RU2509812C2 - Способ изготовления горячекатаной полосы из кремнистой стали - Google Patents
Способ изготовления горячекатаной полосы из кремнистой стали Download PDFInfo
- Publication number
- RU2509812C2 RU2509812C2 RU2011119637/02A RU2011119637A RU2509812C2 RU 2509812 C2 RU2509812 C2 RU 2509812C2 RU 2011119637/02 A RU2011119637/02 A RU 2011119637/02A RU 2011119637 A RU2011119637 A RU 2011119637A RU 2509812 C2 RU2509812 C2 RU 2509812C2
- Authority
- RU
- Russia
- Prior art keywords
- strip
- rolling
- temperature
- steel
- winding
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1222—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/05—Grain orientation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Metal Rolling (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Continuous Casting (AREA)
Abstract
Изобретение относится к изготовлению горячекатаной полосы из легированных кремнием сталей для дальнейшей обработки в электротехническую полосовую сталь с ориентированной зернистой структурой. Для повышения магнитных свойств и качества полосы способ, который выполняют в установке совмещенного процесса непрерывной разливки и прокатки, включает следующие стадии: а) плавление стали с химическим составом, мас.%: Si - 2-7, C - 0,01-0,1, Mn<0,3, Cu - 0,1-0,7, Sn<0,2, S<0,05, Al<0,09, Cr<0,3, N<0,02, P<0,1, остальное Fe и неизбежные примеси, b) отливку заготовки с толщиной 25-150 мм в установке непрерывной разливки металла, c) прокатку полосы с количеством проходов до 4 непосредственно после отливки заготовки, при этом по меньшей мере в одном проходе степень деформации составляет больше 30% или общая степень деформации всех проходов составляет больше 50%, d) нагрев полосы до конечной температуры 1050-1250°C, предпочтительно 1100-1180°C, e) чистовую прокатку полосы на втором прокатном стане, f) охлаждение и намотку полосы. 10 з.п. ф-лы, 1 табл., 2 ил., 2 пр.
Description
Данное изобретение относится к способу и устройству для изготовления горячекатаной полосы из легированных кремнием сталей для дальнейшей обработки в электротехническую полосовую сталь с ориентированной зернистой структурой. Дальнейшая обработка горячекатаной полосы не является предметом этого изобретения; она осуществляется посредством тепловой обработки и холодной прокатки.
Электротехническая полосовая сталь с ориентированной зернистой структурой, например, для дальнейшей обработки в ламинированную электротехнические стальные листы для трансформаторов или электрических машин, отличается низкими удельными потерями на перемагничивание и высокой магнитной проницаемостью. Поскольку расход электрической энергии повышается и к коэффициенту полезного действия электрических машин предъявляются все более высокие требования, то имеется высокий спрос на высококачественную и недорогую электротехническую полосовую сталь.
Изготовление электротехнической полосовой стали можно разделить на следующие стадии изготовления: создания стальной полосы, горячекатаной полосы и холоднокатаной полосы, тепловой обработки и покрытия полосы (смотри инструкцию 401 "Elektroband und -blech", Stahl-Infomations-Zentrum, Дюссельдорф, выпуск 2005).
Для специалистов в данной области техники известны установки для совмещенного процесса непрерывной разливки и прокатки для особенно экономичного изготовления высококачественной горячекатаной полосы, например, для последующей переработки в автомобильный лист (смотри, например, EP 1662011 A1).
Из WO 98/46802 A1 известен способ изготовления электротехнической полосовой стали с ориентированной зернистой структурой, при этом либо a) расплавляют специальный стальной сплав и отливают из него тонкую заготовку в установке непрерывной разливки, затем разделяют заготовку, слябы отжигают, прокатывают, охлаждают и сматывают горячекатаную полосу, либо b) расплавляют специальный стальной сплав и отливают из него тонкую заготовку в установке непрерывной разливки, затем заготовку прокатывают, охлаждают и сматывают горячекатаную полосу.
После рабочих стадий a) или b) горячекатаную полосу по существу отжигают, в стане холодной прокатки раскатывают на конечную толщину, обезуглероживают и подвергают целенаправленной вторичной рекристаллизации. Расплавленный стальной сплав содержит так называемые ингибиторы роста, а именно, сульфиды, карбиды или нитриды элементов Mn, Cu и Al, которые предотвращают рост зерна имеющейся после окончательной прокатки структуры. Кроме того, эти отложения действуют в зависимости от температуры уже во время деформации и непосредственно после нее на рекристаллизацию так, что может возникать структура, которая в последующем пригодна для производства материала с желаемыми свойствами зерна.
Способ, согласно уровню техники, для изготовления горячекатаной полосы является либо очень затратным относительно энергии, или приводит к снижению качества подвергаемой дальнейшей обработке электротехнической полосовой стали с ориентированной структурой зерна. Дополнительно к этому, применяемые для отжига слябов печи-миксеры являются мало компактными, что в свою очередь повышает инвестиционные расходы на всю установку.
Задачей изобретения является создание способа и установки для совмещенного процесса непрерывной отливки и прокатки указанного в начале вида, с помощью которых можно экономично изготавливать высококачественную горячекатаную полосу для дальнейшей переработки в электротехническую полосовую сталь с ориентированной структурой зерна с высокими магнитными, электрическими и геометрическими свойствами. Под высококачественной горячекатаной полосой такого вида понимается горячекатаная полоса, в которой ингибиторы роста распределены в горячекатаной полосе тонкодисперсно и гомогенно.
Эта задача решена с помощью способа, в котором выполняют в установке для совмещенного процесса непрерывной разливки и раскатки следующие стадии способа в названной последовательности:
a) плавления стали с химическим составом в % массы Si 2-7%, C - 0,01 0,1%, Mn<0,3%, Cu 0,1-0,7%, Sn<0,2%, S<0,05%, Al<0,09%, Cr<0,3%, N<0,02%, P<0,1%, остальное Fe и загрязнения;
b) отливки заготовки с толщиной 25150 мм в установке непрерывной разливки металла;
c) прокатки в полосу с количеством проходов до 4 непосредственно после отливки заготовки, при этом по меньшей мере в одном проходе степень деформации составляет больше 30% или общая степень деформации всех проходов составляет больше 50%;
d) нагревания полосы до конечной температуры 1050-1250°С, предпочтительно 1100-1180°С;
е) чистовой прокатки полосы на втором прокатном стане, затем
f) охлаждения и намотки полосы.
Этот процесс изготовления способствует образованию гомогенно распределенных и присутствующих с тонкой дисперсией ингибиторов роста, а именно, сульфидов, карбидов или нитридов элементов Mn, Cu, Al, а также Cr, за счет плавления специального стального сплава (стадия а) и непосредственно следующей за отливкой тонкой заготовки (стадия b) прокатки полосы с высокой степенью деформации (стадия с) на первом прокатном стане. Степень φ деформации задана как φ=(h0-h1)/h0, где h0 обозначает толщину перед деформацией, а h1 толщину полосы, соответственно, заготовки после одного или нескольких проходов деформации; степень деформации указывается в данной заявке в процентах. Нагревание полосы (стадия d) приводит к остановке дальнейшего осаждения ингибиторов роста и к растворению снова уже образованных осаждений с заданной кинетикой. При повторном понижении температуры при чистовой прокатке на втором прокатном стане (стадия е) и последующем охлаждении полосы (стадия f) образуются дополнительные гомогенно распределенные и присутствующие с тонкой дисперсией ингибиторы роста. Процесс изготовления можно выполнять либо полностью непрерывно, т.е. на основе заготовки, соответственно, не разделенной полосы, либо не непрерывно партиями, т.е. на основе слябов.
В одном предпочтительном варианте выполнения способа изготовления поддерживают конечную температуру после нагревания полосы в течение времени t, для которого справедливо t>15 с, предпочтительно t>60 с. За счет этого растворяется более высокая доля возможно уже имеющихся в полосе в виде больших скоплений осаждений. Сохранение температуры в течение времени t>90 с не целесообразно, поскольку после этого времени уже все осаждения находятся в растворенном виде.
В полностью непрерывном режиме конечная температура полосы предпочтительно поддерживается в проходной печи, которая выполнена, в виде нагреваемой за счет сгорания газа печи или в виде индукционной печи. За счет этого можно сохранять температуру полосы в непрерывном режиме особенно компактным образом.
В не непрерывном режиме обработки партий конечная температура полосы предпочтительно поддерживается за счет наматывания и сматывания в печной моталке. За счет этого можно сохранять температуру полосы в не непрерывном режиме особенно компактным образом.
В одном предпочтительном варианте выполнения способа, согласно изобретению, полосу окончательно прокатывают на втором прокатном стане за 2-6, предпочтительно 3-5 проходов. За счет этого можно особенно экономичным образом создавать распространенные толщины полосы.
При чистовой прокатке целесообразно, когда полоса после чистовой прокатки имеет конечную температуру прокатки от 900 до 1050°С. За счет этого обеспечивается выполнение чистовой прокатки в благоприятном диапазоне температур.
Другой предпочтительный вариант выполнения состоит в том, что полосу охлаждают в течение максимально 10 с, предпочтительно в течение максимально 6 с, после чистовой прокатки до температуры намотки 300-600°С с помощью стадии интенсивного охлаждения.
Другой предпочтительный вариант выполнения способа, согласно изобретению, состоит в том, что полосу в начале стадии интенсивного охлаждения охлаждают с двойной, предпочтительно, тройной скоростью охлаждения по сравнению со скоростью охлаждения в конце стадии охлаждения. С помощью такого изменения температуры обеспечивается, что имеющаяся после чистовой прокатки структура возможно быстрее «замораживается» для последующих стадий.
Относительно образования ингибиторов роста предпочтительно, что в стальном расплаве сумма легирующих элементов Cu+Mn составляет >0,35 масс.%, предпочтительно >0,55 масс.%. Для образования достаточно большого количества ингибиторов роста предпочтительно, что в стальном расплаве сумма легирующих элементов S+N составляет >100 млн-1, предпочтительно >200 млн-1. Достаточное количество Cu, Mn, S и N в стальном расплаве является предпочтительным для обеспечения осаждения достаточного количества ингибиторов роста в горячекатаной полосе.
Предпочтительно в стальном расплаве отношение легирующих элементов Cu/Mn составляет >2,5, предпочтительно >3,5. Поскольку сульфиды меди имеют меньшую величину и температуру осаждения чем сульфиды марганца и поэтому являются предпочтительными, предпочтительно, когда стальной расплав содержит Cu больше, чем Mn. Однако поскольку Mn является более сродственным S, чем Cu, то должен иметься избыток Cu, с целью обеспечения возможности образования большего количества сульфидов меди, чем сульфидов марганца.
Другим предпочтительным вариантом выполнения способа, согласно изобретению, который решает положенную в основу изобретения задачу, для непрерывного режима состоит в том, что первый прокатный стан расположен непосредственно после установки непрерывной разливки металла, и между устройством нагревания и вторым прокатным станом находится проходная печь для вноса тепла и/или поддержания температуры горячекатаной полосы. За счет такой конфигурации установки обеспечивается возможность особенно экономичного выполнения способа, согласно изобретению, при высоком качестве производства, т.е. высокой производительности (полностью непрерывный режим), низких затратах на энергию (за счет минимизации количества энергии для нагревания горячекатаной полосы) и низких инвестиционных затратах (компактная установка).
Предпочтительный вариант выполнения установки для совмещенного процесса непрерывной разливки и прокатки состоит в выполнении установки непрерывной разливки в виде установки непрерывной разливки для отливки тонких слябов. Другой вариант выполнения состоит в том, что первый прокатный стан содержит до четырех прокатных клетей. Другой вариант выполнения состоит в том, что второй прокатный стан содержит 2-6, предпочтительно 3-5 прокатных клетей. За счет этого удерживаются низкими инвестиционные расходы на первый прокатный стан и второй прокатный стан (можно получать распространенные толщины полосы с помощью меньшего количества прокатных клетей).
Другие преимущества и признаки данного изобретения следуют из приведенного ниже описания не имеющих ограничительного характера примеров выполнения со ссылками на прилагаемые чертежи, на которых изображено:
Фиг. 1 - схема установки для совмещенного процесса непрерывной разливки и прокатки для не непрерывного изготовления горячекатаной полосы для дальнейшей переработки в листы с ориентированной структурой зерна;
Фиг. 2 - схема установки для совмещенного процесса непрерывной разливки и прокатки для полностью непрерывного изготовления горячекатаной полосы для дальнейшей переработки в листы с ориентированной структурой зерна.
Пример выполнения 1
На фиг. 1 показана установка 1 для совмещенного процесса непрерывной разливки и прокатки для изготовления горячекатаной полосы из легированных кремнием сталей; части установки для дальнейшей переработки горячекатаной полосы в электротехническую полосовую сталь с ориентированной структурой зерна не изображены. Состояния, т.е. температуры и толщины, заготовки, соответственно, полосы в отдельных стадиях способа приведены в таблице I; состояния обозначены как Р1-Р15. В установке 2 непрерывной разливки металла для изготовления тонких слябов из специальной легированной стали, состоящей в % массы из Si-3,2%, C-0,08%, Mn-0,1%, Cu-0,3%, Sn-0,08%, S-0,01%, Al-0,03%, Cr-0,1%, N - 0,012%, P - 0,05%, остальное Fe и загрязнения, отливают заготовку 3 с толщиной 90 мм. Непосредственно после полного затвердевания (температура заготовки 1174°C, состояние P1) заготовку 3 подвергают первой стадии прокатки, состоящей из 2 проходов, на первом прокатном стане 5. При этом отдельные степени деформации составляют, соответственно, 53% и 52%, т.е. сначала прокатывают полосу с толщиной 42 мм (состояние P2), а затем прокатывают полосу с толщиной 20 мм (состояние P3). Температура полосы после первого прохода составляет 1171 С, после второго прохода 1086°C. Эта первая стадия прокатки способствует образованию в полосе гомогенно распределенных и присутствующих в тонко дисперсном состоянии гроздей ингибиторов роста, а именно, сульфидов, нитридов и карбидов элементов Cu, Al, Mn и Cr, за счет чего тормозится дальнейший рост зерна. После первой стадии прокатки, полосу 4 с помощью рольганга транспортируют к устройству 6 нагревания, выполненному в виде индукционной печи, в которой входящую, охлажденную до 944°C полосу (состояние P4) нагревают до конечной температуры 1150°C (состояние P5). Затем температуру полосы поддерживают в печной моталке 7 (температура на входе печной моталки 1134°C, состояние P6) в течение по меньшей мере 30 с. Время нахождения зоны полосы, так называемое местное время пребывания, различно в зависимости от положения полосы. На основе наматывания и сматывания полосы, например, имеющееся перед намоткой начало полосы остается в намоточной печи дольше, чем конец полосы; в этом смысле имеющееся перед намоткой начало полосы становится концом полосы, и наоборот. За счет нагревания полосы 4 предотвращается осаждение ингибиторов роста до чистовой прокатки полосы на втором прокатном стане 8; за счет сохранения температуры в течение времени t растворяются грубые грозди ингибиторов роста, которые при повторном снижении температуры при чистовой прокатке снова образуются с тонким распределением. После наматывания и сматывания полосы в печной моталке 7 полосу освобождают от окалины с помощью установки 12 удаления окалины, за счет чего температура полосы падает с 1101°С до 1070°С (температуры перед и после снятия окалины, состояния Р7 и Р8). Затем полосу прокатывают окончательно на втором прокатном стане в четырех проходах прокатки (отдельные степени деформации 55, 53, 28 и 16%, т.е. толщина полосы 9,1, 4,3, 3,1 и 2,6 мм, состояния Р9-Р12) до конечной толщины 2,6 мм горячекатаной полосы. В этих проходах прокатки полоса охлаждается с 1043, 1012 и 984°С до конечной температуры прокатки 955°С после последнего прохода прокатки. После чистовой прокатки полосу охлаждают на участке 9 охлаждения в течение 3 с после последнего прохода на втором прокатном стане 8 с 932°С (вход участка охлаждения, состояние Р13) до температуры 560°С на выходе участка охлаждения (состояние Р14). При чистовой прокатке и охлаждении полосы имеющиеся в полосе гроздья ингибиторов роста осаждаются тонкодисперсно, т.е. с типичной величиной грозди меньше 60 нм. После отрезания горячекатаной полосы с помощью ножниц 10 полосу наматывают на намоточном устройстве 11; при этом температура намотки составляет 540°С (состояние Р15). В последующих, больше не изображенных стадиях изготовления горячекатаную полосу отжигают, прокатывают в стане холодной прокатки на конечную толщину, обезуглероживают и подвергают целенаправленной рекристаллизации.
Пример выполнения 2
На фиг. 2 показана другая установка 1 совмещенного процесса непрерывной разливки и прокатки для полностью непрерывного изготовления горячекатаной полосы из легированных кремнием сталей; части установки для дальнейшей переработки горячекатаной полосы в электротехническую полосовую сталь с ориентированной структурой зерна не изображены. Состояния Р1-Р5 и Р7-Р15 приведены в таблице I. При этом снова плавят специальную легированную сталь (химический состав как в примере выполнения 1) и отливают из нее в установке 2 непрерывной разливки металла заготовку 3 (состояние 1). Непосредственно после сплошного затвердевания заготовку подвергают первой стадии прокатки, состоящей из 2 проходов прокатки, на первом прокатном стане 5 (состояния Р2 и Р3). Затем полосу 4 нагревают в нагревательном устройстве 6, выполненном в виде индукционной печи (состояния Р4 и Р5). Существенное отличие от примера выполнения 1 состоит в том, что температура полосы 4 после нагревания в проходной печи 13, выполненной в виде нагреваемой сжигаемым газом печи, поддерживается в течение по меньшей мере 15 с; местное время пребывания в проходной печи для всех зон полосы (начала полосы, конца полосы) является постоянным. Другие стадии способа (удаление окалины Р7, Р8, чистовая прокатка Р9-Р13, охлаждение Р13, Р14 и намотка Р15) соответствуют примеру выполнения 1.
Таблица I | |||
Место | Толщина в мм |
Темп. в °С |
|
Р1 | Конец установки для разливки и прокатки | 90 | 1174 |
Р2 | После 1-го прохода на первом прокатном стане | 42 | 1171 |
Р3 | После 2-го прохода на первом прокатном стане | 20 | 1086 |
Р4 | Вход нагревательного устройства | 20 | 944 |
Р5 | Выход нагревательного устройства | 20 | 1150 |
Р6 | Вход печной моталки | 20 | 1134 |
Р7 | Вход установки для снятия окалины | 20 | 1101 |
Р8 | Выход установки для снятия окалины | 20 | 1070 |
Р9 | После 1-го прохода на втором прокатном стане | 9,1 | 1043 |
Р10 | После 2-го прохода на втором прокатном стане | 4,3 | 1012 |
Р11 | После 3-го прохода на втором прокатном стане | 3,1 | 984 |
Р12 | После 4-го прохода на втором прокатном стане | 2,6 | 955 |
Р13 | Вход участка охлаждения | 2,6 | 932 |
Р14 | Выход участка охлаждения | 2,6 | 560 |
Р15 | В намоточном устройстве | 2,6 | 540 |
Перечень позиций
1. Установка совмещенного процесса непрерывной разливки и прокатки
2. Установка непрерывной разливки металла
3. Заготовка
4. Полоса
5. Первый прокатный стан
6. Нагревательное устройство
7. Печная моталка
8. Второй прокатный стан
9. Участок охлаждения
10. Ножницы
11. Намоточное устройство
12. Установка для удаления окалины
13. Проходная печь
Claims (11)
1. Способ изготовления горячекатаной полосы из легированной кремнием стали с ориентированной зеренной структурой в установке совмещенного процесса непрерывной разливки и прокатки, включающий:
a) выплавку стали с химическим составом, мас.%: Si - 2-7, C - 0,01-0,1, Mn<0,3, Cu - 0,1-0,7, Sn<0,2, S<0,05, Al<0,09, Cr<0,3, N<0,02, Р<0,1, остальное Fe и неизбежные примеси,
b) отливку заготовки толщиной 25-150 мм в установке непрерывной разливки,
c) прокатку заготовки в полосу непосредственно после отливки заготовки с количеством проходов до 4, при этом по меньшей мере в одном проходе степень деформации составляет больше 30% или общая степень деформации всех проходов составляет больше 50%,
d) нагрев полосы до конечной температуры 1050-1250°С, предпочтительно 1100-1180°С;
e) чистовую прокатку полосы на втором прокатном стане, затем
f) охлаждение и намотку полосы.
a) выплавку стали с химическим составом, мас.%: Si - 2-7, C - 0,01-0,1, Mn<0,3, Cu - 0,1-0,7, Sn<0,2, S<0,05, Al<0,09, Cr<0,3, N<0,02, Р<0,1, остальное Fe и неизбежные примеси,
b) отливку заготовки толщиной 25-150 мм в установке непрерывной разливки,
c) прокатку заготовки в полосу непосредственно после отливки заготовки с количеством проходов до 4, при этом по меньшей мере в одном проходе степень деформации составляет больше 30% или общая степень деформации всех проходов составляет больше 50%,
d) нагрев полосы до конечной температуры 1050-1250°С, предпочтительно 1100-1180°С;
e) чистовую прокатку полосы на втором прокатном стане, затем
f) охлаждение и намотку полосы.
2. Способ по п.1, отличающийся тем, что конечную температуру после нагрева полосы поддерживают в течение времени t, при этом t>15 с, предпочтительно 1>60 с.
3. Способ по п.2, отличающийся тем, что конечную температуру полосы поддерживают в проходной печи.
4. Способ по п.2, отличающийся тем, что конечную температуру полосы поддерживают во время наматывания и последующего сматывания в печной моталке.
5. Способ по п.1, отличающийся тем, что полосу окончательно прокатывают на втором прокатном стане за 2-6, предпочтительно 3-5 проходов.
6. Способ по любому из пп.1-5, отличающийся тем, что полоса после чистовой прокатки имеет конечную температуру прокатки от 900 до 1050°C.
7. Способ по любому из пп.1-5, отличающийся тем, что полосу охлаждают в течение максимально 10 с, предпочтительно в течение 6 с, после чистовой прокатки до температуры намотки 300-600°C с помощью стадии интенсивного охлаждения.
8. Способ по п.7, отличающийся тем, что полосу в начале стадии интенсивного охлаждения охлаждают с двойной, предпочтительно тройной, скоростью охлаждения по сравнению со скоростью охлаждения в конце стадии охлаждения.
9. Способ по п.1, отличающийся тем, что в стальном расплаве сумма легирующих элементов Cu+Mn составляет >0,35 мас.%, предпочтительно >0,55 мас.%.
10. Способ по п.1, отличающийся тем, что в стальном расплаве сумма легирующих элементов S+N составляет >100 млн-1, предпочтительно >200 млн-1.
11. Способ по п.1, отличающийся тем, что в стальном расплаве отношение легирующих элементов Cu/Mn составляет >2,5, предпочтительно >3,5.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0163408A AT507475B1 (de) | 2008-10-17 | 2008-10-17 | Verfahren und vorrichtung zur herstellung von warmband-walzgut aus siliziumstahl |
ATA1634/2008 | 2008-10-17 | ||
PCT/EP2009/063245 WO2010043578A1 (de) | 2008-10-17 | 2009-10-12 | Verfahren und vorrichtung zur herstellung von warmband-walzgut aus siliziumstahl |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2011119637A RU2011119637A (ru) | 2012-11-27 |
RU2509812C2 true RU2509812C2 (ru) | 2014-03-20 |
Family
ID=41558192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011119637/02A RU2509812C2 (ru) | 2008-10-17 | 2009-10-12 | Способ изготовления горячекатаной полосы из кремнистой стали |
Country Status (7)
Country | Link |
---|---|
US (1) | US20120305212A1 (ru) |
EP (1) | EP2334830B1 (ru) |
CN (1) | CN102186999B (ru) |
AT (1) | AT507475B1 (ru) |
RU (1) | RU2509812C2 (ru) |
UA (1) | UA103055C2 (ru) |
WO (1) | WO2010043578A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2706268C1 (ru) * | 2016-10-18 | 2019-11-15 | ДжФЕ СТИЛ КОРПОРЕЙШН | Горячекатаный стальной лист для изготовления листа из электротехнической стали и способ его изготовления |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012206538A1 (de) | 2012-04-20 | 2013-10-24 | Siemens Aktiengesellschaft | Lokalisierung eines Bauteils in einer Industrieanlage mittels eines mobilen Bediengeräts |
DE102013221710A1 (de) * | 2013-10-25 | 2015-04-30 | Sms Siemag Aktiengesellschaft | Aluminium-Warmbandwalzstraße und Verfahren zum Warmwalzen eines Aluminium-Warmbandes |
CZ305521B6 (cs) * | 2014-05-12 | 2015-11-11 | Arcelormittal Ostrava A.S. | Pás z orientované transformátorové oceli a způsob jeho výroby |
DE102020209299A1 (de) * | 2020-07-23 | 2022-01-27 | Sms Group Gmbh | Verfahren zum Herstellen von Stahlband |
CN114918250A (zh) * | 2022-05-21 | 2022-08-19 | 湖南华菱湘潭钢铁有限公司 | 一种减少高碳盘条时效时间的生产方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0411356A2 (en) * | 1989-07-12 | 1991-02-06 | Nippon Steel Corporation | Method of hot rolling continuously cast grain-oriented electrical steel slab |
RU2092605C1 (ru) * | 1991-10-22 | 1997-10-10 | Поханг Айрон энд Стил Ко., Лтд. | Листы изотропной электротехнической стали и способы их изготовления |
RU2126452C1 (ru) * | 1993-04-05 | 1999-02-20 | Тиссен Шталь АГ | Способ изготовления электротехнической листовой стали |
DE19524082B4 (de) * | 1995-07-01 | 2004-02-26 | Sms Demag Ag | Anlage zur Herstellung von warmgewalztem Stahlband |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5948935B2 (ja) * | 1981-08-05 | 1984-11-29 | 新日本製鐵株式会社 | 低鉄損一方向性電磁鋼板の製造方法 |
CA1270728A (en) * | 1985-02-25 | 1990-06-26 | Armco Advanced Materials Corporation | Method of producing cube-on-edge oriented silicon steel from strand cast slabs |
JPH07115041B2 (ja) * | 1987-03-11 | 1995-12-13 | 日本鋼管株式会社 | 無方向性高Si鋼板の製造方法 |
US5307864A (en) * | 1988-05-26 | 1994-05-03 | Mannesmann Aktiengesellschaft | Method and system for continuously producing flat steel product by the continuous casting method |
DE69030781T3 (de) * | 1989-03-30 | 2001-05-23 | Nippon Steel Corp., Tokio/Tokyo | Verfahren zur Herstellung kornorientierter Elektrostahlbleche mittels rascher Abschreckung und Erstarrung |
JPH03229822A (ja) * | 1990-02-06 | 1991-10-11 | Kawasaki Steel Corp | 一方向性けい素鋼板の製造方法 |
DE19712212A1 (de) * | 1997-03-24 | 1998-10-01 | Schloemann Siemag Ag | Verfahren und Anlage zum Auswalzen von Warmbreitband aus stranggegossenen Brammen |
AU2698897A (en) * | 1997-04-16 | 1998-11-11 | Acciai Speciali Terni S.P.A. | New process for the production of grain oriented electrical steel from thin slabs |
TWI288676B (en) * | 2002-07-06 | 2007-10-21 | Sms Demag Ag | Method and casting roller plant for the semi-endless or endless rolling by casting of a metal in particular a steel strip which may be transversely cut as required after solidification |
ITMI20021996A1 (it) * | 2002-09-19 | 2004-03-20 | Giovanni Arvedi | Procedimento e linea di produzione per la fabbricazione di nastro a caldo ultrasottile sulla base della tecnologia della bramma sottile |
PL1752549T3 (pl) * | 2005-08-03 | 2017-08-31 | Thyssenkrupp Steel Europe Ag | Sposób wytwarzania taśmy elektrotechnicznej o zorientowanych ziarnach |
CN1743128A (zh) * | 2005-09-29 | 2006-03-08 | 东北大学 | 连铸板坯直接轧制生产取向硅钢带的方法 |
DE102008029581A1 (de) * | 2007-07-21 | 2009-01-22 | Sms Demag Ag | Verfahren und Vorrichtung zum Herstellen von Bändern aus Silizum-Stahl oder Mehrphasenstahl |
-
2008
- 2008-10-17 AT AT0163408A patent/AT507475B1/de not_active IP Right Cessation
-
2009
- 2009-10-12 EP EP09740663.1A patent/EP2334830B1/de active Active
- 2009-10-12 UA UAA201104684A patent/UA103055C2/ru unknown
- 2009-10-12 CN CN200980141033.5A patent/CN102186999B/zh active Active
- 2009-10-12 RU RU2011119637/02A patent/RU2509812C2/ru active
- 2009-10-12 US US13/124,713 patent/US20120305212A1/en not_active Abandoned
- 2009-10-12 WO PCT/EP2009/063245 patent/WO2010043578A1/de active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0411356A2 (en) * | 1989-07-12 | 1991-02-06 | Nippon Steel Corporation | Method of hot rolling continuously cast grain-oriented electrical steel slab |
RU2092605C1 (ru) * | 1991-10-22 | 1997-10-10 | Поханг Айрон энд Стил Ко., Лтд. | Листы изотропной электротехнической стали и способы их изготовления |
RU2126452C1 (ru) * | 1993-04-05 | 1999-02-20 | Тиссен Шталь АГ | Способ изготовления электротехнической листовой стали |
DE19524082B4 (de) * | 1995-07-01 | 2004-02-26 | Sms Demag Ag | Anlage zur Herstellung von warmgewalztem Stahlband |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2706268C1 (ru) * | 2016-10-18 | 2019-11-15 | ДжФЕ СТИЛ КОРПОРЕЙШН | Горячекатаный стальной лист для изготовления листа из электротехнической стали и способ его изготовления |
Also Published As
Publication number | Publication date |
---|---|
CN102186999A (zh) | 2011-09-14 |
EP2334830A1 (de) | 2011-06-22 |
EP2334830B1 (de) | 2017-04-19 |
CN102186999B (zh) | 2015-08-12 |
AT507475B1 (de) | 2010-08-15 |
AT507475A1 (de) | 2010-05-15 |
UA103055C2 (ru) | 2013-09-10 |
WO2010043578A1 (de) | 2010-04-22 |
RU2011119637A (ru) | 2012-11-27 |
US20120305212A1 (en) | 2012-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5646643B2 (ja) | 方向性電磁鋼帯を製造する方法およびそれにより製造された方向性電磁鋼 | |
EP2880190B1 (en) | Method of production of grain-oriented silicon steel sheet grain oriented electrical steel sheet and use thereof | |
US8440030B2 (en) | Fine spheroidized steel sheet with excellent heat treatment characteristic and method for manufacturing the same | |
JP2009185386A (ja) | 無方向性電磁鋼板の製造方法 | |
RU2509812C2 (ru) | Способ изготовления горячекатаной полосы из кремнистой стали | |
CN104928457A (zh) | 利用炉卷+连轧机生产高塑性铁素体不锈钢钢带的方法 | |
CN102560235A (zh) | 一种高磁感取向硅钢的制造方法 | |
CN103305748A (zh) | 一种无取向电工钢板及其制造方法 | |
CN1481445A (zh) | 用于生产晶粒定向电工钢带的工艺 | |
CN113584404A (zh) | 一种含Cu无取向硅钢及其生产方法 | |
CN113755750A (zh) | 一种含磷高磁感无取向硅钢的生产方法 | |
JP6879341B2 (ja) | 無方向性電磁鋼板の製造方法 | |
US7658807B2 (en) | Hot-rolled strip intended for the production of non-grain oriented electrical sheet and a method for the production thereof | |
JPH0873939A (ja) | 磁気特性に優れた無方向性電磁鋼板の製造方法 | |
CN113789467A (zh) | 一种含磷无铝高效无取向硅钢生产方法 | |
EP0798392B1 (en) | Production method for grain oriented silicon steel sheet having excellent magnetic characteristics | |
CN109182907B (zh) | 一种无头轧制生产半工艺无取向电工钢的方法 | |
JPH0463228A (ja) | 磁性焼鈍前後の磁気特性の優れた無方向性電磁鋼板の製造方法 | |
AU760095B2 (en) | Process for manufacturing drawable sheet by direct casting of thin strip, and sheet thus obtained | |
JP2536974B2 (ja) | 極めて優れた磁気特性を有する無方向性電磁鋼板の熱間圧延方法 | |
KR101185024B1 (ko) | 박 슬라브 연속주조법을 이용한 연질 냉연강판의 제조방법 | |
CN115704073A (zh) | 一种表面状态良好的无取向电工钢板及其制造方法 | |
JP2674328B2 (ja) | 表面性状と成形性に優れた熱延鋼板の製造方法 | |
JP2536976B2 (ja) | 表面性状および磁気特性の優れた無方向性電磁鋼板の製造方法 | |
JP4239276B2 (ja) | 方向性電磁鋼熱延鋼板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC43 | Official registration of the transfer of the exclusive right without contract for inventions |
Effective date: 20160803 |