[go: up one dir, main page]

RU2509733C1 - Устройство для очистки сточных вод - Google Patents

Устройство для очистки сточных вод Download PDF

Info

Publication number
RU2509733C1
RU2509733C1 RU2012140197/05A RU2012140197A RU2509733C1 RU 2509733 C1 RU2509733 C1 RU 2509733C1 RU 2012140197/05 A RU2012140197/05 A RU 2012140197/05A RU 2012140197 A RU2012140197 A RU 2012140197A RU 2509733 C1 RU2509733 C1 RU 2509733C1
Authority
RU
Russia
Prior art keywords
clarifier
cylindrical
bioreactor
annular
liquid
Prior art date
Application number
RU2012140197/05A
Other languages
English (en)
Inventor
Олег Савельевич Кочетов
Мария Олеговна Стареева
Мария Михайловна Стареева
Original Assignee
Олег Савельевич Кочетов
Мария Олеговна Стареева
Мария Михайловна Стареева
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Савельевич Кочетов, Мария Олеговна Стареева, Мария Михайловна Стареева filed Critical Олег Савельевич Кочетов
Priority to RU2012140197/05A priority Critical patent/RU2509733C1/ru
Application granted granted Critical
Publication of RU2509733C1 publication Critical patent/RU2509733C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

Изобретение относится к комплексной очистке сточных вод индивидуальных домов малых, средних и больших населенных пунктов. Устройство для очистки сточных вод содержит биореактор 9 и аэротенк- осветлитель 1. Биореактор 9, совмещенный с камерой аэрации 5 и встроенный во внутреннюю полость аэротенка-осветлителя 1, представляет собой полый цилиндр, установленный на ножках 10, опирающихся на плоское днище аэротенка-осветлителя 1. Внутри цилиндра расположены ярусами попеременно чередующиеся наклонные поверхности в виде чашек 11 с полым дном, жестко прикрепленные к стенке цилиндра, и конусов 12, которые крепятся к стенке с помощью гибких тяг 13. Устройство подачи сжатого воздуха расположено под нижним ярусом чашек 11 и выполнено в виде патрубка 8 с пористым керамическим наконечником. Камера осветления 6 расположена в кольцевой полости аэротенка-осветлителя 1 и содержит в нижней ее части автономный источник подачи воздуха 7. Механизм очистки, выполненный в виде кольцевых труб 14, содержит распылитель жидкости. Изобретение позволяет повысить качество и эффективность очистки сточных вод. 5 ил.

Description

Изобретение относится к комплексной очистке сточных вод и предназначено для очистки стоков от индивидуальных домов или групп домов, а также малых, средних и больших населенных пунктов.
Наиболее близкой к заявляемому устройству является известная установка для очистки сточных вод, состоящая из аэротенка-осветлителя с трубопроводами подачи сточных вод и отвода осветленной жидкости и биореактора. Аэротенк-осветлитель выполнен в виде открытой сверху емкости, разделенной вертикальной внутренней оболочкой на внутреннюю камеру осветления с колпаками к наружную камеру аэрации со струйными аэраторами в ее верхней части. Аэротенк-осветлитель соединен с биореактором с помощью трубопровода (патент РФ № 2165392, кл. C02F 3/02 прототип).
Недостатками известной установки является то, что в самой верхней части камеры аэрации находится наиболее загрязненная жидкость, смешанная со свежими, вновь поступившими стоками. Именно из верхней части камеры аэрации проаэрированная иловодяная смесь поступает в камеру осветления. В камере осветления происходит осветление жидкости за счет длительного отстаивания, т.е. наблюдается механическое отделение осадков, на это уходит примерно 18-19 часов. Активный ил в этой камере не работает, т.к. присутствие кислорода возможно только в верхней части камеры осветления (в зоне верхних 2-х колпаков). При этом камера аэрации, где только и работает активный ил, используется неэффективно, т.к. проаэрированная иловодяная смесь находится здесь сравнительно небольшое время. При таком ограниченном времени процесса аэрации не обеспечивается достаточное окисление органических веществ и, следовательно, высокое качество очистки. В условиях неритмичного образования стоков в течение суток (например, индивидуальный дом) установки с таким малым временем аэрации вообще не могут работать, т.к. за период отсутствия стоков в течение 8-10 часов погибнет 80-90% микроорганизмов из-за нехватки питательных веществ. С поступлением стоков заново начинается процесс размножения микроорганизмов, поэтому в начальный период поступления стоков будет неудовлетворительное качество очистки. Вследствие этого на аналогичных установках в обязательном порядке необходимо строить дополнительное сооружение - усреднитель стоков, увеличивающее их стоимость. Кроме этого известная установка имеет большие энергозатраты из-за подачи стоков насосом на большую высоту и особенно при обогащении стоков кислородом методом многократной рециркуляции жидкости в аэраторе, на эрлифтный эффект, сброс и повторную подачу активного ила.
Технически достижимый результат - повышение качества и эффективности очистки сточных вод за счет улучшения контакта иловодяной смеси с кислородом воздуха.
Это достигается за счет того, что в заявляемом устройстве для очистки сточных вод, содержащем аэротенк-осветлитель с трубопроводами подачи сточных вод и отвода осветленной жидкости и биореактор, в котором аэротенк-осветлитель выполнен в виде открытой сверху цилиндрической емкости с днищем, состоящей из камеры аэрации с устройством подачи сжатого воздуха и камеры осветления, образованных разделением цилиндрической емкости вертикальной внутренней перегородкой на внутреннюю цилиндрическую полость и наружную кольцевую, характеризующемся тем, что биореактор совмещен с камерой аэрации и встроен во внутреннюю полость аэротенка-осветлителя и представляет собой полый цилиндр, установленный на ножках, опирающихся на плоское днище аэротенка-осветлителя, внутри цилиндра расположены ярусами попеременно чередующиеся наклонные поверхности в виде чашек с полым дном, жестко прикрепленных к стенке цилиндра, и конусов, которые крепятся к стенке с помощью гибких тяг, причем трубопровод подачи сточных вод расположен непосредственно в биореакторе в его верхней части, а устройство подачи сжатого воздуха - в его нижней части под нижним ярусом чашек, и выполнено в виде патрубка с пористым керамическим наконечником, при этом собственно камера осветления расположена в кольцевой полости аэротенка-осветлителя и имеет также автономный источник подачи воздуха, расположенный в нижней ее части, а распылитель жидкости механизма очистки, выполненного в виде кольцевых труб, содержит полый цилиндрический корпус, который выполнен с каналом для подвода жидкости и имеет соосную, жестко связанную с корпусом втулку с закрепленным в ее нижней части соплом, выполненным в виде цилиндрической двухступенчатой втулки, верхняя цилиндрическая ступень которой соединена посредством резьбового соединения с центральным сердечником, установленным с кольцевым зазором относительно внутренней поверхности цилиндрической втулки, и состоящим из цилиндрической части с закрепленным соосно с ней в нижней части шаровым сегментом, имеющим дроссельные отверстия, оси которых расположены по радиусам сферической поверхности, образующей шаровой сегмент, а кольцевой зазор соединен, по крайней мере, с тремя радиальными каналами, выполненными в двухступенчатой втулке, соединяющими его с кольцевой полостью, образованной внутренней поверхностью втулки и внешней поверхностью верхней цилиндрической ступени, причем кольцевая полость связана с каналом корпуса для подвода жидкости, при этом на боковой поверхности цилиндрической части центрального сердечника, в его нижней части, соединенной с шаровым сегментом, выполнено, по крайней мере, два ряда цилиндрических дроссельных отверстий с осями, лежащими в плоскостях, перпендикулярных оси сердечника, а в каждом ряду выполнено, по крайней мере, три отверстия, при этом оси дроссельных отверстий одного ряда смещены относительно осей дроссельных отверстий другого ряда на угол, лежащий в диапазоне 15°÷60°.
На фиг.1 представлен аэротенк-осветлитель в разрезе; на фиг.2, 3 даны примеры аэротенка-осветлителя в виде семейства биореакторов; на фиг.4 показан фильтр-накопитель; на фиг.5 - схема распылителя на кольцевых трубах.
Заявляемое устройство состоит из аэротенка-осветлителя 1 с плоским днищем 2, который имеет трубопроводы подачи 3 сточных вод и отвода 4 осветленной жидкости (фиг.1). Аэротенк-осветлитель состоит из 2-х камер: внутренней аэрации 5 с устройством подачи сжатого воздуха и наружной кольцевой камеры осветления 6, содержащей трубки 7 для автономной подачи воздуха. Устройство подачи сжатого воздуха в камеру аэрации 5 выполнено в виде патрубка 8 с пористым керамическим наконечником. Биореактор 9 совмещен с камерой аэрации и представляет собой полый цилиндр, установленный на ножках 10, которые опираются на плоское днище 2. Внутри биореактора 9 размещены ярусами попеременно чередующиеся наклонные поверхности в виде чашечек 11 с полым дном и конусов 12. Чашечки 11 жестко прикреплены к стенке биореактора 9, например, заклепками или сварным соединением. Конусы 12 подвешиваются к стенке биореактора с помощью гибких тяг 13. Угол наклона к горизонту стенок чашечек 11 и конусов 12 составляет 30°-45°. Для удаления с наклонных поверхностей чашечек 11 и конусов 12 осадков, образованных продуктами окисления органических веществ (особенно при небольших углах наклона (30°), в биореакторе 9 предусмотрен механизм очистки, выполненный в виде кольцевых труб 14 с распылителями (фиг.5), через которые распыляется жидкость или газ. Кольцевые трубы 14 крепятся изнутри к боковым поверхностям чашечек и конусов и подсоединены к общему коллектору (сборнику) 15. Распыленная вода или воздух омывают последующую наклонную поверхность, расположенную под соответствующей кольцевой трубой 14, сбрасывая с нее остатки окисленных органических веществ. Подача воды или воздуха регулируется вентилями (на чертеже не показаны). Промывка (или продувка) установки осуществляется в процессе работы без отключения биореактора. Смыв происходит струей, истекающей с небольшой скоростью, при этом более тяжелые иловые остатки сохраняются на наклонных поверхностях, обеспечивая на них жизнедеятельность микроорганизмов. На дне аэротенка-осветлителя 1 расположена труба 16 для удаления накопившихся осадков.
Для использования заявляемого устройства при очистке сточных вод различной степени загрязнения и различных объемов возможен вариант выполнения (фиг.2 и 3) аэротенка-осветлителя в виде семейства биореакторов 17, которые размещены в одной общей емкости 18. При этом биореакторы 17 имеют различные объемы за счет различия диаметров их полых цилиндров и, следовательно, различную мощность. В центральной части аэротенка-осветлителя располагается распределительная чаша 19 с лотками 20, имеющими сливные трубки 21, подсоединенные к соответствующим биореакторам 17 для подачи в них сточных вод.
Фильтр-накопитель 22 (фиг.4) представляет собой открытый сверху сосуд с горизонтальным расположением фильтрующей насадки 23, которая расположена на некотором расстоянии от его дна, за счет чего образуется подфильтровое пространство 24. Фильтр-накопитель 22 имеет трубу 25 подачи очищаемой жидкости и источник воздуха 26, которые расположены под фильтрующей насадкой в пространстве 24. В подфильтровое пространство 24 может подаваться воздух (для доокисления остатков органических веществ). Количество воздуха может регулироваться с помощью запорно-регулировочной арматуры (на чертеже не обозначена). Над фильтрующей насадкой 23 расположен накопитель 27 и насос 28. Фильтрующий материал (гравий, песок, полимерные материалы типа "ВИИ"), из которого выполнена фильтрующая насадка, промывается каждый раз, когда производится отбор ила со дна фильтра-накопителя с помощью трубы 29.
Распылитель жидкости (фиг.5) содержит цилиндрический полый корпус 30 с каналом 32 для подвода жидкости и соосную, жестко связанную с корпусом втулку 31 с закрепленным в ее нижней части соплом, выполненным в виде цилиндрической двухступенчатой втулки 33, верхняя цилиндрическая ступень 35 которой соединена посредством резьбового соединения с центральным сердечником, установленным с кольцевым зазором 38 относительно внутренней поверхности цилиндрической втулки 33, и состоящим из цилиндрической части 36 с закрепленным соосно с ней в нижней части шаровым сегментом 40,. имеющим дроссельные отверстия 41, оси которых расположены параллельно оси корпуса 30. Дроссельные отверстия 41, выполненные в шаровом сегменте 40, могут быть расположены по радиусам сферической поверхности, образующей шаровой сегмент 40.
Кольцевой зазор 38 соединен, по крайней мере, с тремя радиальными каналами 34, выполненными в двухступенчатой втулке 33, соединяющими его с кольцевой полостью 37, образованной внутренней поверхностью втулки 31 и внешней поверхностью верхней цилиндрической ступени 35, причем кольцевая полость 37 связана с каналом 32 корпуса 30 для подвода жидкости.
На боковой поверхности цилиндрической части 36 центрального сердечника в его нижней части, соединенной с шаровым сегментом 40, выполнено, по крайней мере, два ряда цилиндрических дроссельных отверстий 39 с осями, лежащими в плоскостях, перпендикулярных оси сердечника, а в каждом ряду выполнено, по крайней мере, три отверстия. При этом оси дроссельных отверстий одного ряда смещены относительно осей дроссельных отверстий другого ряда на угол, лежащий в диапазоне 15°÷60°.
Установка для очистки сточных вод работает следующим образом.
Сточная вода поступает в аэротенк-осветлитель 1 (фиг.1) самотеком через трубопровод 3, попадая непосредственно в биореактор 9 и омывая попеременно чередующиеся наклонные поверхности из чашечек 11 (изнутри) и конусов 12 (снаружи). Уклон конусов и стенок чашечек принимается равным 30°-45°. Между конусом и стенкой биореактора оставляется зазор. Отношение площадей дна чашечек к площади кольцевого зазора между стенками биореактора и конусом, а также их отношение к площади поперечного сечения биореактора и количество чашечек и конусов определяет скорость и характер движения жидкости внутри биореактора 9. Попадая из трубопровода 3 в верхнюю чашечку биореактора, жидкость движется радиально к центру с определенным ускорением. Начиная со дна чашечки, жидкость резко меняет свое направление на противоположное - радиально к окружности, т.е. к цилиндрической стенке биореактора. Движение повторяется циклично и количество циклов соответствует количеству чашечек и конусов. При этом в толще жидкости в биореакторе возникают разные скорости. Стремление жидкости прийти в равновесное состояние приводит ее (по закону статики) в хаотичное турбулентное движение, что и требуется для хорошего массообмена смеси жидкость-воздух-ил. Достигается это без воздействия внешних сил, а только за счет конструктивных особенностей биореактора. Жидкость, омывая последовательно стенки наклонных поверхностей биореактора 9, движется вниз. Одновременно вверх, противоточно жидкости, движется воздух, нагнетаемый через пористый керамический наконечник патрубка 8. В результате всего этого внутри биореактора происходит хороший массообмен проаэрированной иловодяной смеси, массовое окисление органических веществ и выпадение осадков вниз. Малое избыточное давление подаваемого воздуха на аэрацию в полузамкнутом пространстве (в отличие от известного изобретения) дает возможность обходиться практически без потери воздуха, используя его эффективно и экономично на очистку сточных вод. Полнота окисления органических веществ достигается также удлинением времени аэрации до 10-12 часов. Далее жидкость, минуя низ стенки биореактора 9, переливается в камеру осветления 6, куда через трубки 7 автономно вводится воздух, что ускоряет процесс осветления жидкости в камере 6, сопровождая его доокислением оставшихся в жидкости органических веществ. Осветленная жидкость поднимается вверх в кольцевом пространстве камеры осветления 6. Выпавшие на дне аэротенка-осветлителя 1 осадки периодически выдавливаются по трубе 16. Осветленная жидкость через трубопровод 4 сливается в фильтр-накопитель 22 (фиг.4) и по трубе 25 попадает в подфильтровое пространство 24. Очищаемая жидкость проходит слой фильтрующей насадки 23 и попадает в накопитель 27. Чистая вода из накопителя 27 по мере необходимости откачивается, например, с помощью погружного насоса 28. При этом очищенная вода может обеззараживаться с помощью гипохлорита натрия.
В многореакторных аэротенках-осветлителях (фиг.2 и 3) благодаря предлагаемому механизму распределения жидкости загрузка каждого биореактора производится постоянно пропорционально их мощностям (соответствующих их объемам), независимо от суточного колебания объемов и загрязненности поступающих стоков. Комплектуя аэротенки-осветлители различным "семейством" биореакторов, можно обеспечить создание установок требуемой мощности в зависимости от степени загрязнения и объемов сточных вод. В многореакторных аэротенках-осветлителях стоки поступают в центральную распределительную чашу 19 и поднимаются снизу вверх до отводящих лотков 20, расположенных строго на одном уровне, и равномерно разливаются по ним. С каждого лотка 20 через сливные трубки 21 сточные воды разливаются по биореакторам 17. Постоянность и одновременность разлива по всем биореакторам пропорционально их мощности независимо от колебаний расхода стоков в течение суток достигается с помощью создания одинаковых скоростей потока по длине лотков 20 за счет уменьшения площади поперечного сечения лотка, изменения площади сечения сливных трубок 21 пропорционально мощностям биореакторов и установки сливных трубок 21 с порогом высотою 3-4 см, регулируемых наконечником на резьбовых соединениях (на чертеже не обозначен).
Работа распылителя осуществляется следующим образом.
Жидкость под давлением подается в полость корпуса 30 и затем поступает по двум направлениям. Первое - в кольцевую полость 8 через радиальные каналы 34 в кольцевой зазор 38 между соплом и центральным сердечником. При давлениях на входе более 0,2 МПа жидкость разгоняется на внешней цилиндрической поверхности сердечника с образованием пленки жидкости, которая не отрывается от его внешней поверхности. Разгон жидкости в нижней части этой поверхности сопровождается понижением в ней статического давления и в результате этого парообразованием и выделением растворимых газов. Это явление дополнительно подготавливает жидкость к дроблению на мелкие капли. При достижении жидкостного потока встречных потоков, истекающих из цилиндрических дроссельных отверстий 10, происходит многократное дробление пленки с образованием мелкодисперсной фазы.
Второе направление, по которому поступает жидкость, - через канал 32 для подвода жидкости в полость центрального сердечника, а затем в нижнюю часть цилиндрической части 36 сердечника, из которой часть жидкости истекает через радиальные отверстия 39, при этом происходит многократное дробление капельных потоков жидкости, истекающих из дроссельных отверстий.
Распылитель устанавливается в рабочее состояние в вертикальном положении. При подаче жидкости в корпус под действием перепада давления 0,4…0,8 МПа в каналах 40 и 41 образуются встречные потоки жидкости, устремляющиеся к выходным отверстиям жиклеров, образованных этими каналами. После столкновения потоков жидкости в каналах 40 и 41 и истечения через выходные отверстия жиклеров происходит образование веерообразного газожидкостного потока в виде пелены, т.е. реализуется механизм дробления капель жидкости, но генерируемый пеленообразный поток отклоняется от горизонтальной плоскости на больший угол, в диапазоне от 45° до 60°, в направлении к центральной области орошаемой поверхности, а такое распределение распыляемой жидкости позволяет повысить равномерность распыления жидкости над центральной частью орошаемой поверхности.
Заявляемая установка может легко переналаживаться на большую производительность за счет установки в биореакторах дополнительных ярусов из чашечек и конусов. При этом однореакторный аэротенк-осветлитель предназначается для очистки стоков от индивидуальных домов и небольших групп домов, а многореакторный - для очистки стоков от малых, средних и больших населенных пунктов. В зависимости от требуемой мощности и степени очистки подбираются определенные биореакторы.

Claims (1)

  1. Устройство для очистки сточных вод, содержащее аэротенк-осветлитель с трубопроводами подачи сточных вод и отвода осветленной жидкости и биореактор, в котором аэротенк-осветлитель выполнен в виде открытой сверху цилиндрической емкости с днищем, состоящей из камеры аэрации с устройством подачи сжатого воздуха и камеры осветления, образованных разделением цилиндрической емкости вертикальной внутренней перегородкой на внутреннюю цилиндрическую полость и наружную кольцевую, при этом биореактор совмещен с камерой аэрации и встроен во внутреннюю полость аэротенка-осветлителя и представляет собой полый цилиндр, установленный на ножках, опирающихся на плоское днище аэротенка-осветлителя, внутри цилиндра расположены ярусами попеременно чередующиеся наклонные поверхности в виде чашек с полым дном, жестко прикрепленных к стенке цилиндра, и конусов, которые крепятся к стенке с помощью гибких тяг, причем трубопровод подачи сточных вод расположен непосредственно в биореакторе в его верхней части, а устройство подачи сжатого воздуха - в его нижней части под нижним ярусом чашек и выполнено в виде патрубка с пористым керамическим наконечником, при этом собственно камера осветления расположена в кольцевой полости аэротенка-осветлителя и имеет также автономный источник подачи воздуха, расположенный в нижней ее части, отличающееся тем, что распылитель жидкости механизма очистки, выполненного в виде кольцевых труб, содержит полый цилиндрический корпус, который выполнен с каналом для подвода жидкости и имеет соосную, жестко связанную с корпусом втулку с закрепленным в ее нижней части соплом, выполненным в виде цилиндрической двухступенчатой втулки, верхняя цилиндрическая ступень которой соединена посредством резьбового соединения с центральным сердечником, установленным с кольцевым зазором относительно внутренней поверхности цилиндрической втулки, и состоящим из цилиндрической части с закрепленным соосно с ней в нижней части шаровым сегментом, имеющим дроссельные отверстия, оси которых расположены по радиусам сферической поверхности, образующей шаровой сегмент, а кольцевой зазор соединен по крайней мере с тремя радиальными каналами, выполненными в двухступенчатой втулке, соединяющими его с кольцевой полостью, образованной внутренней поверхностью втулки и внешней поверхностью верхней цилиндрической ступени, причем кольцевая полость связана с каналом корпуса для подвода жидкости, при этом на боковой поверхности цилиндрической части центрального сердечника, в его нижней части, соединенной с шаровым сегментом, выполнено по крайней мере два ряда цилиндрических дроссельных отверстий с осями, лежащими в плоскостях, перпендикулярных оси сердечника, а в каждом ряду выполнено по крайней мере три отверстия, при этом оси дроссельных отверстий одного ряда смещены относительно осей дроссельных отверстий другого ряда на угол, лежащий в диапазоне 15°÷60°.
RU2012140197/05A 2012-09-20 2012-09-20 Устройство для очистки сточных вод RU2509733C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012140197/05A RU2509733C1 (ru) 2012-09-20 2012-09-20 Устройство для очистки сточных вод

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012140197/05A RU2509733C1 (ru) 2012-09-20 2012-09-20 Устройство для очистки сточных вод

Publications (1)

Publication Number Publication Date
RU2509733C1 true RU2509733C1 (ru) 2014-03-20

Family

ID=50279644

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012140197/05A RU2509733C1 (ru) 2012-09-20 2012-09-20 Устройство для очистки сточных вод

Country Status (1)

Country Link
RU (1) RU2509733C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017120688A1 (es) * 2016-01-11 2017-07-20 Edmundo Ganter Parga Módulo virtual para un reactor aeróbico discontinuo y secuencial

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5052626A (en) * 1989-01-09 1991-10-01 Union Carbide Canada Limited Coolant introduction in blow molding
RU2165392C2 (ru) * 1999-05-12 2001-04-20 Виктор Зосимович Ким Устройство для очистки сточных вод
RU2445548C1 (ru) * 2011-02-10 2012-03-20 Олег Савельевич Кочетов Форсунка кочетова

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5052626A (en) * 1989-01-09 1991-10-01 Union Carbide Canada Limited Coolant introduction in blow molding
RU2165392C2 (ru) * 1999-05-12 2001-04-20 Виктор Зосимович Ким Устройство для очистки сточных вод
RU2445548C1 (ru) * 2011-02-10 2012-03-20 Олег Савельевич Кочетов Форсунка кочетова

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017120688A1 (es) * 2016-01-11 2017-07-20 Edmundo Ganter Parga Módulo virtual para un reactor aeróbico discontinuo y secuencial

Similar Documents

Publication Publication Date Title
CN102223933B (zh) 水处理方法
RU2139257C1 (ru) Установка для биохимической очистки высококонцентрированных сточных вод
KR20150038566A (ko) 수처리 시스템
AU2013101765A4 (en) Gas Scouring Apparatus for Immersed Membranes
US4505820A (en) Method for cleaning waste water
CN101233084A (zh) 模块化水处理单元
CN105016462B (zh) 滤料自动连续清洗的曝气生物滤池
JP6859246B2 (ja) サイフォン式散気装置、膜分離活性汚泥装置及び水処理方法
RU2469000C1 (ru) Устройство для очистки сточных вод
US4096065A (en) Apparatus for aerobic treatment of activated sludge
RU2509733C1 (ru) Устройство для очистки сточных вод
RU2165392C2 (ru) Устройство для очистки сточных вод
US20160089619A1 (en) System for mixing industrial waste water within a gravity settling tank
RU2524732C1 (ru) Устройство для очистки сточных вод
CN102659236B (zh) 连续清洗多功能反应器
RU2530123C1 (ru) Устройство для очистки сточных вод
US10040697B2 (en) Method for mixing industrial waste water within a gravity settling tank
RU2310499C2 (ru) Способ абсорбции газов и устройство для его осуществления
CN110655189A (zh) 一种多级处理的废水处理系统
WO2017138818A1 (en) Method and apparatus for purification of water from aquaculture plants
CN108373246B (zh) 生活污水处理设备
US20180057378A1 (en) Intermittent cycled filter apparatus and system
CN102390910B (zh) 大比表面积颗粒生物强化处理水系统
US10526221B2 (en) System and method for static mixing in a EPT using a fluid containment assembly
SU1381078A1 (ru) Устройство дл биологической очистки сточных вод