- Этан: 20-80%
- Пропан: 0-10%
Природный газ поступает по линии 10 обычно при давлении, составляющем от 4 МПа до 7 МПа, и при температуре, которая может составлять от 0°C до 60°C. Природный газ, циркулирующий в линии 10, первая охлаждающая смесь MR1, циркулирующая в линии 23, и вторая охлаждающая смесь MR2, циркулирующая в линии 31, входят последовательно в теплообменники E1, E2 и E3, чтобы перемещаться там в параллельных направлениях и прямоточно. Природный газ выходит из серии теплообменников, образованной теплообменниками E1, E2 и E3, по линии 11 при температуре, которая может составлять от -30°C до -75°C. Вторая охлаждающая смесь MR2, поступающая по линии 31, проходит последовательно через теплообменники E1, E2 и E3 и выводится по линии 32 полностью сконденсированной и предпочтительно переохлажденной до температуры, которая может составлять от -30°C до -75°C.
В серии теплообменников E1-E2-E3 последовательно отводятся три фракции первой охлаждающей смеси MR1 в жидкой фазе. MR1, выходящая из E1, разделяется на две фракции: одна фракция проводится по линии 24 к вентилю V1, и одна фракция проводится по линии 26 на теплообменник E2. Фракция MR1, выходящая из E2, разделяется на две фракции: одна фракция проводится по линии 27 на вентиль V2, и одна фракция проводится по линии 29 на теплообменник E3. Фракция MR1, выходящая из E3, проводится по линии 29b на вентиль V3. Фракции MR1 расширяются соответственно через дроссельные вентили V1, V2, V3 до трех разных уровней давления, затем испаряется в теплообменниках E1, E2, E3, соответственно, в результате теплообмена с природным газом, второй охлаждающей смесью MR2 и частью первой охлаждающей смеси MR1. Три испаренные фракции проводятся соответственно по линиям 25, 28 и 30 в компрессор K1 для сжатия. Сжатая первая охлаждающая смесь MR1 конденсируется в конденсаторе C1 в результате теплообмена с внешней охлаждающей средой, например, водой или воздухом. Затем MR1 вводится в приемный резервуар D.
В способе, иллюстрируемом на фигуре 1, первая охлаждающая смесь MR1 разделена на три отдельные фракции, чтобы оптимизировать сближение в серии теплообменников E1-E2-E3. Согласно изобретению, можно также не разделять первую охлаждающую смесь MR1 или разделять ее на две или четыре фракции, для оптимизации процесса по температуре.
Приемный резервуар D играет роль промежуточного хранилища для уравновешивания, в частности, по давлению, температуре и объему, первой охлаждающей смеси MR1 в контуре (I). В резервуаре D содержится в равновесии часть первой охлаждающей смеси MR1 в жидкой фазе и часть MR1 в газовой фазе. Уровень жидкости в резервуаре D меняется в зависимости от полного количества охлаждающей смеси, присутствующей в контуре. Наличие резервуара D позволяет уравнять давления в контуре (I). Первая охлаждающая смесь MR1 вводится в жидкой форме в резервуар D при давлении и температуре, близких к равновесию жидкой и паровой фаз первой охлаждающей смеси MR1.
Если бы MR1 напрямую направлялась из резервуара D в теплообменник, как предлагается в уровне техники, был бы риск ее частичного испарения, из-за потери напора, теплового обмена и возможной разницы статического уровня в контурах циркуляции, перед вводом в серию теплообменников E1-E2-E3. Однако трудно равномерно распределить смесь газа и жидкости в разных проходах через теплообменник. Поэтому теплообмен в E1-E2-E3 не был бы оптимизирован. Теплообменник C2 позволяет охладить только первую охлаждающую смесь MR1, то есть не затрагивая охлаждение природного газа. Кроме того, теплообменник C2 может быть независимым от серии теплообменников E1-E2-E3 и поэтому может устанавливаться вблизи приемного резервуара D, чтобы снизить риски испарения первой охлаждающей смеси MR1, отводимой из резервуара D.
Согласно изобретению, как показано на фигуре 1, после прохождения через приемный резервуар D, первая охлаждающая смесь MR1 отводится в виде жидкой фазы из приемного резервуара D и переохлаждается на несколько градусов (при этом снижение температуры может варьироваться от 2°C до 10°C) в теплообменнике C2, чтобы гарантировать, что охлаждающая смесь MR1 войдет в теплообменник E1 в полностью жидкой форме при температуре значительно ниже точки начала кипения первой охлаждающей смеси MR1. Таким образом, распределение в разных проходах теплообменников оптимизируется.
Природный газ, выходящий из серии теплообменников E1-E2-E3 по линии 11, может быть фракционирован, то есть часть углеводородов C2+, содержащая по меньшей мере два атома углерода, отделяется от природного газа в устройстве, известном специалисту.
Природный газ, возможно фракционированный, проводится по линии 11b в теплообменник E4, где параллельно и прямоточно ему циркулирует MR2, поступающая по линии 32. MR2, выходящая из теплообменника E4 по линии 33, расширяется в вентиле V4. Отметим, что выше вентиля V4 или вместо него можно использовать турбину с расширением. Дросселированная вторая охлаждающая смесь MR2, выходящая из V4, снова вводится в E4 в противотоке, чтобы испариться, охлаждая в противотоке природный газ и MR2. Переохлажденный природный газ выводится из теплообменника E4 по линии 12. На выходе из E4 испаренная вторая охлаждающая смесь MR2 направляется по линии 35 в компрессор K2, затем охлаждается в теплообменнике C3 в результате теплообмена с внешней охлаждающей средой, например, водой или воздухом. Давление второй охлаждающей смеси MR2 на выходе из K2 может составлять от 2 МПа до 7 МПа. При необходимости вторая охлаждающая смесь MR2 может выводиться из компрессора K2 для охлаждения в теплообменнике C4, затем вводиться по линии 36 в K2 для сжатия. Согласно одному варианту осуществления, устройство K2 может состоять из нескольких компрессоров, соединенных последовательно или параллельно.
В способе, описанном на фигуре 1, вторая охлаждающая смесь MR2 не делится на отдельные фракции, но, чтобы оптимизировать энергоэффективность в теплообменнике E4, ее можно также разделить на две или три фракции, причем каждая фракция дросселируется до разного уровня давлений и проводится затем на разные ступени компрессора K2.
Варианты изобретения, описанные со ссылками на фигуры 2 и 3, предлагают использовать фракцию первой охлаждающей смеси MR1, чтобы провести переохлаждение первой охлаждающей смеси MR1 перед введением в серию теплообменников E1-E2-E3.
Позиции для ссылок на фигурах 2 и 3, идентичные позициям на фигуре 1, обозначают одинаковые элементы.
Согласно фигуре 2, первая охлаждающая смесь MR1, выходящая из приемного резервуара по линии 20, входит в теплообменник E21, чтобы снизить температуру MR1, снижение составляет от 5°C до 30°C по отношению к температуре MR1 перед входом в E21. MR1 выходит переохлажденной из E21 по линии 21. Затем MR1 делится на две части. Первая фракция первой охлаждающей смеси FMR1, циркулирующая в линии 22, расширяется через дроссельный вентиль V5 и испаряется в E21 в результате теплообмена с первой охлаждающей смесью MR1. На выходе из E21 FMR1 находится полностью в виде пара и возвращается в компрессор K1 при более подходящем уровне давления. Другая фракция первой охлаждающей смеси MR1, выходящая из E21, проводится по линии 23 в теплообменник E1.
Один вариант изобретения представлен на фигуре 3. Первая охлаждающая смесь MR1, выходящая из приемного резервуара D по линии 20, разделяется по меньшей мере на две фракции 21b и 22b. Фракция 21b поступает в теплообменник E21, чтобы снизить температуру первой охлаждающей смеси MR1, снижение составляет от 5°C до 30°C по сравнению с температурой первой охлаждающей смеси MR1 перед входом в E21. MR1 выходит переохлажденной из E21 по линии 23. Фракция 22b расширяется через дроссельный вентиль V5 и испаряется в E21 в результате теплообмена с фракцией 21b. На выходе из E21 фракция 22b находится полностью в виде пара и возвращается в компрессор K1 с более подходящим уровнем давления.
То, что первая охлаждающая смесь MR1 переохлаждается ее фракцией, позволяет, как показывают ниже численные примеры 1 и 2, снизить энергопотребление охлаждающими контурами.
Пример 1
Способы, описанные на фигурах 1 и 2, иллюстрируются следующим численным примером, который позволяет оценить выгоду, приносимую способом с фигуры 2 по сравнению со способом с фигуры 1.
Природный газ поступает по линии 10 при давлении 6,8 МПа и температуре 20°C. Состав этого газа (в мольных процентах) следующий:
- азот: 1,80%
- метан: 94,00%
- этан: 3,28%
- пропан: 1,23%
- изобутан: 0,25%
- н-бутан: 0,16%.
В серии теплообменников E1-E2-E3 используется первая охлаждающая смесь, состав которой (в мольных процентах) следующий:
- метан: 0,5%
- этан: 49,5%
- пропан: 49,5%
- изобутан: 0,5%.
Природный газ, выходящий из серии теплообменников E1-E2-E3 по линии 11, находится при температуре -52°C. Вторая охлаждающая смесь MR2, выходящая из серии теплообменников E1-E2-E3 по линии 32, имеет температуру -59,5°C.
В теплообменнике E4 используется вторая охлаждающая смесь, состав которой (в мольных процентах) следующий:
- азот: 9%
- метан: 38%
- этан: 52%
- пропан: 1%.
На выходе теплообменника E4 природный газ сжижен до температуры -152,8°C.
В способе с фигуры 1 первая охлаждающая смесь MR1 сжимается в газовой фазе в многоступенчатом компрессоре K1 до давления 3,06 МПа. Сжатая MR1 конденсируется при температуре 36°C в результате теплообмена с водой, имеющей температуру 26°C, в C1, для которого было предусмотрено сближение в 10°C. В таком случае первая охлаждающая смесь MR1 находится при температуре начала кипения. Именно температура 36°C предписывает сжимать первую охлаждающую смесь MR1 до давления 3,06 МПа. После прохождения в приемный резервуар D, первая охлаждающая смесь MR1 переохлаждается до температуры 31°C в результате теплообмена с водой, находящейся при 26°C, в C2, для которого было предусмотрено сближение в 5°C. Температуры охлаждения в C1 и C2 ограничены температурой наличной воды.
Так, на фигуре 1 первая охлаждающая смесь MR1 входит в серию теплообменников E1-E2-E3 при температуре 31°C, т.е. на 5°C ниже температуры начала кипения при давлении 3,06 МПа.
Способ, описанный в связи с фигурой 2, позволяет снизить температуру входа первой охлаждающей смеси MR1 в серию теплообменников E1-E2-E3. Так как переохлаждение производится теперь не водой в C2, а самой MR1 в E21, охлаждение в C1 можно осуществить до более низкой температуры. MR1 охлаждается до температуры 31°C в результате теплообмена с водой при 26°C в C1, для которого можно предусмотреть температурное сближение в конденсаторе C1 всего в 5°C. Поэтому можно снизить давление сжатия в K1: на выходе компрессора K1 первая охлаждающая смесь MR1 сжата всего до 2,80 МПа. После прохождения в приемный резервуар D, где она находится при температуре начала кипения, первая охлаждающая смесь MR1 переохлаждается в E21 до температуры 25°C. Чтобы достичь этой температуры, фракция первой охлаждающей смеси FMR1 дросселируется в V5 до 1,43 МПа, затем она охлаждается в противотоке первой охлаждающей смеси MR1. FMR1 выходит из E21 полностью в виде пара при температуре 29°C. Затем фракция первой охлаждающей смеси FMR1 перенаправляется на всасывание под высоким давлением компрессора K1.
Таким образом, на фигуре 2 смесь MR1 входит в серию теплообменников E1-E2-E3 при температуре 25°C, что на 6°C ниже температуры начала кипения при давлении 2,80 МПа.
В указанных выше условиях и согласно способу, описанному в связи с фигурой 1, потребление энергии компрессорами следующее:
K1: 81,0 МВт
K2: 108,2 МВт
Выработка ЖПГ на выходе из E4 составляет 5,3 MTPA (миллион тонн в год).
Таким образом, эффективность циклов охлаждения составляет 35,70 МВт/(MTPA).
В указанных выше условиях и со способом, какой описан на фигуре 2 и какой использует выгоду от изобретения, потребление энергии компрессорами следующее:
K1: 76,4 МВт
K2: 108,2 МВт
Выработка ЖПГ на выходе из E4 всегда равна 5,3 MTPA (миллион тонн в год).
Эффективность циклов охлаждения улучшена на 0,87 МВт/(MTPA) и составляет, таким образом, 34,83 МВт/(MTPA).
Пример 2
Способы, описанные на фигурах 1 и 3, проиллюстрированы следующим численным примером, который позволяет оценить выгоду, даваемую способом с фигуры 3 по сравнению со способом с фигуры 1.
Природный газ поступает по линии 10 при давлении 6,8 МПа и температуре 20°C. Состав этого газа (в мольных процентах) следующий:
- азот: 1,80%
- метан: 94,00%
- этан: 3,28%
- пропан: 1,23%
- изобутан: 0,25%
- н-бутан: 0,16%.
В серии теплообменников E1-E2-E3 используется первая охлаждающая смесь, состав которой (в мольных процентах) следующий:
- метан: 0,5%
- этан: 49,5%
- пропан: 49,5%
- изобутан: 0,5%.
Природный газ, выходящий из серии теплообменников E1-E2-E3 по линии 11, находится при температуре -52°C. Вторая охлаждающая смесь MR2, выходящая из серии теплообменников E1-E2-E3 по линии 32, имеет температуру -59,5°C.
В теплообменнике E4 используется вторая охлаждающая смесь, состав которой (в мольных процентах) следующий:
- азот: 9%
- метан: 38%
- этан: 52%
- пропан: 1%.
На выходе из теплообменника E4 природный газ сжижен до температуры -152,8°C.
В способе с фигуры 1 первая охлаждающая смесь MR1 сжимается в газовой фазе в многоступенчатом компрессоре K1 до давления 3,06 МПа. Сжатая первая охлаждающая смесь MR1 конденсируется при температуре 36°C путем теплообмена с водой, имеющей температуру 26°C, в C1, для которого было предусмотрено сближение в 10°C. В таком случае она находится при температуре начала кипения. Именно температура 36°C предписывает сжатие первой охлаждающей смеси MR1 до давления 3,06 МПа. После прохождения через приемный резервуар D, первая охлаждающая смесь MR1 переохлаждается до температуры 31°C в результате теплообмена с водой, имеющей температуру 26°, в C2, для которого было предусмотрено сближение в 5°C. Температуры охлаждения в C1 и C2 ограничены температурой наличной воды.
Таким образом, на фигуре 1 первая охлаждающая смесь MR1 поступает в серию теплообменников E1-E2-E3 при температуре 31°C, что на 5°C ниже температуры начала кипения при давлении 3,06 МПа.
Способ, описанный в связи с фигурой 3, позволяет снизить температуру на входе первой охлаждающей смеси MR1 в серию теплообменников E1-E2-E3. Так как переохлаждение производится теперь не водой в C2, а самой первой охлаждающей смесью MR1 в E21, охлаждение в C1 можно осуществить до более низкой температуры. MR1 охлаждается до температуры 31°C в результате теплообмена с водой, имеющей температуру 26°C, в C1, для которого можно предусмотреть температурное сближение в конденсаторе C1 всего в 5°C. Поэтому можно снизить давление сжатия в K1: на выходе компрессора K1 первая охлаждающая смесь MR1 сжата всего до 2,80 МПа. После прохождения через приемный резервуар D, где она находится при температуре начала кипения, первая охлаждающая смесь MR1 переохлаждается в E21 до температуры 25°C. Чтобы достичь этой температуры, фракцию FMR1 первой охлаждающей смеси MR1, выходящей из резервуара D, дросселируют в V5 до 1,39 МПа, затем она охлаждается в противотоке остальной фракции первой охлаждающей смеси MR1. Фракция первой охлаждающей смеси FMR1 выходит из E21 полностью в виде пара при температуре 28°C. Затем она перенаправляется на всасывание высокого давления компрессора K1.
Таким образом, на фигуре 3 MR1 поступает в серию теплообменников E1-E2-E3 при температуре 25°C, что на 6°C ниже точки начала кипения при давлении 2,80 МПа.
В упомянутых выше условиях, согласно способу, описанному в связи с фигурой 1, потребление энергии компрессорами следующее:
K1: 81,0 МВт
K2: 108,2 МВт
Производство ЖПГ на выходе из E4 равно 5,3 MTPA (миллион тонн в год).
Таким образом, эффективность циклов охлаждения составляет 35,70 МВт/(MTPA).
Со способом, какой описан на фигуре 3, который использует выгоду от варианта изобретения, потребление энергии компрессорами следующее:
K1: 76,4 МВт
K2: 108,2 МВт
Выработка ЖПГ на выходе E4 всегда равна 5,3 MTPA (миллионов тонн в год).
Эффективность циклов охлаждения улучшена на 0,87 МВт/(MTPA), то есть равна 34,83 МВт/(MTPA).
Claims (5)
1. Способ сжижения природного газа, в котором проводятся следующие этапы:
a) производят сжатие охлаждающей смеси,
b) осуществляют конденсацию, посредством теплообмена, сжатой охлаждающей смеси,
c) помещают конденсированную охлаждающую смесь в резервуар-хранилище, причем резервуар содержит в равновесии жидкую фазу охлаждающей смеси и газовую фазу охлаждающей смеси,
d) отводят охлаждающую смесь в жидкой фазе из резервуара-хранилища,
e) переохлаждают в первом теплообменнике охлаждающую смесь, отведенную на этапе d), посредством теплообмена с частью охлаждающей смеси, причем указанная часть дросселируется перед теплообменом.
f) охлаждают природный газ и одновременно вторую охлаждающую смесь путем теплообмена во втором теплообменнике с переохлажденной охлаждающей смесью, полученной на этапе е), при этом первый теплообменник отличается от второго теплообменника,
причем после этапа f) сжижают и переохлаждают природный газ путем теплообмена со второй охлаждающей смесью до получения жидкого природного газа.
a) производят сжатие охлаждающей смеси,
b) осуществляют конденсацию, посредством теплообмена, сжатой охлаждающей смеси,
c) помещают конденсированную охлаждающую смесь в резервуар-хранилище, причем резервуар содержит в равновесии жидкую фазу охлаждающей смеси и газовую фазу охлаждающей смеси,
d) отводят охлаждающую смесь в жидкой фазе из резервуара-хранилища,
e) переохлаждают в первом теплообменнике охлаждающую смесь, отведенную на этапе d), посредством теплообмена с частью охлаждающей смеси, причем указанная часть дросселируется перед теплообменом.
f) охлаждают природный газ и одновременно вторую охлаждающую смесь путем теплообмена во втором теплообменнике с переохлажденной охлаждающей смесью, полученной на этапе е), при этом первый теплообменник отличается от второго теплообменника,
причем после этапа f) сжижают и переохлаждают природный газ путем теплообмена со второй охлаждающей смесью до получения жидкого природного газа.
2. Способ по п.1, в котором указанную часть охлаждающей смеси отбирают из указанной охлаждающей смеси, отведенной перед проведением теплообмена на этапе е).
3. Способ по п.1, в котором указанную часть охлаждающей смеси отбирают из указанной охлаждающей смеси, отведенной после проведения теплообмена на этапе е) и перед проведением теплообмена на этапе f).
4. Способ по п.1, в котором охлаждающая смесь содержит (в мольных процентах) от 0 до 5% метана, от 30 до 70% этана, от 30 до 70% пропана и от 0 до 20% бутана.
5. Способ по п.1, в котором вторая охлаждающая смесь содержит (в мольных процентах) от 0 до 12% азота, от 20 до 80% метана, от 20 до 80% этана и от 0 до 10% пропана.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0803481A FR2932876B1 (fr) | 2008-06-20 | 2008-06-20 | Procede de liquefaction d'un gaz naturel avec pre-refroidissement du melange refrigerant |
FR08/03481 | 2008-06-20 | ||
PCT/FR2009/000572 WO2009153427A2 (fr) | 2008-06-20 | 2009-05-15 | Procede de liquefaction d'un gaz naturel avec pre-refroidissement du melange refrigerant |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2011101884A RU2011101884A (ru) | 2012-07-27 |
RU2509967C2 true RU2509967C2 (ru) | 2014-03-20 |
Family
ID=40456189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011101884/06A RU2509967C2 (ru) | 2008-06-20 | 2009-05-15 | Способ сжижения природного газа с предварительным охлаждением охлаждающей смеси |
Country Status (3)
Country | Link |
---|---|
FR (1) | FR2932876B1 (ru) |
RU (1) | RU2509967C2 (ru) |
WO (1) | WO2009153427A2 (ru) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2957407B1 (fr) | 2010-03-15 | 2012-08-17 | Inst Francais Du Petrole | Procede de liquefaction d'un gaz naturel avec des melanges refrigerants contenant au moins un hydrocarbure insature |
NO20140358A1 (no) * | 2014-03-18 | 2015-09-21 | Global Lng Services Ltd | Kystnær LNG produksjon |
EP3162870A1 (en) | 2015-10-27 | 2017-05-03 | Linde Aktiengesellschaft | Low-temperature mixed-refrigerant for hydrogen precooling in large scale |
US10663220B2 (en) | 2016-10-07 | 2020-05-26 | Air Products And Chemicals, Inc. | Multiple pressure mixed refrigerant cooling process and system |
US20190162468A1 (en) | 2017-11-27 | 2019-05-30 | Air Products And Chemicals, Inc. | Method and system for cooling a hydrocarbon stream |
US10852059B2 (en) | 2017-09-28 | 2020-12-01 | Air Products And Chemicals, Inc. | Multiple pressure mixed refrigerant cooling system |
US10753676B2 (en) | 2017-09-28 | 2020-08-25 | Air Products And Chemicals, Inc. | Multiple pressure mixed refrigerant cooling process |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU645618A3 (ru) * | 1970-12-21 | 1979-01-30 | Л,Эр Ликид, Сосьете Аноним Пур, Л.Этюд Эл, Эксплуатасьон Дэпросэдэ, Жорж Клод (Фирма) | Способ охлаждени и конденсации природного газа |
SU1354007A1 (ru) * | 1985-11-18 | 1987-11-23 | Предприятие П/Я Р-6956 | Способ управлени установкой сжижени природного газа |
US6105389A (en) * | 1998-04-29 | 2000-08-22 | Institut Francais Du Petrole | Method and device for liquefying a natural gas without phase separation of the coolant mixtures |
US6449984B1 (en) * | 2001-07-04 | 2002-09-17 | Technip | Process for liquefaction of and nitrogen extraction from natural gas, apparatus for implementation of the process, and gases obtained by the process |
US20080006053A1 (en) * | 2003-09-23 | 2008-01-10 | Linde Ag | Natural Gas Liquefaction Process |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2499226B1 (fr) * | 1981-02-05 | 1985-09-27 | Air Liquide | Procede et installation de liquefaction d'un gaz |
-
2008
- 2008-06-20 FR FR0803481A patent/FR2932876B1/fr active Active
-
2009
- 2009-05-15 RU RU2011101884/06A patent/RU2509967C2/ru active
- 2009-05-15 WO PCT/FR2009/000572 patent/WO2009153427A2/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU645618A3 (ru) * | 1970-12-21 | 1979-01-30 | Л,Эр Ликид, Сосьете Аноним Пур, Л.Этюд Эл, Эксплуатасьон Дэпросэдэ, Жорж Клод (Фирма) | Способ охлаждени и конденсации природного газа |
SU1354007A1 (ru) * | 1985-11-18 | 1987-11-23 | Предприятие П/Я Р-6956 | Способ управлени установкой сжижени природного газа |
US6105389A (en) * | 1998-04-29 | 2000-08-22 | Institut Francais Du Petrole | Method and device for liquefying a natural gas without phase separation of the coolant mixtures |
US6449984B1 (en) * | 2001-07-04 | 2002-09-17 | Technip | Process for liquefaction of and nitrogen extraction from natural gas, apparatus for implementation of the process, and gases obtained by the process |
US20080006053A1 (en) * | 2003-09-23 | 2008-01-10 | Linde Ag | Natural Gas Liquefaction Process |
Also Published As
Publication number | Publication date |
---|---|
WO2009153427A3 (fr) | 2013-01-03 |
WO2009153427A2 (fr) | 2009-12-23 |
FR2932876B1 (fr) | 2013-09-27 |
RU2011101884A (ru) | 2012-07-27 |
FR2932876A1 (fr) | 2009-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2270408C2 (ru) | Способ охлаждения сжиженного газа и установка для осуществления способа | |
RU2752223C2 (ru) | Комплексная система охлаждения метана для сжижения природного газа | |
JP5647299B2 (ja) | 液化方法及び液化装置 | |
RU2253809C2 (ru) | Способ ожижения природного газа путем охлаждения за счет расширения | |
RU2702829C2 (ru) | Способ сжижения сырьевого потока природного газа и удаления из него азота и устройство (варианты) для его осуществления | |
JP5798176B2 (ja) | 予備冷却される混合冷媒統合システムおよび方法 | |
US6763680B2 (en) | Liquefaction of natural gas with natural gas recycling | |
RU2121637C1 (ru) | Способ и установка для охлаждения текучей среды, в частности, при сжижении природного газа | |
JP4938452B2 (ja) | 複数の膨張機を備えたハイブリッドガス液化サイクル | |
KR100381108B1 (ko) | 단일의 혼합된 냉매 가스 액화 방법 | |
AU736738B2 (en) | Gas liquefaction process with partial condensation of mixed refrigerant at intermediate temperatures | |
RU2509967C2 (ru) | Способ сжижения природного газа с предварительным охлаждением охлаждающей смеси | |
RU2467268C2 (ru) | Способ и устройство для охлаждения углеводородного потока | |
JP6110453B2 (ja) | 天然ガス液化プロセスにおける冷却剤回収 | |
RU2432534C2 (ru) | Способ для сжижения потока углеводородов и устройство для его осуществления | |
RU2307297C2 (ru) | Объединенный многоконтурный способ охлаждения для сжижения газа | |
RU2434190C2 (ru) | Способ для сжижения потока углеводородов и устройство для его осуществления | |
JP3922751B2 (ja) | 2段階で天然ガスなどの気体混合物を液化する方法および装置 | |
JP2016517502A (ja) | 混合冷媒システムおよび方法 | |
US20100223951A1 (en) | Method and apparatus for cooling a hydrocarbon stream | |
EA026653B1 (ru) | Способ охлаждения | |
US6449982B1 (en) | Process for partial liquefaction of a fluid containing hydrocarbons, such as natural gas | |
US11624555B2 (en) | Method and system for cooling a hydrocarbon stream | |
JP6702919B2 (ja) | 混合冷媒冷却プロセスおよびシステム | |
US20190162469A1 (en) | Method and system for cooling a hydrocarbon stream |