[go: up one dir, main page]

RU2504588C2 - Брикет экструзионный (брэкс)-компонент шихты для выплавки металла в электропечах - Google Patents

Брикет экструзионный (брэкс)-компонент шихты для выплавки металла в электропечах Download PDF

Info

Publication number
RU2504588C2
RU2504588C2 RU2012113390/02A RU2012113390A RU2504588C2 RU 2504588 C2 RU2504588 C2 RU 2504588C2 RU 2012113390/02 A RU2012113390/02 A RU 2012113390/02A RU 2012113390 A RU2012113390 A RU 2012113390A RU 2504588 C2 RU2504588 C2 RU 2504588C2
Authority
RU
Russia
Prior art keywords
metal
briquette
breks
charge
exceed
Prior art date
Application number
RU2012113390/02A
Other languages
English (en)
Other versions
RU2012113390A (ru
Inventor
Иван Филиппович Курунов
Ричард Бинион Стил
Айтбер Махачевич Бижанов
Геннадий Алексеевич Фарнасов
Original Assignee
Открытое акционерное общество "Новолипецкий металлургический комбинат"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Новолипецкий металлургический комбинат" filed Critical Открытое акционерное общество "Новолипецкий металлургический комбинат"
Priority to RU2012113390/02A priority Critical patent/RU2504588C2/ru
Publication of RU2012113390A publication Critical patent/RU2012113390A/ru
Application granted granted Critical
Publication of RU2504588C2 publication Critical patent/RU2504588C2/ru

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к черной металлургии, в частности к способам окускования железорудного сырья, и может быть использовано при подготовке шихтовых материалов для выплавки металла в электропечах, включая рудотермические печи, индукционные печи и дуговые электросталеплавильные печи. Брикет экструзионный, полученный методом жесткой вакуумной экструзии, содержащий связующее, руду металла и/или металлорудный концентрат, электропроводные углеродсодержащие материалы, флюсующие добавки и, при необходимости, отходы металла и оксидные металлсодержащие отходы, применяют в качестве компонента шихты для выплавки металла в электропечах. Массовое содержание электропроводных углеродсодержащих материалов в брикете не превышает 8-25%, крупность материалов, входящих в шихту для получения брикета, не превышает 5 мм, а его масса не превышает 0,5 кг. В качестве связующего брикет содержит цемент и, при необходимости, бентонит или органическое связующее. Изобретение обеспечивает получение при минимальном расходе связующего окускованного компонента шихты для выплавки металла в электрических печах требуемого химического состава, обладающего оптимальными размерами, высокой горячей прочностью и восстановимостью. 3 з.п. ф-лы, 5 пр.

Description

Изобретение относится к металлургии, в частности к способам окускования рудного сырья, и может быть использовано при подготовке шихтовых материалов для выплавки металлов в электрических печах, включая рудотермические печи, дуговые сталеплавильные печи и индукционные печи.
Известно техническое решение - брикет для выплавки металла, имеющий правильную геометрическую форму и приготовляемый из мелкодисперсных железосодержащих отходов, тонкоизмельченного углеродсодержащего материала и связующего в качестве которого используется механическая смесь природных материалов - суглинка, глины или полевого шпата и карбоната натрия [Патент РФ №2154680, C22B 1/243, 7/00, 2000, БИПМ №23]. Брикет для выплавки металла по известному техническому решению получают путем прессования смеси указанных материалов, увлажненной водным раствором жидкого стекла, с последующей сушкой полученного брикета. Недостатком данного известного технического решения является то, что брикет для выплавки металла, получаемый по описанной технологии, не обладает достаточной горячей прочностью, что не позволяет его использовать в качестве компонента шихты в шахтных или рудотермических печах.
Указанный недостаток устраняется в другом известном техническом решении, которым является железосодержащий кусковый материал, приготовляемый из смеси мелких железосодержащих отходов металлургического производства, измельченного углеродсодержащего материала и глиноземистого цемента путем изготовления из этой смеси бетона и дробления его на куски необходимой, для загрузки в металлургическую печь, крупности [DE 3727576, МКИ C22B 1/243 от 19.08.1987]. Мелочь, образующуюся при дроблении бетона, используют в агломерационной шихте. Недостатком данного технического решения является многоступенчатость и низкая производительность процесса изготовления кускового материала и значительный выход мелкой фракции, которую нужно утилизировать по другой технологии.
Недостатки данного технического решения устраняются в брикете, для производства хромистых ферросплавов, изготовляемом известным способом [Патент РФ №2000345, МКИ C22B 1/243. 29.06.1992 г. Опубликован 07.09.1993. Бюл. №33-36]. Данный брикет содержит природные и техногенные металлсодержащие материалы, углеродсодержащие материалы и флюсующие добавки, а в качестве связующего в нем используется комплексное неорганическое связующее, состоящее из концентрата алюминиевого шлака и жидкого стекла.
Недостатком известного брикета для производства хромистых ферросплавов является ограниченная область его применения и применение в качестве связующего жидкого стекла.
Другим известным техническим решением является брикет для выплавки ферросплавов, изготовляемый на валковых прессах из шихты, включающей природные и техногенные металлосодержащие дисперсные материалы, углеродсодержащие материалы и связующее в виде водного раствора лигносульфаната и жидкого стекла [Патент РФ №2201976, МКИ C22B 1/242, 17.04.2001. Опубликован 10.04.2003].
Недостатком данного известного брикета для выплавки ферросплавов также является применение связующего, содержащего нежелательные элементы (щелочи и серу) и не обеспечивающего горячую прочность брикетов.
Технической задачей изобретения является устранение указанных недостатков известных технических решений - аналогов и обеспечение получения при минимальном расходе связующего окускованного компонента шихты для выплавки металла в электрических печах требуемого химического состава, обладающего оптимальными размерами, высокой горячей прочностью и восстановимостью, а также возможностью использования совместно с другими компонентами шихты, т.е. с металлоскрапом, твердым и жидким чугуном, рудами, и флюсами с учетом их химического состава и гранулометрии.
Решение данной технической задачи достигается тем, что в качестве компонента шихты для выплавки металла в электропечах применяют брикет экструзионный (БРЭКС), получаемый методом жесткой вакуумной экструзии, включающий связующее, руду металла и/или металлорудный концентрат, электропроводные углеродсодержащие материалы, флюсующие добавки и, по необходимости, отходы металла и оксидные металлсодержащие отходы.
Решение данной технической задачи достигается также тем, что массовое содержание электропроводного углеродсодержащего материала в БРЭКСе не превышает 8-25%, крупность частиц материалов, входящих в состав БРЭКСа не превышает 5 мм, а его масса не превышает 0,5 кг.
Решение данной технической задачи достигается еще тем, что в качестве электропроводных углеродсодержащих материалов БРЭКС содержит коксовую мелочь, и/или бой графитированных и/или углеродных электродов, и/или бой электролизных ванн для производства алюминия, и/или древесный уголь, и/или каменный уголь, и/или антрацит. Решение данной технической задачи достигается кроме того тем, что в качестве связующего БРЭКС содержит цемент и, по необходимости, бентонит или органическое связующее.
Технология окускования дисперсных материалов методом жесткой вакуумной экструзии известна. Эта технология, в частности, широко применяется при производстве кирпичей из шихтовой смеси на основе глины (А.Я. Хавкин, Р.З. Берман. Кирпичные заводы малой мощности. Строительные материалы. 2000, №4, с.18-19). Сущность ее заключается непрерывном продавливании под давлением через прямоугольное одиночное отверстие в фильере размером (60-80)×(40-50) мм влажной шихтовой массы на основе глины. Шихтовая масса перед фильерой проходит через вакуумкамеру, в которой из этой массы удаляется воздух. В результате плотность шихтовой массы, из которой, при прохождении ее под давлением через отверстие в фильере, непрерывно формуется брус, повышается. Сырые кирпичи получают путем периодического мгновенного разрезания бруса, выходящего из фильеры, многопроволочным резаком на равные части длиной 160-200 мм. Таким образом, по принципу действия эта технология является непрерывной и обеспечивает прочность «сырых» кирпичей, необходимую для их многослойной укладки на поддоны и транспортировки в печи для упрочняющего обжига.
Лабораторные исследования показали возможность применения технологии прессования методом жесткой экструзии для окускования смеси связующего, руды металла и/или металлорудного концентрата, электропроводных углеродсодержащих материалов, флюсующих добавок и, по необходимости, отходы металла и оксидные металлсодержащие отходы.
При использовании в экструдере фильеры с множеством отверстий брикеты экструзионные можно получать оптимального размера и формы для применения их в качестве компонента шихты для выплавки металла в электропечах различного типа, включая рудотермические печи, индукционные печи и дуговые электросталеплавильные печи. При этом длина брикетов на выходе из экструдера, определяется плотностью и пластичностью непрерывно выходящих из отверстий фильеры пластичных стержней, формируемых экструдером. В результате роста изгибающего момента, возникающего под действием увеличивающегося веса стержней по мере увеличения их длины при выходе из фильеры, стержни обламываются.
Применение технологии окускования методом жесткой вакуумной экструзии по отношению смеси связующего, руды металла и/или металлорудного концентрата, электропроводных углеродсодержащих материалов, флюсующих добавок и, по необходимости, отходов металла и оксидных металлсодержащих отходов с целью получения брикетов экструзионных (БРЭКСов) для использования их в качестве компонента шихты для выплавки металлов в электропечах, имеющих заданный химический состав и металлургические свойства, обеспечивающие его эффективное использование совместно с любыми другими компонентами металлошихты электропечей, заявителю не известно.
Сущность изобретения заключается в следующем. Применение метода и технологии жесткой вакуумной экструзии для окускования смеси связующего, руды металла и/или металлорудного концентрата, электропроводных углеродсодержащих материалов, флюсующих добавок и, по необходимости, отходов металла и оксидных металлсодержащих отходов обеспечивает получение стержней с плотной (1,9-2,1 г/см3) и пластичной структурой, длина которых (110-160 мм) пригодна для использования в шихте электропечей, но не исключает их кострение при выгрузке из бункера.
В процессе лабораторных и полупромышленных исследований выявили новые, в том числе неожиданные, эффекты применения жесткой вакуумной экструзии для окускования смеси связующего, руды металла и/или металлорудного концентрата, электропроводных углеродсодержащих материалов, флюсующих добавок и, по необходимости, отходов металла и оксидных металлсодержащих отходов.
Так высокая пластичность стержней, непрерывно выходящих из отверстий фильеры, обуславливает под действием изгибающего момента (из-за возрастающей массы стержней), образование в верхнем слое их тел одной-двух поперечных микротрещин, а затем и обламывание стержня. При транспортировке и перегрузках стержней микротрещины в теле стержней увеличиваются и происходит их разлом с образованием 2-3 БРЭКСов, которые имеют идеальные, для компонента шихты электропечей для выплавки металлов, размеры (25-35)×(40-55) мм, обеспечивающие высокую их текучесть при выгрузке из бункера, высокую горячую прочность, быстрый прогрев за счет электропроводности, высокую восстановимость.
Другим новым, обнаруженным в процессе лабораторных и опытно-промышленных исследований, эффектом применения жесткой вакуумной экструзии для окускования смеси минерального связующего, руды металла и/или металлорудного концентрата электропроводных углеродсодержащих материалов, флюсующих добавок и, по необходимости, отходов металла и оксидных металлсодержащих отходов является снижение расхода электроэнергии на выплавку ферросплавов из БРЭКСов и повышение степени извлечения металла за счет ускорения нагрева БРЭКСов и снижения пылевыноса. Благодаря небольшому поперечному размеру БРЭКСа и присутствия в нем электропроводного углеродсодержащего материала БРЭКС прогревается быстрее кусков руды и реакция восстановления высших оксидов металла протекает во всем объеме БРЭКСа с участием углерода, содержащегося в нем.
Наличие в БРЭКСе электропроводных углеродсодержащих материалов обеспечивает быстрый нагрев БРЭКСов в электропечах при прохождении через них электрического тока и быстрое восстановление оксидов металла. Содержание углеродсодержащего материала в БРЭКСе не более 8-25% обеспечивает получение электропроводной структуры БРЭКСа и восстановление оксидов металла в нем. Нижняя граница относится к углеродсодержащему материалу с максимальной электропроводностью, верхняя - к углеродсодержащему материалу с минимальной электропроводностью. Превышение содержания углеродсодержащего материала выше 25% приводит к переходу из БРЭКСа в шлак остаточного углерода, ухудшающего свойства шлаков. При содержании углеродсодержащего материала менее 8% электропроводность БРЭКСа снижается, но углерод принимает участие в восстановлении оксидов металла, снижая расход кокса на выплавку ферросплавов.
Предельная крупность частиц компонентов БРЭКСов (5 мм) обусловлена максимальным поперечным размеров БРЭКСов (25-35 мм) и соответствующим размером отверстий фильеры. При более крупных частицах материалов смеси для получения БРЭКСов снижается их пластичность на выходе из фильеры и увеличивается расход электроэнергии на экструзию. Предельный вес БРЭКСа определяется его поперечным размером, который не должен превышать 25-35 мм для обеспечения полноты восстановления металла по всему сечению БРЭКСа к моменту его нагрева до температуры расплавления. Использование в качестве связующего цемента обеспечивает прочность БРЭКСА как в холодном состоянии, так и при его нагреве до 800-900°C. Присутствие бентонита в брикетируемой смеси повышает ее пластичность при экструзии и прочность БРЭКСА в первые часы после экструзии.
Наличие в БРЭКСе отходов металла и/или оксидных металлсодержащих отходов обеспечивает возможность утилизации таких отходов при выплавке металлов. Еще одним эффектом применения жесткой вакуумной экструзии для окускования дисперсных металлических отходов отдельно или в смеси с флюсующими добавками, обнаруженным в процессе лабораторных исследований, является эффект ускорения шлакообразования и полного усвоения шлаком в металлургической печи флюсующих добавок, входящих в состав БРЭКСа. Кроме того, наличие в БРЭКСах основных оксидов CaO и MgO, входящих в состав минерального связующего, снижает расход флюсов, применяемых при выплавке металлов. Такое же действие оказывает наличие флюсующих добавок в составе БРЭКСов.
Изобретение иллюстрируется следующими примерами.
1. БРЭКС - компонента шихты для выплавки металла в электропечах получали по технологии жесткой вакуумной экструзии на промышленном экструдере производительностью 50 т/час из смеси марганцевой руды, аспирационной пыли производства силикомарганца, извести, коксовой мелочи и портландцемента марки 500. Крупность частиц всех материалов смеси не превышала 5 мм, а ее влажность составляла 14%. Давление на смесь в экструдере составляло 2,4 МПа. Прочность БРЭКСов на выходе из экструдера обеспечивала его транспортировку и перегрузки до площадки упрочняющего вылеживания. Партия БРЭКСов 2000 т была использована для выплавки ферросиликомарганца. Расход БРЭКСов в шихте составил 30%. При использование БРЭКСов расход электроэнергии снизился на 9%, а утилизация марганца повысилась на 3,5% (абс).
2. БРЭКС - компонента шихты для выплавки металла в электропечах получали по технологии жесткой вакуумной экструзии на лабораторном экструдере из смеси марганцевой руды, аспирационной пыли производства силикомарганца, извести, коксовой мелочи, боя углеродистых электродов и портландцемента марки 500. Содержание электропроводных углеродсодержащих материалов в смеси составляло 18%. Крупность частиц всех материалов смеси не превышала 5 мм. Полученные БРЭКСы имели электросопротивление 3000-3300 Ом/мм2·м, обеспечивающее прохождение через них электрического тока. Прочность БРЭКСов после вылеживания составила 4,5 МПа.
3. БРЭКС - компонента шихты для выплавки металла в электропечах получали по технологии жесткой вакуумной экструзии на лабораторном экструдере из смеси марганцевой руды, аспирационной пыли производства силикомарганца, извести, боя графитированных электродов и графитированных электролизных ванн и портландцемента марки 500. Содержание электропроводных углеродсодержащих материалов в смеси составляло 15%. Крупность частиц всех материалов смеси не превышала 5 мм. Полученные БРЭКСы имели электросопротивление 3200-3400 Ом/мм2·м, обеспечивающее прохождение через них электрического тока. Прочность БРЭКСов после вылеживания составила 4,8 МПа.
4. БРЭКС - компонента шихты для выплавки металла в электропечах получали по технологии жесткой вакуумной экструзии на лабораторном экструдере из смеси марганцевой руды, аспирационной пыли производства силикомарганца, извести, коксовой мелочи, древесного угля и портландцемента марки 500. Содержание электропроводных углеродсодержащих материалов в смеси составляло 20%. Крупность частиц всех материалов смеси не превышала 5 мм. Полученные БРЭКСЫ имели электросопротивление 3100-3200 Ом/мм2·м, обеспечивающее прохождение через них электрического тока. Прочность БРЭКСов после вылеживания составила 4,0 МПа.
5. БРЭКС - компонента шихты для выплавки металла в электропечах получали по технологии жесткой вакуумной экструзии на лабораторном экструдере из смеси марганцевой руды, аспирационной пыли производства силикомарганца, извести, каменного угля, антрацита, боя электродов и портландцемента марки 500. Содержание электропроводных углеродсодержащих материалов в смеси составляло 16%. Крупность частиц всех материалов смеси не превышала 5 мм. Полученные БРЭКСы имели электросопротивление 2900-3000 Ом/мм2·м, обеспечивающее прохождение через них электрического тока. Прочность БРЭКСов после вылеживания составила 4,9 МПа.
В примерах 2-5 получали брикеты, как указано выше, по технологии жесткой вакуумной экструзии на лабораторном экструдере, при этом влажность смеси составляла от 12 до 19%, а давление на смесь в экструдере от 1,5 до 3,0 МПа.
Таким образом, БРЭКС - компонента шихты для выплавки металла в электропечах, полученный в соответствии с изобретением, имеет высокие металлургические свойства, позволяющие успешно его применять в рудотермических печах, индукционных и других электропечах.

Claims (4)

1. Применение полученного методом жесткой вакуумной экструзии брикета экструзионного, содержащего связующее, руду металла и/или металлорудный концентрат, электропроводные углеродсодержащие материалы, флюсующие добавки и при необходимости отходы металла и оксидные металлсодержащие отходы в качестве компонента шихты для выплавки металла в электропечах.
2. Применение по п.1, характеризующееся тем, что массовое содержание электропроводных углеродсодержащих материалов в брикете не превышает 8-25%, крупность материалов, входящих в шихту для получения брикета, не превышает 5 мм, а его масса не превышает 0,5 кг.
3. Применение по п.1, характеризующееся тем, что в качестве электропроводных углеродсодержащих материалов брикет содержит коксовую мелочь, и/или бой графитированных или углеродных электродов, и/или бой электролизных ванн для производства алюминия, и/или древесный уголь, и/или каменный уголь, и/или антрацит.
4. Применение по п.1, характеризующееся тем, что в качестве связующего брикет содержит цемент и при необходимости бентонит или органическое связующее.
RU2012113390/02A 2012-04-09 2012-04-09 Брикет экструзионный (брэкс)-компонент шихты для выплавки металла в электропечах RU2504588C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012113390/02A RU2504588C2 (ru) 2012-04-09 2012-04-09 Брикет экструзионный (брэкс)-компонент шихты для выплавки металла в электропечах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012113390/02A RU2504588C2 (ru) 2012-04-09 2012-04-09 Брикет экструзионный (брэкс)-компонент шихты для выплавки металла в электропечах

Publications (2)

Publication Number Publication Date
RU2012113390A RU2012113390A (ru) 2013-10-20
RU2504588C2 true RU2504588C2 (ru) 2014-01-20

Family

ID=49356707

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012113390/02A RU2504588C2 (ru) 2012-04-09 2012-04-09 Брикет экструзионный (брэкс)-компонент шихты для выплавки металла в электропечах

Country Status (1)

Country Link
RU (1) RU2504588C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2807693C1 (ru) * 2023-10-05 2023-11-21 Общество с ограниченной ответственностью Научно-производственное предприятие "Вулкан - ТМ" Способ прямого получения железоуглеродистого сплава

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU757601A1 (ru) * 1978-06-05 1980-08-23 Kalininsk Polt Inst Способ получения брикета из тонкоизмельчеиного минерального сырья
SU1134295A1 (ru) * 1983-04-21 1985-01-15 Витебский технологический институт легкой промышленности Устройство дл экструдировани изделий из порошков
RU2015851C1 (ru) * 1990-05-14 1994-07-15 Ереванский политехнический институт Способ получения порошкового сплава на основе меди
WO1996010477A1 (en) * 1994-10-04 1996-04-11 E. Khashoggi Industries Placing filaments within extruded hydraulically settable compositions
CN2344145Y (zh) * 1998-08-18 1999-10-20 新汶矿业集团有限责任公司机械厂 真空硬塑挤砖机
RU2241771C1 (ru) * 2003-07-03 2004-12-10 Открытое акционерное общество "Новолипецкий металлургический комбинат" Брикет для выплавки чугуна
CN101851086A (zh) * 2010-03-26 2010-10-06 王爱瑞 一种污泥制自保温砖的生产方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU757601A1 (ru) * 1978-06-05 1980-08-23 Kalininsk Polt Inst Способ получения брикета из тонкоизмельчеиного минерального сырья
SU1134295A1 (ru) * 1983-04-21 1985-01-15 Витебский технологический институт легкой промышленности Устройство дл экструдировани изделий из порошков
RU2015851C1 (ru) * 1990-05-14 1994-07-15 Ереванский политехнический институт Способ получения порошкового сплава на основе меди
WO1996010477A1 (en) * 1994-10-04 1996-04-11 E. Khashoggi Industries Placing filaments within extruded hydraulically settable compositions
CN2344145Y (zh) * 1998-08-18 1999-10-20 新汶矿业集团有限责任公司机械厂 真空硬塑挤砖机
RU2241771C1 (ru) * 2003-07-03 2004-12-10 Открытое акционерное общество "Новолипецкий металлургический комбинат" Брикет для выплавки чугуна
CN101851086A (zh) * 2010-03-26 2010-10-06 王爱瑞 一种污泥制自保温砖的生产方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ХАВКИН А.Я., БЕРМАН Р.З. Кирпичные заводы малой мощности с применением технологии жесткой экструзии // Строит. материалы, 2000, No.4, с.18, 19. *
ХАВКИН А.Я., БЕРМАН Р.З. Кирпичные заводы малой мощности с применением технологии жесткой экструзии // Строит. материалы, 2000, №4, с.18, 19. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2829748C1 (ru) * 2021-01-12 2024-11-05 Даниэли энд К. Оффичине Мекканике С.п.А. Твердый агломерированный продукт на основе оксидов железа и способ его получения
RU2807693C1 (ru) * 2023-10-05 2023-11-21 Общество с ограниченной ответственностью Научно-производственное предприятие "Вулкан - ТМ" Способ прямого получения железоуглеродистого сплава

Also Published As

Publication number Publication date
RU2012113390A (ru) 2013-10-20

Similar Documents

Publication Publication Date Title
CN103805726B (zh) 一种运用转底炉珠铁工艺综合利用高铁赤泥的方法
CN101591718A (zh) 直接还原-磨选处理铜渣及镍渣的炼铁方法
CN102051428A (zh) 一种综合处理铜选矿尾渣和镍熔融渣的提铁炼钢工艺
EP2949765B1 (en) Composite briquette and method for making a steelmaking furnace charge
AU2014273847A1 (en) A process for producing and reducing an iron oxide briquette
KR101717738B1 (ko) 저품위 동 슬러지로부터 조동 제조방법
CN103406196A (zh) 一种低品位菱镁矿多级分段选矿提纯及综合利用方法
RU2013103510A (ru) Способ получения жидкой стали с применением гранулированного металлического железа
JP2012500902A5 (ru)
WO2013029456A1 (zh) 不锈钢氧化铁皮再生利用二步还原法
RU2502812C2 (ru) Брикет экструзионный (брэкс) металлический
CN103952540A (zh) 利用含铁尘泥和高硅铁精矿生产金属化炉料的工艺
WO2010103343A1 (en) An improved process for production of high carbon ferrochrome (hcfecr) and charge chrome with the use of a new type of chromite ore agglomerates
Murthy et al. Recycling of ferromanganese gas cleaning plant (GCP) sludge by novel agglomeration
CN105039626B (zh) 一种钒渣制备方法
JP2021188067A (ja) 熔融原料の調製方法及び有価金属回収方法
JP5512205B2 (ja) 塊成化状高炉用原料の強度改善方法
CN105714120A (zh) 一种低质铁锰渣矿和钢铁工业废料的综合利用方法
RU2506325C2 (ru) СПОСОБ ПОЛУЧЕНИЯ БРИКЕТА ЭКСТРУЗИОННОГО (БРЭКСа) ДЛЯ ВЫПЛАВКИ МЕТАЛЛА
RU2504588C2 (ru) Брикет экструзионный (брэкс)-компонент шихты для выплавки металла в электропечах
JP2018178219A (ja) 酸化鉱石の製錬方法
RU2506326C2 (ru) Брикет экструзионный (брэкс) - компонент доменной шихты
KR20080112818A (ko) 제강공정 부산물로부터 유가금속을 회수하는 방법
JP The effect of additives and reductants on the strength of reduced iron ore pellet
KR20110108993A (ko) 제강공정 부산물을 이용한 브리켓 제조방법 및 이로 제조된 브리켓

Legal Events

Date Code Title Description
HE9A Changing address for correspondence with an applicant
HZ9A Changing address for correspondence with an applicant