RU2504588C2 - Брикет экструзионный (брэкс)-компонент шихты для выплавки металла в электропечах - Google Patents
Брикет экструзионный (брэкс)-компонент шихты для выплавки металла в электропечах Download PDFInfo
- Publication number
- RU2504588C2 RU2504588C2 RU2012113390/02A RU2012113390A RU2504588C2 RU 2504588 C2 RU2504588 C2 RU 2504588C2 RU 2012113390/02 A RU2012113390/02 A RU 2012113390/02A RU 2012113390 A RU2012113390 A RU 2012113390A RU 2504588 C2 RU2504588 C2 RU 2504588C2
- Authority
- RU
- Russia
- Prior art keywords
- metal
- briquette
- breks
- charge
- exceed
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 51
- 239000002184 metal Substances 0.000 title claims abstract description 51
- 239000004484 Briquette Substances 0.000 title claims abstract description 20
- 238000002844 melting Methods 0.000 title abstract description 4
- 230000008018 melting Effects 0.000 title abstract description 4
- 239000000463 material Substances 0.000 claims abstract description 44
- 239000000203 mixture Substances 0.000 claims abstract description 37
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 36
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 32
- 239000011230 binding agent Substances 0.000 claims abstract description 24
- 238000001125 extrusion Methods 0.000 claims abstract description 23
- 239000000654 additive Substances 0.000 claims abstract description 12
- 239000002699 waste material Substances 0.000 claims abstract description 11
- 239000012141 concentrate Substances 0.000 claims abstract description 9
- 239000004568 cement Substances 0.000 claims abstract description 5
- 239000000440 bentonite Substances 0.000 claims abstract description 4
- 229910000278 bentonite Inorganic materials 0.000 claims abstract description 4
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000003723 Smelting Methods 0.000 claims description 23
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 239000010814 metallic waste Substances 0.000 claims description 10
- 239000000571 coke Substances 0.000 claims description 6
- 239000003245 coal Substances 0.000 claims description 4
- 239000010439 graphite Substances 0.000 claims description 4
- 229910002804 graphite Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 claims description 3
- 239000003830 anthracite Substances 0.000 claims description 3
- 239000003610 charcoal Substances 0.000 claims description 3
- 238000005868 electrolysis reaction Methods 0.000 claims description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 6
- 239000000126 substance Substances 0.000 abstract description 5
- 238000005272 metallurgy Methods 0.000 abstract description 2
- -1 and if necessary Substances 0.000 abstract 2
- 238000005516 engineering process Methods 0.000 description 13
- 239000000243 solution Substances 0.000 description 12
- 239000002245 particle Substances 0.000 description 9
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 7
- 229910052748 manganese Inorganic materials 0.000 description 7
- 239000011572 manganese Substances 0.000 description 7
- 229910001021 Ferroalloy Inorganic materials 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000000428 dust Substances 0.000 description 6
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 5
- 239000011398 Portland cement Substances 0.000 description 5
- 229910000720 Silicomanganese Inorganic materials 0.000 description 5
- 235000011941 Tilia x europaea Nutrition 0.000 description 5
- 230000032683 aging Effects 0.000 description 5
- 239000004571 lime Substances 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 239000002893 slag Substances 0.000 description 5
- 239000011449 brick Substances 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 235000019353 potassium silicate Nutrition 0.000 description 4
- 238000006722 reduction reaction Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000004927 clay Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 1
- 229920001732 Lignosulfonate Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- MRMBZHPJVKCOMA-YJFSRANCSA-N biapenem Chemical compound C1N2C=NC=[N+]2CC1SC([C@@H]1C)=C(C([O-])=O)N2[C@H]1[C@@H]([C@H](O)C)C2=O MRMBZHPJVKCOMA-YJFSRANCSA-N 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000320 mechanical mixture Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Изобретение относится к черной металлургии, в частности к способам окускования железорудного сырья, и может быть использовано при подготовке шихтовых материалов для выплавки металла в электропечах, включая рудотермические печи, индукционные печи и дуговые электросталеплавильные печи. Брикет экструзионный, полученный методом жесткой вакуумной экструзии, содержащий связующее, руду металла и/или металлорудный концентрат, электропроводные углеродсодержащие материалы, флюсующие добавки и, при необходимости, отходы металла и оксидные металлсодержащие отходы, применяют в качестве компонента шихты для выплавки металла в электропечах. Массовое содержание электропроводных углеродсодержащих материалов в брикете не превышает 8-25%, крупность материалов, входящих в шихту для получения брикета, не превышает 5 мм, а его масса не превышает 0,5 кг. В качестве связующего брикет содержит цемент и, при необходимости, бентонит или органическое связующее. Изобретение обеспечивает получение при минимальном расходе связующего окускованного компонента шихты для выплавки металла в электрических печах требуемого химического состава, обладающего оптимальными размерами, высокой горячей прочностью и восстановимостью. 3 з.п. ф-лы, 5 пр.
Description
Изобретение относится к металлургии, в частности к способам окускования рудного сырья, и может быть использовано при подготовке шихтовых материалов для выплавки металлов в электрических печах, включая рудотермические печи, дуговые сталеплавильные печи и индукционные печи.
Известно техническое решение - брикет для выплавки металла, имеющий правильную геометрическую форму и приготовляемый из мелкодисперсных железосодержащих отходов, тонкоизмельченного углеродсодержащего материала и связующего в качестве которого используется механическая смесь природных материалов - суглинка, глины или полевого шпата и карбоната натрия [Патент РФ №2154680, C22B 1/243, 7/00, 2000, БИПМ №23]. Брикет для выплавки металла по известному техническому решению получают путем прессования смеси указанных материалов, увлажненной водным раствором жидкого стекла, с последующей сушкой полученного брикета. Недостатком данного известного технического решения является то, что брикет для выплавки металла, получаемый по описанной технологии, не обладает достаточной горячей прочностью, что не позволяет его использовать в качестве компонента шихты в шахтных или рудотермических печах.
Указанный недостаток устраняется в другом известном техническом решении, которым является железосодержащий кусковый материал, приготовляемый из смеси мелких железосодержащих отходов металлургического производства, измельченного углеродсодержащего материала и глиноземистого цемента путем изготовления из этой смеси бетона и дробления его на куски необходимой, для загрузки в металлургическую печь, крупности [DE 3727576, МКИ C22B 1/243 от 19.08.1987]. Мелочь, образующуюся при дроблении бетона, используют в агломерационной шихте. Недостатком данного технического решения является многоступенчатость и низкая производительность процесса изготовления кускового материала и значительный выход мелкой фракции, которую нужно утилизировать по другой технологии.
Недостатки данного технического решения устраняются в брикете, для производства хромистых ферросплавов, изготовляемом известным способом [Патент РФ №2000345, МКИ C22B 1/243. 29.06.1992 г. Опубликован 07.09.1993. Бюл. №33-36]. Данный брикет содержит природные и техногенные металлсодержащие материалы, углеродсодержащие материалы и флюсующие добавки, а в качестве связующего в нем используется комплексное неорганическое связующее, состоящее из концентрата алюминиевого шлака и жидкого стекла.
Недостатком известного брикета для производства хромистых ферросплавов является ограниченная область его применения и применение в качестве связующего жидкого стекла.
Другим известным техническим решением является брикет для выплавки ферросплавов, изготовляемый на валковых прессах из шихты, включающей природные и техногенные металлосодержащие дисперсные материалы, углеродсодержащие материалы и связующее в виде водного раствора лигносульфаната и жидкого стекла [Патент РФ №2201976, МКИ C22B 1/242, 17.04.2001. Опубликован 10.04.2003].
Недостатком данного известного брикета для выплавки ферросплавов также является применение связующего, содержащего нежелательные элементы (щелочи и серу) и не обеспечивающего горячую прочность брикетов.
Технической задачей изобретения является устранение указанных недостатков известных технических решений - аналогов и обеспечение получения при минимальном расходе связующего окускованного компонента шихты для выплавки металла в электрических печах требуемого химического состава, обладающего оптимальными размерами, высокой горячей прочностью и восстановимостью, а также возможностью использования совместно с другими компонентами шихты, т.е. с металлоскрапом, твердым и жидким чугуном, рудами, и флюсами с учетом их химического состава и гранулометрии.
Решение данной технической задачи достигается тем, что в качестве компонента шихты для выплавки металла в электропечах применяют брикет экструзионный (БРЭКС), получаемый методом жесткой вакуумной экструзии, включающий связующее, руду металла и/или металлорудный концентрат, электропроводные углеродсодержащие материалы, флюсующие добавки и, по необходимости, отходы металла и оксидные металлсодержащие отходы.
Решение данной технической задачи достигается также тем, что массовое содержание электропроводного углеродсодержащего материала в БРЭКСе не превышает 8-25%, крупность частиц материалов, входящих в состав БРЭКСа не превышает 5 мм, а его масса не превышает 0,5 кг.
Решение данной технической задачи достигается еще тем, что в качестве электропроводных углеродсодержащих материалов БРЭКС содержит коксовую мелочь, и/или бой графитированных и/или углеродных электродов, и/или бой электролизных ванн для производства алюминия, и/или древесный уголь, и/или каменный уголь, и/или антрацит. Решение данной технической задачи достигается кроме того тем, что в качестве связующего БРЭКС содержит цемент и, по необходимости, бентонит или органическое связующее.
Технология окускования дисперсных материалов методом жесткой вакуумной экструзии известна. Эта технология, в частности, широко применяется при производстве кирпичей из шихтовой смеси на основе глины (А.Я. Хавкин, Р.З. Берман. Кирпичные заводы малой мощности. Строительные материалы. 2000, №4, с.18-19). Сущность ее заключается непрерывном продавливании под давлением через прямоугольное одиночное отверстие в фильере размером (60-80)×(40-50) мм влажной шихтовой массы на основе глины. Шихтовая масса перед фильерой проходит через вакуумкамеру, в которой из этой массы удаляется воздух. В результате плотность шихтовой массы, из которой, при прохождении ее под давлением через отверстие в фильере, непрерывно формуется брус, повышается. Сырые кирпичи получают путем периодического мгновенного разрезания бруса, выходящего из фильеры, многопроволочным резаком на равные части длиной 160-200 мм. Таким образом, по принципу действия эта технология является непрерывной и обеспечивает прочность «сырых» кирпичей, необходимую для их многослойной укладки на поддоны и транспортировки в печи для упрочняющего обжига.
Лабораторные исследования показали возможность применения технологии прессования методом жесткой экструзии для окускования смеси связующего, руды металла и/или металлорудного концентрата, электропроводных углеродсодержащих материалов, флюсующих добавок и, по необходимости, отходы металла и оксидные металлсодержащие отходы.
При использовании в экструдере фильеры с множеством отверстий брикеты экструзионные можно получать оптимального размера и формы для применения их в качестве компонента шихты для выплавки металла в электропечах различного типа, включая рудотермические печи, индукционные печи и дуговые электросталеплавильные печи. При этом длина брикетов на выходе из экструдера, определяется плотностью и пластичностью непрерывно выходящих из отверстий фильеры пластичных стержней, формируемых экструдером. В результате роста изгибающего момента, возникающего под действием увеличивающегося веса стержней по мере увеличения их длины при выходе из фильеры, стержни обламываются.
Применение технологии окускования методом жесткой вакуумной экструзии по отношению смеси связующего, руды металла и/или металлорудного концентрата, электропроводных углеродсодержащих материалов, флюсующих добавок и, по необходимости, отходов металла и оксидных металлсодержащих отходов с целью получения брикетов экструзионных (БРЭКСов) для использования их в качестве компонента шихты для выплавки металлов в электропечах, имеющих заданный химический состав и металлургические свойства, обеспечивающие его эффективное использование совместно с любыми другими компонентами металлошихты электропечей, заявителю не известно.
Сущность изобретения заключается в следующем. Применение метода и технологии жесткой вакуумной экструзии для окускования смеси связующего, руды металла и/или металлорудного концентрата, электропроводных углеродсодержащих материалов, флюсующих добавок и, по необходимости, отходов металла и оксидных металлсодержащих отходов обеспечивает получение стержней с плотной (1,9-2,1 г/см3) и пластичной структурой, длина которых (110-160 мм) пригодна для использования в шихте электропечей, но не исключает их кострение при выгрузке из бункера.
В процессе лабораторных и полупромышленных исследований выявили новые, в том числе неожиданные, эффекты применения жесткой вакуумной экструзии для окускования смеси связующего, руды металла и/или металлорудного концентрата, электропроводных углеродсодержащих материалов, флюсующих добавок и, по необходимости, отходов металла и оксидных металлсодержащих отходов.
Так высокая пластичность стержней, непрерывно выходящих из отверстий фильеры, обуславливает под действием изгибающего момента (из-за возрастающей массы стержней), образование в верхнем слое их тел одной-двух поперечных микротрещин, а затем и обламывание стержня. При транспортировке и перегрузках стержней микротрещины в теле стержней увеличиваются и происходит их разлом с образованием 2-3 БРЭКСов, которые имеют идеальные, для компонента шихты электропечей для выплавки металлов, размеры (25-35)×(40-55) мм, обеспечивающие высокую их текучесть при выгрузке из бункера, высокую горячую прочность, быстрый прогрев за счет электропроводности, высокую восстановимость.
Другим новым, обнаруженным в процессе лабораторных и опытно-промышленных исследований, эффектом применения жесткой вакуумной экструзии для окускования смеси минерального связующего, руды металла и/или металлорудного концентрата электропроводных углеродсодержащих материалов, флюсующих добавок и, по необходимости, отходов металла и оксидных металлсодержащих отходов является снижение расхода электроэнергии на выплавку ферросплавов из БРЭКСов и повышение степени извлечения металла за счет ускорения нагрева БРЭКСов и снижения пылевыноса. Благодаря небольшому поперечному размеру БРЭКСа и присутствия в нем электропроводного углеродсодержащего материала БРЭКС прогревается быстрее кусков руды и реакция восстановления высших оксидов металла протекает во всем объеме БРЭКСа с участием углерода, содержащегося в нем.
Наличие в БРЭКСе электропроводных углеродсодержащих материалов обеспечивает быстрый нагрев БРЭКСов в электропечах при прохождении через них электрического тока и быстрое восстановление оксидов металла. Содержание углеродсодержащего материала в БРЭКСе не более 8-25% обеспечивает получение электропроводной структуры БРЭКСа и восстановление оксидов металла в нем. Нижняя граница относится к углеродсодержащему материалу с максимальной электропроводностью, верхняя - к углеродсодержащему материалу с минимальной электропроводностью. Превышение содержания углеродсодержащего материала выше 25% приводит к переходу из БРЭКСа в шлак остаточного углерода, ухудшающего свойства шлаков. При содержании углеродсодержащего материала менее 8% электропроводность БРЭКСа снижается, но углерод принимает участие в восстановлении оксидов металла, снижая расход кокса на выплавку ферросплавов.
Предельная крупность частиц компонентов БРЭКСов (5 мм) обусловлена максимальным поперечным размеров БРЭКСов (25-35 мм) и соответствующим размером отверстий фильеры. При более крупных частицах материалов смеси для получения БРЭКСов снижается их пластичность на выходе из фильеры и увеличивается расход электроэнергии на экструзию. Предельный вес БРЭКСа определяется его поперечным размером, который не должен превышать 25-35 мм для обеспечения полноты восстановления металла по всему сечению БРЭКСа к моменту его нагрева до температуры расплавления. Использование в качестве связующего цемента обеспечивает прочность БРЭКСА как в холодном состоянии, так и при его нагреве до 800-900°C. Присутствие бентонита в брикетируемой смеси повышает ее пластичность при экструзии и прочность БРЭКСА в первые часы после экструзии.
Наличие в БРЭКСе отходов металла и/или оксидных металлсодержащих отходов обеспечивает возможность утилизации таких отходов при выплавке металлов. Еще одним эффектом применения жесткой вакуумной экструзии для окускования дисперсных металлических отходов отдельно или в смеси с флюсующими добавками, обнаруженным в процессе лабораторных исследований, является эффект ускорения шлакообразования и полного усвоения шлаком в металлургической печи флюсующих добавок, входящих в состав БРЭКСа. Кроме того, наличие в БРЭКСах основных оксидов CaO и MgO, входящих в состав минерального связующего, снижает расход флюсов, применяемых при выплавке металлов. Такое же действие оказывает наличие флюсующих добавок в составе БРЭКСов.
Изобретение иллюстрируется следующими примерами.
1. БРЭКС - компонента шихты для выплавки металла в электропечах получали по технологии жесткой вакуумной экструзии на промышленном экструдере производительностью 50 т/час из смеси марганцевой руды, аспирационной пыли производства силикомарганца, извести, коксовой мелочи и портландцемента марки 500. Крупность частиц всех материалов смеси не превышала 5 мм, а ее влажность составляла 14%. Давление на смесь в экструдере составляло 2,4 МПа. Прочность БРЭКСов на выходе из экструдера обеспечивала его транспортировку и перегрузки до площадки упрочняющего вылеживания. Партия БРЭКСов 2000 т была использована для выплавки ферросиликомарганца. Расход БРЭКСов в шихте составил 30%. При использование БРЭКСов расход электроэнергии снизился на 9%, а утилизация марганца повысилась на 3,5% (абс).
2. БРЭКС - компонента шихты для выплавки металла в электропечах получали по технологии жесткой вакуумной экструзии на лабораторном экструдере из смеси марганцевой руды, аспирационной пыли производства силикомарганца, извести, коксовой мелочи, боя углеродистых электродов и портландцемента марки 500. Содержание электропроводных углеродсодержащих материалов в смеси составляло 18%. Крупность частиц всех материалов смеси не превышала 5 мм. Полученные БРЭКСы имели электросопротивление 3000-3300 Ом/мм2·м, обеспечивающее прохождение через них электрического тока. Прочность БРЭКСов после вылеживания составила 4,5 МПа.
3. БРЭКС - компонента шихты для выплавки металла в электропечах получали по технологии жесткой вакуумной экструзии на лабораторном экструдере из смеси марганцевой руды, аспирационной пыли производства силикомарганца, извести, боя графитированных электродов и графитированных электролизных ванн и портландцемента марки 500. Содержание электропроводных углеродсодержащих материалов в смеси составляло 15%. Крупность частиц всех материалов смеси не превышала 5 мм. Полученные БРЭКСы имели электросопротивление 3200-3400 Ом/мм2·м, обеспечивающее прохождение через них электрического тока. Прочность БРЭКСов после вылеживания составила 4,8 МПа.
4. БРЭКС - компонента шихты для выплавки металла в электропечах получали по технологии жесткой вакуумной экструзии на лабораторном экструдере из смеси марганцевой руды, аспирационной пыли производства силикомарганца, извести, коксовой мелочи, древесного угля и портландцемента марки 500. Содержание электропроводных углеродсодержащих материалов в смеси составляло 20%. Крупность частиц всех материалов смеси не превышала 5 мм. Полученные БРЭКСЫ имели электросопротивление 3100-3200 Ом/мм2·м, обеспечивающее прохождение через них электрического тока. Прочность БРЭКСов после вылеживания составила 4,0 МПа.
5. БРЭКС - компонента шихты для выплавки металла в электропечах получали по технологии жесткой вакуумной экструзии на лабораторном экструдере из смеси марганцевой руды, аспирационной пыли производства силикомарганца, извести, каменного угля, антрацита, боя электродов и портландцемента марки 500. Содержание электропроводных углеродсодержащих материалов в смеси составляло 16%. Крупность частиц всех материалов смеси не превышала 5 мм. Полученные БРЭКСы имели электросопротивление 2900-3000 Ом/мм2·м, обеспечивающее прохождение через них электрического тока. Прочность БРЭКСов после вылеживания составила 4,9 МПа.
В примерах 2-5 получали брикеты, как указано выше, по технологии жесткой вакуумной экструзии на лабораторном экструдере, при этом влажность смеси составляла от 12 до 19%, а давление на смесь в экструдере от 1,5 до 3,0 МПа.
Таким образом, БРЭКС - компонента шихты для выплавки металла в электропечах, полученный в соответствии с изобретением, имеет высокие металлургические свойства, позволяющие успешно его применять в рудотермических печах, индукционных и других электропечах.
Claims (4)
1. Применение полученного методом жесткой вакуумной экструзии брикета экструзионного, содержащего связующее, руду металла и/или металлорудный концентрат, электропроводные углеродсодержащие материалы, флюсующие добавки и при необходимости отходы металла и оксидные металлсодержащие отходы в качестве компонента шихты для выплавки металла в электропечах.
2. Применение по п.1, характеризующееся тем, что массовое содержание электропроводных углеродсодержащих материалов в брикете не превышает 8-25%, крупность материалов, входящих в шихту для получения брикета, не превышает 5 мм, а его масса не превышает 0,5 кг.
3. Применение по п.1, характеризующееся тем, что в качестве электропроводных углеродсодержащих материалов брикет содержит коксовую мелочь, и/или бой графитированных или углеродных электродов, и/или бой электролизных ванн для производства алюминия, и/или древесный уголь, и/или каменный уголь, и/или антрацит.
4. Применение по п.1, характеризующееся тем, что в качестве связующего брикет содержит цемент и при необходимости бентонит или органическое связующее.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012113390/02A RU2504588C2 (ru) | 2012-04-09 | 2012-04-09 | Брикет экструзионный (брэкс)-компонент шихты для выплавки металла в электропечах |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012113390/02A RU2504588C2 (ru) | 2012-04-09 | 2012-04-09 | Брикет экструзионный (брэкс)-компонент шихты для выплавки металла в электропечах |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2012113390A RU2012113390A (ru) | 2013-10-20 |
RU2504588C2 true RU2504588C2 (ru) | 2014-01-20 |
Family
ID=49356707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012113390/02A RU2504588C2 (ru) | 2012-04-09 | 2012-04-09 | Брикет экструзионный (брэкс)-компонент шихты для выплавки металла в электропечах |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2504588C2 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2807693C1 (ru) * | 2023-10-05 | 2023-11-21 | Общество с ограниченной ответственностью Научно-производственное предприятие "Вулкан - ТМ" | Способ прямого получения железоуглеродистого сплава |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU757601A1 (ru) * | 1978-06-05 | 1980-08-23 | Kalininsk Polt Inst | Способ получения брикета из тонкоизмельчеиного минерального сырья |
SU1134295A1 (ru) * | 1983-04-21 | 1985-01-15 | Витебский технологический институт легкой промышленности | Устройство дл экструдировани изделий из порошков |
RU2015851C1 (ru) * | 1990-05-14 | 1994-07-15 | Ереванский политехнический институт | Способ получения порошкового сплава на основе меди |
WO1996010477A1 (en) * | 1994-10-04 | 1996-04-11 | E. Khashoggi Industries | Placing filaments within extruded hydraulically settable compositions |
CN2344145Y (zh) * | 1998-08-18 | 1999-10-20 | 新汶矿业集团有限责任公司机械厂 | 真空硬塑挤砖机 |
RU2241771C1 (ru) * | 2003-07-03 | 2004-12-10 | Открытое акционерное общество "Новолипецкий металлургический комбинат" | Брикет для выплавки чугуна |
CN101851086A (zh) * | 2010-03-26 | 2010-10-06 | 王爱瑞 | 一种污泥制自保温砖的生产方法 |
-
2012
- 2012-04-09 RU RU2012113390/02A patent/RU2504588C2/ru active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU757601A1 (ru) * | 1978-06-05 | 1980-08-23 | Kalininsk Polt Inst | Способ получения брикета из тонкоизмельчеиного минерального сырья |
SU1134295A1 (ru) * | 1983-04-21 | 1985-01-15 | Витебский технологический институт легкой промышленности | Устройство дл экструдировани изделий из порошков |
RU2015851C1 (ru) * | 1990-05-14 | 1994-07-15 | Ереванский политехнический институт | Способ получения порошкового сплава на основе меди |
WO1996010477A1 (en) * | 1994-10-04 | 1996-04-11 | E. Khashoggi Industries | Placing filaments within extruded hydraulically settable compositions |
CN2344145Y (zh) * | 1998-08-18 | 1999-10-20 | 新汶矿业集团有限责任公司机械厂 | 真空硬塑挤砖机 |
RU2241771C1 (ru) * | 2003-07-03 | 2004-12-10 | Открытое акционерное общество "Новолипецкий металлургический комбинат" | Брикет для выплавки чугуна |
CN101851086A (zh) * | 2010-03-26 | 2010-10-06 | 王爱瑞 | 一种污泥制自保温砖的生产方法 |
Non-Patent Citations (2)
Title |
---|
ХАВКИН А.Я., БЕРМАН Р.З. Кирпичные заводы малой мощности с применением технологии жесткой экструзии // Строит. материалы, 2000, No.4, с.18, 19. * |
ХАВКИН А.Я., БЕРМАН Р.З. Кирпичные заводы малой мощности с применением технологии жесткой экструзии // Строит. материалы, 2000, №4, с.18, 19. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2829748C1 (ru) * | 2021-01-12 | 2024-11-05 | Даниэли энд К. Оффичине Мекканике С.п.А. | Твердый агломерированный продукт на основе оксидов железа и способ его получения |
RU2807693C1 (ru) * | 2023-10-05 | 2023-11-21 | Общество с ограниченной ответственностью Научно-производственное предприятие "Вулкан - ТМ" | Способ прямого получения железоуглеродистого сплава |
Also Published As
Publication number | Publication date |
---|---|
RU2012113390A (ru) | 2013-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103805726B (zh) | 一种运用转底炉珠铁工艺综合利用高铁赤泥的方法 | |
CN101591718A (zh) | 直接还原-磨选处理铜渣及镍渣的炼铁方法 | |
CN102051428A (zh) | 一种综合处理铜选矿尾渣和镍熔融渣的提铁炼钢工艺 | |
EP2949765B1 (en) | Composite briquette and method for making a steelmaking furnace charge | |
AU2014273847A1 (en) | A process for producing and reducing an iron oxide briquette | |
KR101717738B1 (ko) | 저품위 동 슬러지로부터 조동 제조방법 | |
CN103406196A (zh) | 一种低品位菱镁矿多级分段选矿提纯及综合利用方法 | |
RU2013103510A (ru) | Способ получения жидкой стали с применением гранулированного металлического железа | |
JP2012500902A5 (ru) | ||
WO2013029456A1 (zh) | 不锈钢氧化铁皮再生利用二步还原法 | |
RU2502812C2 (ru) | Брикет экструзионный (брэкс) металлический | |
CN103952540A (zh) | 利用含铁尘泥和高硅铁精矿生产金属化炉料的工艺 | |
WO2010103343A1 (en) | An improved process for production of high carbon ferrochrome (hcfecr) and charge chrome with the use of a new type of chromite ore agglomerates | |
Murthy et al. | Recycling of ferromanganese gas cleaning plant (GCP) sludge by novel agglomeration | |
CN105039626B (zh) | 一种钒渣制备方法 | |
JP2021188067A (ja) | 熔融原料の調製方法及び有価金属回収方法 | |
JP5512205B2 (ja) | 塊成化状高炉用原料の強度改善方法 | |
CN105714120A (zh) | 一种低质铁锰渣矿和钢铁工业废料的综合利用方法 | |
RU2506325C2 (ru) | СПОСОБ ПОЛУЧЕНИЯ БРИКЕТА ЭКСТРУЗИОННОГО (БРЭКСа) ДЛЯ ВЫПЛАВКИ МЕТАЛЛА | |
RU2504588C2 (ru) | Брикет экструзионный (брэкс)-компонент шихты для выплавки металла в электропечах | |
JP2018178219A (ja) | 酸化鉱石の製錬方法 | |
RU2506326C2 (ru) | Брикет экструзионный (брэкс) - компонент доменной шихты | |
KR20080112818A (ko) | 제강공정 부산물로부터 유가금속을 회수하는 방법 | |
JP | The effect of additives and reductants on the strength of reduced iron ore pellet | |
KR20110108993A (ko) | 제강공정 부산물을 이용한 브리켓 제조방법 및 이로 제조된 브리켓 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
HE9A | Changing address for correspondence with an applicant | ||
HZ9A | Changing address for correspondence with an applicant |