RU2495158C1 - Способ модификации электрохимических катализаторов на углеродном носителе - Google Patents
Способ модификации электрохимических катализаторов на углеродном носителе Download PDFInfo
- Publication number
- RU2495158C1 RU2495158C1 RU2012143334/04A RU2012143334A RU2495158C1 RU 2495158 C1 RU2495158 C1 RU 2495158C1 RU 2012143334/04 A RU2012143334/04 A RU 2012143334/04A RU 2012143334 A RU2012143334 A RU 2012143334A RU 2495158 C1 RU2495158 C1 RU 2495158C1
- Authority
- RU
- Russia
- Prior art keywords
- catalyst
- atoms
- stream
- carbon
- modifying
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 90
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 23
- 239000000463 material Substances 0.000 claims abstract description 28
- 239000002245 particle Substances 0.000 claims abstract description 25
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 238000012986 modification Methods 0.000 claims abstract description 17
- 230000004048 modification Effects 0.000 claims abstract description 17
- 239000011261 inert gas Substances 0.000 claims abstract description 12
- 239000007789 gas Substances 0.000 claims abstract description 8
- 150000002500 ions Chemical class 0.000 claims description 19
- 238000009835 boiling Methods 0.000 claims description 9
- 230000000694 effects Effects 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 28
- 125000004429 atom Chemical group 0.000 description 22
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 20
- 239000002344 surface layer Substances 0.000 description 14
- 239000010410 layer Substances 0.000 description 12
- 229910052697 platinum Inorganic materials 0.000 description 11
- 239000010411 electrocatalyst Substances 0.000 description 10
- 229910052763 palladium Inorganic materials 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000000446 fuel Substances 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000005518 polymer electrolyte Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 239000004071 soot Substances 0.000 description 6
- 239000002121 nanofiber Substances 0.000 description 5
- 239000002071 nanotube Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 229910052741 iridium Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000001308 synthesis method Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 208000035051 Malignant migrating focal seizures of infancy Diseases 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000005280 amorphization Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000005518 electrochemistry Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 208000012054 malignant migrating partial seizures of infancy Diseases 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000002294 plasma sputter deposition Methods 0.000 description 2
- -1 platinum group metals Chemical class 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 101150003085 Pdcl gene Proteins 0.000 description 1
- 229910002849 PtRu Inorganic materials 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 229910021398 atomic carbon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Catalysts (AREA)
Abstract
Изобретение относится к области электрохимии и может быть использовано, например, при разработке и производстве катализаторов для электролизеров или топливных элементов с твердополимерным электролитом. Описан способ модификации электрохимических катализаторов на углеродном носителе, заключающийся в том, что модификацию производят в вакуумной камере, снабженной регулируемым источником потока атомов или атомарных ионов модифицирующего материала, устройством подачи инертного газа и держателем обрабатываемого катализатора, модифицируемую поверхность предварительно полученного катализатора на углеродном носителе обрабатывают потоком атомов или атомарных ионов модифицирующего материала, при этом для размещения катализатора, предварительно синтезированного на высокодисперсном углеродном носителе, используют установленную в держателе пористую подложку с открытой пористостью, выполненную из инертного материала, пневматически связанную с устройством автономной подачи газа, через пористую подложку продувают инертный газ с образованием над подложкой псевдокипящего слоя частиц углеродного носителя с модифицируемым катализатором, затем производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала. Технический эффект - повышение эффективности модификации электрохимических катализаторов и их эксплуатационных характеристик. 1. з.п. ф-лы.
Description
Изобретение относится к области электрохимии, а именно к способам модификации электрохимических катализаторов на углеродном носителе, применяемых в различных электрохимических системах, и может быть использовано, например, при разработке и производстве катализаторов для электролизеров или топливных элементов с твердополимерным электролитом.
Известно, что эффективность работы и стоимость электрохимических систем, используемых в различных электрохимических установках, во многом зависит от особенностей применяемых электрокатализаторов. Широкое распространение в различных электрохимических системах, например, в электролизерах и топливных элементах с твердополимерным электролитом, получили электрокатализаторы на углеродном носителе (Н.В. Кулешов, В.Н. Фатеев, М.А. Осина «Нанотехнологии и наноматериалы в электрохимических системах» М.: МЭИ, 2010 г., с.8-19). К числу таких катализаторов, изготовленных по различным технологиям, относятся платина, а также металлы платиновой группы. В качестве углеродного носителя используются различные углеродные материалы, обладающие высокой дисперсностью, электропроводностью, термо- и коррозионно-устойчивостью. К ним относятся различные виды сажи, мезоуглеродные микрошарики, фуллерены, углеродные нанотрубки, нановолокна и тп. (Н.В. Кулешов, В.Н. Фатеев, М.А. Осина «Нанотехнологии и наноматериалы в электрохимических системах» М.: МЭИ, 2010 г., с.9-11). Целесообразность и эффективность применения тех или иных катализаторов определяется конкретными особенностями эксплуатации электрохимических систем, в которых они используются. Например, причиной использования именно платины или ее сплавов с другими благородными металлами в низкотемпературных электролизерах и топливных элементах с твердополимерным электролитом является то, что протонообменная мембрана имеет ярко выраженные кислотные свойства, а такие металлы, как никель, хром, кобальт и т.п., в чистом виде оказываются химически нестойкими. В то же время, при использовании топливных элементов, работающих на воздухе и водороде, бинарные системы на основе Pd могут оказаться более перспективными, чем катализаторы на основе Pt (International Scientific Journal for Alternative Energy and Ecology ISJAEE 2(46) (2007) p.118-123).
Одним из возможных путей снижения стоимости электрокатализаторов на углеродном носителе является разработка и применение многокомпонентных электрокатализаторов, которые в перспективе могут обеспечить снижение использования платины (или металлов платиновой группы) без снижения активности катализатора и уменьшения ресурса его работы. Например, одним из направлений является создание на углеродном носителе бинарных наноразмерных электрокаталитических систем на основе платины и так называемых базовых металлов: Fe, Co, Ni, Cr, а также введение добавок тугоплавких металлов (например, Mo) или замена (полная или частичная) Pt на Pd, Ru или Ir (СИ. Козлов, В.И. Фатеев Водородная энергетика: современное состояние, проблемы, перспективы. М. ООО «Газпром ВНИИГАЗ», 2009, с.338-339).
Известны различные методы синтеза многокомпонентных катализаторов на углеродной основе для различных электрохимических систем.
Известен способ химической модификации иридиевого катализатора на углеродной основе (Vulcan XC-72R) селеном с различным соотношением IrxSey (Gang Liu, Huamin Zhang. Facile Synthesis of Carbon-Supported IrxSey Chalcogenide Nanoparticles and Their Electrocatalytic Activity for the Oxygen Reduction Reaction J. Phys. Chem. С 2008, 112, 2058-2065). Для осуществления способа был применен метод полиольного синтеза с использованием H6IrCl6 и Na2SeO3 в качестве прекурсоров с нагревом в микроволновой печи, добавлением в процессе синтеза порошка углеродного носителя, с последующей отмывкой полученного продукта в дистиллированной воде, длительной сушкой (при 60°C в течение 8 часов) и окончательной термообработкой в атмосфере водорода (при 400°C в течение 1 часа). К недостаткам данного способа относятся его сложность, большие затраты времени, низкая экологичность, а также сложность предварительного прогнозирования структуры и свойств полученного катализатора при необходимости изменения его стехиометрического состава. Кроме того, в случае появления необходимости легирования иридия иными элементами, возникает необходимость существенной коррекции элементов рассматриваемого способа.
Известен способ изготовления бинарных электрокатализаторов на основе палладия на углеродном носителе для водородных топливных элементов с твердополимерным электролитом (С.А. Григорьев, Е.К. Лютикова, Е.Г. Притуленко, Д.П. Самсонов, В.Н.Фатеев «Разработка и исследования наноструктурных анодных электрокатализатов на основе палладия для водородных топливных элементов с твердополимерным электролитом» Электрохимия, 2006, том 42, №11, с.1393-1396). При этом синтез катализаторов проводился без и с предварительной сорбцией палладия на углеродный носитель Vulcan ХС-72. Для синтеза электрокатализатора Pt0,5Pd0,5/ Vulcan ХС-72 к 0,1М растворов H2PtCl6 и PdCl2 добавляется суспензия углеродного носителя и 2-пропанаола. Затем смесь диспергируют в течение 10 минут и доводят pH до 8 (раствором Na2CO3). После этого полученная смесь добавляется в этиленгликоль при поддержании температуры 70°C. Добавляется формальдегид и поливинилпиролидон, препятствующий агломерации частиц. Затем полученная суспензия выдерживается в течение 1,5 час. при температуре 90-105°C. Смесь выдерживается 12 час, а затем проводится отмывка катализатора (4-5 раз) в бидистиллированной воде. К недостаткам данного способа относятся его сложность, большие затраты времени, низкая экологичность, а также неэффективный расход платины (На активность катализатора основное влияние оказывают свойства поверхности частиц катализатора, платина же при данном способе химического синтеза бинарного катализатора находится не только в активном поверхностном слое, но во всем объеме частиц катализатора). При модификации поверхностного слоя на предварительно высаженный палладий наблюдалось агрегирование частиц, существенно ухудшающее эксплуатационные свойства катализатора.
Известен способ получения модифицированного электрохимического катализатора на углеродной основе, принятый за прототип (A. Caillard, С. Coutanceau, P. Brault, J. Mathias, J.-M. L'Eger. Structure of Pt/C and PtRu/C catalytic layers prepared by plasma sputtering and electric performance in direct methanol fuel cells (DMFC). Journal of Power Sources 162 (2006) 66-73). При этом модифицируют поверхностный слой предварительно полученного катализатора (в данном случае - платины), высаженного на углеродную пленку. Модифицируемый катализатор также как и саму модификацию производят методом плазменного напыления. Плазменное напыление проводят при низком давлении, в вакуумной установке, снабженной системой вакуумирования, устройством подачи инертного газа, и регулируемым источником потока атомов (в данном случае - плазменной системой распыления мишеней, выполненных из платины - основного элемента катализатора и рубидия - модифицирующего элемента), а также держателем углеродной подложки с катализатором. При этом пленку углеродного носителя закрепляют в держателе, вакуумируют рабочую камеру, создают остаточное низкое давление инертного газа, величина которого определяется рабочими параметрами источника потока напыляемых атомов, активируют источник напыляемых атомов материала катализатора и производят напыление катализатора на углеродный носитель (В данном конкретном случае - возбуждают плазму, распыляют материал мишени и напыляют катализатор на углеродный носитель). Затем активируют источник потока атомов или атомарных ионов модифицирующего материала и производят обработку поверхности полученного катализатора. Способ позволяет производить модификацию поверхностного слоя предварительно полученного катализатора на углеродной основе. При этом возможно широкое варьирование структуры и свойств поверхностного слоя получаемого модифицированного катализатора при малом расходе модифицирующего материала. Недостатком данного способа является ограниченность области его эффективного использования. В частности, способ малоэффективен в случае необходимости проведения модификации катализаторов предварительно высаженных на высокодисперсные углеродные материалы, такие как сажа, нанотрубки, нановолокна и т.п., обладающие высоко развитой поверхностью (при этом катализаторы могут быть предварительно получены как физическими, так и химическими методами синтеза). Способ обеспечивает проведение модификации поверхностного слоя частиц предварительно синтезированного катализатора на мелкодисперсном углеродном носителе, расположенных только по направлению потока модифицирующих атомов. Другие частицы катализатора остаются недоступными.
Техническим результатом, на который направлено изобретение, является обеспечение возможности эффективной модификации поверхностных слоев широкого класса катализаторов, полученных различными методами синтеза на высокодисперсном углеродном носителе типа сажи, нанотрубок, нановолокон и т.п.
Для достижения указанного технического результата предложен способ модификации электрохимических катализаторов на углеродном носителе, заключающийся в том, что модификацию производят в вакуумной камере, снабженной регулируемым источником потока атомов или атомарных ионов модифицирующего материала, устройством подачи инертного газа и держателем обрабатываемого катализатора, модифицируемую поверхность предварительно полученного катализатора на углеродном носителе обрабатывают потоком атомов или атомарных ионов модифицирующего материала, при этом для размещения катализатора, предварительно синтезированного на высокодисперсном углеродном носителе, используют установленную в держателе пористую подложку с открытой пористостью, выполненную из инертного материала, пневматически связанную с устройством автономной подачи газа, через пористую подложку продувают инертный газ с образованием над подложкой псевдокипящего слоя частиц углеродного носителя с модифицируемым катализатором, затем производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала.
При этом производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала с энергией не более 70 эВ/атом.
Отличительной особенностью изобретения является то, что для размещения катализатора, предварительно синтезированного на мелкодисперсном углеродном носителе используют установленную в держателе пористую подложку с открытой пористостью, выполненную из инертного материала, пневматически связанную с устройством автономной подачи газа, через пористую подложку продувают инертный газ с образованием над подложкой псевдокипящего слоя частиц углеродного носителя с модифицируемым катализатором, затем производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала. Кроме того, при этом производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала с энергией не более 70 эВ/атом.
Использование в предложенном способе модификации электрохимических катализаторов на углеродном носителе установленной в держателе пористой подложки с открытой пористостью, пневматически связанной с устройством автономной подачи газа, при плавном увеличении потока инертного газа, пропускаемого через поры подложки приводит к возникновению псевдокипящего слоя в объеме расположенных на подложке частиц высокодисперсного углеродного носителя с предварительно синтезированными на них частицами катализатора. При этом, благодаря малым размерам и весу частиц высокодисперсного углеродного носителя с нанесенными на них частицами катализатора, а также разделению восходящих газовых потоков порами подложки, происходит интенсивное перемешивание углеродных частиц с приданием им дополнительного крутящего момента. В результате этого практически все модифицируемые частицы катализатора оказываются доступными для облучения потоком подающих модифицирующих атомов или атомарных ионов. Таким образом, обеспечивается возможность эффективной модификации поверхностных слоев широкого класса катализаторов, предварительно полученных различными методами синтеза на высокодисперсном углеродном носителе типа сажи, нанотрубок, нановолокон и т.п.
Проведение модификации поверхности частиц катализатора, предварительно высаженных на высокодисперсном углеродном носителе, потоком падающих атомов или атомарных ионов модифицирующего материала требует обеспечения большой плотности модифицирующих частиц, облучающих поверхность частиц модифицируемого катализатора. При этом поток модифицирующих атомов или атомарных ионов помимо частиц катализатора воздействует на поверхностные слои углеродного носителя. Облучение углеродного носителя частицами с большой энергией вызывает нарушение структуры его поверхностных слоев, что при большой плотности потока облучающих частиц приводит к частичной аморфизации углерода и ухудшению его электропроводности. Хорошая электропроводность является одним из основных требований, предъявляемых к носителю электрокатализатора. Ее снижение приводит к ухудшению эксплуатационных характеристик электрокатализатора на углеродном носителе. Ограничение энергии падающих атомов или атомарных ионов модифицирующего материала диапазоном до 70 эВ/атом позволяет существенно уменьшить или полностью исключить возможную аморфизацию поверхностных слоев углеродного носителя (зависящую от конкретных требований к виду и степени проводимой модификации катализатора). При этом возможные нарушения структуры поверхностного слоя углеродного носителя не превышают 2-3 атомных слоев углерода. Таким образом, повышается эффективность модификации поверхностных слоев широкого класса катализаторов на высокодисперсном углеродном носителе (типа сажи, нанотрубок, нановолокон и т.п.) и улучшаются эксплуатационные свойства полученного катализатора.
Способ осуществляется следующим образом. Модификацию электрохимических катализаторов на высокодисперсном углеродном носителе производят в вакуумной камере, снабженной регулируемым источником потока атомов или атомарных ионов модифицирующего материала, держателем обрабатываемого катализатора с подложкой, выполненной из пористого инертного материала с открытой пористостью (например, из пористого титана, полученного методом порошковой металлургии), а также устройством подачи инертного газа, пневматически связанным с пористой подложкой. На пористой подложке послойно размещают порошок обрабатываемого электрокатализатора на углеродном носителе (Дополнительно, для исключения рассыпания обрабатываемого порошка с модифицируемым катализатором, держатель может быть снабжен выступающим буртиком). Производят откачку вакуумной камеры до значений вакуума, определяемых эксплуатационными характеристиками источника облучения (В качестве такого источника может быть использован, например, источник, выполненный на основе магнетронного, плазменного или лазерного распыления материалов, или иной источник ионов модифицирующего материала). Через пористую подложку пропускают инертный газ, плавно увеличивая подачу газа, до образования устойчивого псевдокипения слоя частиц углеродного носителя с модифицируемым катализатором. Момент возникновения псевдокипящего слоя можно наблюдать визуально через смотровое окно вакуумной камеры. В случае превышения допустимого давления в вакуумной камере производят необходимую дополнительную откачку газа (при помощи штатных средств, обеспечивающих вакуумирование рабочей камеры). Затем производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала. Дополнительно, для повышения эффективности модификации путем уменьшения влияния облучения на электропроводные свойства углеродного носителя обработку катализатора производят потоком атомов или атомарных ионов модифицирующего материала с энергией не более 70 эВ/атом.
Предложенный способ модификации электрохимических катализаторов на углеродном носителе был опробован при проведении модификации платиной палладиевого электрокатализатора, предварительно синтезированного методом химического восстановления палладия из хлорида палладия с использованием этиленгликоля и добавлением формальдегида на высокодисперсном углеродном носителе Vulcan ХС-72. Целью проведения модификации являлось изучение возможности повышения эксплуатационных характеристик катализатора при малом расходе платины (~0,1 мг/см2 рабочей поверхности катода) при его использовании в качестве катодного катализатора в электролизерах с твердополимерным электролитом. При этом в качестве пористой подложки использовалась пластинка из пористого титана диаметром 70 мм, толщиной 0,9 мм, с пористостью 28% и средними размерами пор ~10 мкм, изготовленная из порошкообразного титана. Дополнительно, для исключения рассыпания сажи с катализатором подложка из пористого титана была снабжена защитным бортиком. Толщина слоя частиц катализатора на углеродном носителе составляла ~2 мм. Для образования псевдокипящего слоя углеродного носителя с модифицируемым катализатором через пористую подложку продувался аргон. При этом после вакуумирования рабочей камеры плавно увеличивали подачу аргона через пористую подложку. Момент образования псевдокипящего слоя частиц углеродного носителя с модифицируемым катализатором наблюдался визуально через смотровое стекло вакуумной камеры. Обработка псевдокипящего слоя углеродного носителя с модифицируемым катализаторов производилась потоком распыленных атомов платины (полученных методом магнетронного распыления) с энергией ~18 эВ/атом. Время обработки составляло 25 минут. Эффективность произведенной модификации палладиевого катализатора платиной проверялась в реальных условиях использования палладиевого и модифицированного Pd/Pt катализаторов на углеродном носителе (Vulcan ХС-72) в качестве катодного катализатора в ячейке электролизера с твердополимерным электролитом (Nation-117) с площадью рабочей поверхности 7 см2 и иридиевым анодным катализатором. Оценка эффективности производилась по выходу водорода при равном напряжении на рабочей ячейке электролизера (1,75 В). Результаты проведенных сравнительных испытаний выявили 20% увеличение выхода водорода после проведения указанной модификации катодного катализатора.
Таким образом, предложенный способ модификации электрохимических катализаторов обеспечивает возможность проведения эффективной модификации поверхностных слоев широкого класса катализаторов, полученных различными методами синтеза на высокодисперсном углеродном носителе типа сажи, нанотрубок, нановолокон и т.п.
Claims (2)
1. Способ модификации электрохимических катализаторов на углеродном носителе, заключающийся в том, что модификацию производят в вакуумной камере, снабженной регулируемым источником потока атомов или атомарных ионов модифицирующего материала, устройством подачи инертного газа и держателем обрабатываемого катализатора, модифицируемую поверхность предварительно полученного катализатора на углеродном носителе обрабатывают потоком атомов или атомарных ионов модифицирующего материала, отличающийся тем, что для размещения катализатора, предварительно синтезированного на высокодисперсном углеродном носителе, используют установленную в держателе пористую подложку с открытой пористостью, выполненную из инертного материала, пневматически связанную с устройством автономной подачи газа, через пористую подложку продувают инертный газ с образованием над подложкой псевдокипящего слоя частиц углеродного носителя с модифицируемым катализатором, затем производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала.
2. Способ по п.1, отличающийся тем, что производят обработку катализатора потоком атомов или атомарных ионов модифицирующего материала с энергией не более 70 эВ/атом.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012143334/04A RU2495158C1 (ru) | 2012-10-10 | 2012-10-10 | Способ модификации электрохимических катализаторов на углеродном носителе |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012143334/04A RU2495158C1 (ru) | 2012-10-10 | 2012-10-10 | Способ модификации электрохимических катализаторов на углеродном носителе |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2495158C1 true RU2495158C1 (ru) | 2013-10-10 |
Family
ID=49302995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012143334/04A RU2495158C1 (ru) | 2012-10-10 | 2012-10-10 | Способ модификации электрохимических катализаторов на углеродном носителе |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2495158C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2562462C1 (ru) * | 2014-05-30 | 2015-09-10 | Общество с ограниченной ответственностью "Эй Ти Энерджи", ООО "Эй Ти Энерджи" | Способ изготовления катализатора на основе платины и катализатор на основе платины |
WO2015183128A1 (ru) * | 2014-05-30 | 2015-12-03 | Общество С Ограниченной Ответственностью "Эй Ти Энерджи" | Способ изготовления катализатора на основе платины и катализатор на основе платины |
RU2595900C1 (ru) * | 2015-06-29 | 2016-08-27 | Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" | Способ изготовления и модификации электрохимических катализаторов на углеродном носителе |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030064265A1 (en) * | 1998-02-24 | 2003-04-03 | Hampden-Smith Mark J. | Membrane electrode assemblies for use in fuel cells |
RU2401695C1 (ru) * | 2009-05-07 | 2010-10-20 | Ассоциация делового сотрудничества в области передовых комплексных технологий "АСПЕКТ" | Наноразмерный катализатор прямого электроокисления боргидридов щелочных металлов |
US8071503B2 (en) * | 2006-07-27 | 2011-12-06 | Johnson Matthey Public Limited Company | Catalyst |
RU2446009C1 (ru) * | 2010-10-07 | 2012-03-27 | Учреждение Российской академии наук Институт катализа им. Г.К. Борескова Сибирского отделения РАН | Способ приготовления платино-рутениевых электрокатализаторов |
RU2455070C1 (ru) * | 2011-04-12 | 2012-07-10 | Нина Владимировна Смирнова | Способ получения катализатора с наноразмерными частицами сплавов платины |
-
2012
- 2012-10-10 RU RU2012143334/04A patent/RU2495158C1/ru not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030064265A1 (en) * | 1998-02-24 | 2003-04-03 | Hampden-Smith Mark J. | Membrane electrode assemblies for use in fuel cells |
US8071503B2 (en) * | 2006-07-27 | 2011-12-06 | Johnson Matthey Public Limited Company | Catalyst |
RU2401695C1 (ru) * | 2009-05-07 | 2010-10-20 | Ассоциация делового сотрудничества в области передовых комплексных технологий "АСПЕКТ" | Наноразмерный катализатор прямого электроокисления боргидридов щелочных металлов |
RU2446009C1 (ru) * | 2010-10-07 | 2012-03-27 | Учреждение Российской академии наук Институт катализа им. Г.К. Борескова Сибирского отделения РАН | Способ приготовления платино-рутениевых электрокатализаторов |
RU2455070C1 (ru) * | 2011-04-12 | 2012-07-10 | Нина Владимировна Смирнова | Способ получения катализатора с наноразмерными частицами сплавов платины |
Non-Patent Citations (1)
Title |
---|
A. Caillard, C. Coutanceau, P. Brault, J. Mathias, J.-M. Structure of Pt/C and Pt Ru/C catalytic layer prepared by plasma sputtering and electric performance in direct methanol fuel cells (DMFC). Journal of Power Sources 162 (2006) 66-73. * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2562462C1 (ru) * | 2014-05-30 | 2015-09-10 | Общество с ограниченной ответственностью "Эй Ти Энерджи", ООО "Эй Ти Энерджи" | Способ изготовления катализатора на основе платины и катализатор на основе платины |
WO2015183128A1 (ru) * | 2014-05-30 | 2015-12-03 | Общество С Ограниченной Ответственностью "Эй Ти Энерджи" | Способ изготовления катализатора на основе платины и катализатор на основе платины |
US10654034B2 (en) | 2014-05-30 | 2020-05-19 | At Energy Llc | Method of preparing platinum-based catalyst and platinum-based catalyst |
RU2595900C1 (ru) * | 2015-06-29 | 2016-08-27 | Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" | Способ изготовления и модификации электрохимических катализаторов на углеродном носителе |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kwok et al. | Graphene-carbon nanotube composite aerogel with Ru@ Pt nanoparticle as a porous electrode for direct methanol microfluidic fuel cell | |
US8946116B2 (en) | Nanometer powder catalyst and its preparation method | |
Feng et al. | Three-dimensional porous superaerophobic nickel nanoflower electrodes for high-performance hydrazine oxidation | |
Jukk et al. | Electroreduction of oxygen on sputter-deposited Pd nanolayers on multi-walled carbon nanotubes | |
Jukk et al. | PdPt alloy nanocubes as electrocatalysts for oxygen reduction reaction in acid media | |
Yan et al. | Vanadium carbide and graphite promoted Pd electrocatalyst for ethanol oxidation in alkaline media | |
JP2008041253A (ja) | 電極触媒およびそれを用いた発電システム | |
Zhang et al. | Novel synthesis of PtPd nanoparticles with good electrocatalytic activity and durability | |
Martin-Yerga et al. | Insights on the ethanol oxidation reaction at electrodeposited PdNi catalysts under conditions of increased mass transport | |
RU2495158C1 (ru) | Способ модификации электрохимических катализаторов на углеродном носителе | |
Aykut et al. | Catalyst development for viability of electrochemical hydrogen purifier and compressor (EHPC) technology | |
Ren et al. | Recent progress in the development of single-atom electrocatalysts for highly efficient hydrogen evolution reactions | |
Nguyen et al. | Seedless, one-step synthesis of porous Pt-Pd nanoflowers for electroreduction of oxygen in acidic medium | |
JP2008077999A (ja) | 電気化学電極に用いる触媒ならびにその製造方法 | |
He et al. | Nanostructured Pt-based catalysts for oxygen reduction reaction in alkaline media | |
JP6854685B2 (ja) | 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法、並びに前記触媒担体用炭素材料を用いた固体高分子形燃料電池用触媒担体 | |
Chai et al. | Heterogeneous Ir3Sn–CeO2/C as alternative Pt-free electrocatalysts for ethanol oxidation in acidic media | |
Villamayor et al. | Highly active ultralow loading Pt electrodes for hydrogen evolution reaction developed by magnetron sputtering | |
Şahin et al. | Synthesized PdNi/C and PdNiZr/C catalysts for single cell PEM fuel cell cathode catalysts application | |
Duan et al. | Evaluation of Co–Au bimetallic nanoparticles as anode electrocatalyst for direct borohydride-hydrogen peroxide fuel cell | |
Kim et al. | Characterization and electrocatalytic activity of Pt–M (M= Cu, Ag, and Pd) bimetallic nanoparticles synthesized by pulsed plasma discharge in water | |
Toh et al. | Facile preparation of ultra-low Pt loading graphene-immobilized electrode for methanol oxidation reaction | |
Chu et al. | Gold-decorated platinum nanoparticles in polyelectrolyte multilayers with enhanced catalytic activity for methanol oxidation | |
JP2006297355A (ja) | 触媒およびその製造方法 | |
KR20190079078A (ko) | 2성분계 연료전지용 촉매의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20201011 |