[go: up one dir, main page]

RU2489589C2 - Универсальная комплексная энергосистема - Google Patents

Универсальная комплексная энергосистема Download PDF

Info

Publication number
RU2489589C2
RU2489589C2 RU2011139730/06A RU2011139730A RU2489589C2 RU 2489589 C2 RU2489589 C2 RU 2489589C2 RU 2011139730/06 A RU2011139730/06 A RU 2011139730/06A RU 2011139730 A RU2011139730 A RU 2011139730A RU 2489589 C2 RU2489589 C2 RU 2489589C2
Authority
RU
Russia
Prior art keywords
consumer
inlet
air
additional
outlet
Prior art date
Application number
RU2011139730/06A
Other languages
English (en)
Other versions
RU2011139730A (ru
Inventor
Валерий Игнатьевич Гуров
Олег Николаевич Фаворский
Виктор Кузьмич Вионцек
Станислав Петрович Аксенов
Равиль Зямилевич Нигматуллин
Original Assignee
Валерий Игнатьевич Гуров
Олег Николаевич Фаворский
Виктор Кузьмич Вионцек
Станислав Петрович Аксенов
Равиль Зямилевич Нигматуллин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Валерий Игнатьевич Гуров, Олег Николаевич Фаворский, Виктор Кузьмич Вионцек, Станислав Петрович Аксенов, Равиль Зямилевич Нигматуллин filed Critical Валерий Игнатьевич Гуров
Priority to RU2011139730/06A priority Critical patent/RU2489589C2/ru
Publication of RU2011139730A publication Critical patent/RU2011139730A/ru
Application granted granted Critical
Publication of RU2489589C2 publication Critical patent/RU2489589C2/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Jet Pumps And Other Pumps (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Универсальная комплексная энергосистема для получения электричества, холода и тепла содержит ветродвигатель, агрегатированный с приводимым им через энергоузел компрессором, накопитель воздуха, теплообменник с горячим и холодным контурами, потребитель теплого воздуха, турбодетандер, агрегатированный с приводимым им электрогенератором, и потребитель холодного воздуха. Компрессор соединен газодинамически входом с атмосферой, а выходом - через горячий контур теплообменника с входом накопителя воздуха. Турбодетандер соединен газодинамически входом через запорный орган с выходом накопителя воздуха, а выходом с входом потребителя холодного воздуха. Вход и выход холодного контура теплообменника соединены между собой через потребитель теплого воздуха. Энергосистема включает источник природного газа повышенного давления, потребитель природного газа, дополнительный компрессор с приводом и дополнительный турбодетандер с потребителем мощности. Турбодетандер с потребителем мощности заключены в капсулу. Дополнительный компрессор газодинамически входом соединен с атмосферой, а выходом - через запорный орган с входом накопителя воздуха. Дополнительный турбодетандер газодинамически входом через запорные органы соединен с источником природного газа и с выходом накопителя воздуха, а выходом - через запорные органы с потребителем природного газа и со входом потребителя холодного воздуха. Изобретение позволяет стабильно и эффективно обеспечить потребителей заданным количеством электроэнергии, холода и тепла при пониженном уровне ветропотенциала
с дополнительным повышением потребительских свойств энергосистемы. 11 з.п. ф-лы, 2 ил.

Description

Предлагаемое изобретение относится к автономным энергетическим устройствам и предназначено для стабильного обеспечения потребителей электричеством, холодом и теплом гарантированного уровня заданных технических показателей в широком температурном диапазоне атмосферного воздуха в полевых условиях при наличии заметного ветропотенциала.
Известна газотурбинная энергетическая установка (Патент РФ №2354838 от 19.11.2007 г.), содержащая газотурбинный двигатель с входом, механически сопряженный с ним электрогенератор и устройство для подвода охлажденного воздуха на вход в газотурбинный двигатель, включающее автономный воздушный компрессор с приводом, турбодетандер и теплообменник, где выход турбодетандера связан газодинамически с входом в газотурбинный двигатель, а вход - через теплообменник с выходом автономного компрессора.
Техническое решение позволяет повысить эффективность работы газотурбинной установки для получения электричества при эксплуатации ее в жаркий период года за счет подвода холодного воздуха на вход установки. Однако оно не позволяет обеспечить инфраструктуру холодом и теплом.
Известна «Комбинированная система для получения электричества, холода и тепла» (Патент РФ на полезную модель №90543 от 17.04.2009 г.), содержащая соединенную входом с атмосферой воздушную турбину с электрогенератором, на выходе которой установлен эжектор, вход которого газодинамически соединен с выходом накопителя воздуха, вход которого газодинамически соединен с выходом воздушного компрессора, приводом которого является ветродвигатель, технически связанный через энергоузел с воздушным компрессором, входом связанным с атмосферой.
Недостатком технического решения, выбранного в качестве аналога, является низкий уровень совместного к.п.д. эжектора и турбины, а также невозможность прямого получения тепла.
Наиболее близким к заявленной энергосистеме является «Ветроагрегатная система для получения электричества, холода и тепла» (Патент РФ на полезную модель №91743 от 25.11.2009 г.), выбранная в качестве прототипа. Система содержит турбину с электрогенератором, компрессор с ветродвигателем, накопитель воздуха, теплообменник с горячим и холодным контурами теплоносителей, энергоузел, потребитель тепла, потребитель холода, потребитель электроэнергии и регулировочный кран. При этом накопитель воздуха выполнен в виде гибкой оболочки. Привод выполнен в виде ветродвигателя и связан с компрессором через энергоузел. Компрессор газодинамически входом соединен с атмосферой, а выходом - через горячий контур теплообменника с входом накопителя воздуха. Турбина газодинамически входом соединена через регулировочный кран с выходом накопителя воздуха, а выходом - с входом потребителя холода. Холодный контур теплообменника подключен к потребителю тепла. Электрогенератор соединен с потребителем электроэнергии.
Техническое решение позволяет автономно обеспечить потребителя электричеством, холодом и теплом без затрат топлива. Однако непостоянство ветропотенциала по времени и ограниченность запасов сжатого воздуха в накопителе могу ограничивать время обеспечения подачи энергии в заданном количестве.
Технической задачей заявляемого решения является стабильное и эффективное обеспечение потребителей достаточным количеством электроэнергии, холодом и теплом при пониженном уровне ветропотенциала с дополнительным повышением потребительских свойств энергосистемы.
Поставленная задача решается тем, что универсальная комплексная энергосистема для получения электричества, холода и тепла, содержит ветродвигатель, агрегатированный с приводимым им через энергоузел компрессором, накопитель воздуха, теплообменник с горячим и холодным контурами, потребитель теплого воздуха, турбодетандер, агрегатированный с приводимым им электрогенератором и потребитель холодного воздуха. Где компрессор соединен газодинамически входом с атмосферой, а выходом - через горячий контур теплообменника с входом накопителя воздуха. Турбодетандер соединен газодинамически входом через запорный орган с выходом накопителя воздуха, а выходом с входом потребителя холодного воздуха. Вход и выход холодного контура теплообменника соединены между собой через потребитель теплого воздуха.
Согласно изобретению, энергосистема включает источник природного газа повышенного давления, потребитель природного газа, дополнительный компрессор с приводом и дополнительный турбодетандер с потребителем мощности. Где последний заключен в капсулу. Причем дополнительный компрессор газодинамически входом соединен с атмосферой, а выходом - через запорный орган с входом накопителя воздуха. Притом дополнительный турбодетандер газодинамически входом через запорные органы соединен с емкостью природного газа и с выходом накопителя воздуха, а выходом - через запорные органы с потребителем природного газа и со входом потребителя холодного воздуха.
При такой схеме энергосистемы:
- включение в энергосистему источника природного газа повышенного давления и потребителя природного газа обеспечивает расширение потребительского качества энергосистемы при эффективном использовании природного газа в качестве энергоносителя;
- наличие в энергосистеме дополнительного компрессора с приводом, где компрессор газодинамически соединен входом с атмосферой, а выходом - через обратный клапан с входом накопителя воздуха обеспечивает наполнение накопителя воздухом в отсутствии должного ветропотенциала и запуск энергосистемы;
- наличие в энергосистеме дополнительного турбодетандера с потребителем мощности обеспечивает повышение потребительского качества энергосистемы за счет использования кроме электрогенератора других потребителей мощности;
- заключение турбодетандера с потребителем мощности в капсулу снижает уровень шума генерируемого турбодетандером и способствует охлаждению потребителя мощности, повышая его к.п.д.;
- соединение дополнительного турбодетандера газодинамически входом через запорные органы с емкостью природного газа и выходом накопителя воздуха, а выходом - через запорные органы с потребителем природного газа и входом потребителя холодного воздуха позволяет вырабатывать необходимый вид мощность для потребителя и обеспечивать потребителя холода дополнительным расходом холодного воздуха, а также обеспечивает потребитель возможностями дополнительного тепла и электроэнергии при использовании природного газа при его сжигании в генерирующем энергооборудовании.
Существенные признаки изобретения могут иметь дополнение и развитие:
- энергосистема может включать потребитель смеси природного газа с воздухом и эжектор, содержащий эжектирующее и эжектируемые сопла. Тогда дополнительный турбодетандер должен быть газодинамически соединен входом через запорный орган с атмосферой, а выходом - перед запорными органами потребителя природного газа и потребителя холодного воздуха через эжектируемое сопло эжектора и запорный орган с входом потребителя газовоздушной смеси. Причем эжектирующее сопло эжектора должно быть газодинамически соединено через запорный орган с источником природного газа повышенного давления. Это обеспечивает;
- турбодетандер, агрегатированный с электрогенератором, может быть заключен в дополнительную капсулу. Это позволяет снизить уровень шума генерируемого турбодетандером и способствует охлаждению электрогенератора, повышая его кпд;
- накопитель воздуха может быть выполнен в виде гибкой оболочки. Это обеспечивает размещение накопителя в любых заданных габаритах;
- гибкая оболочка может быть расположена внутри ограничивающей несущей конструкции. Это обеспечивает повышение прочности гибкой оболочки и ее ресурса;
- ограничивающая несущая конструкция может быть выполнена в виде сетчатой оболочки. Это снижает габариты и стоимость конструкции;
- накопитель воздуха может быть выполнен в виде естественной или искусственной полости в земле. Это снижает наружные габариты энергосистемы и повышает ресурс работы накопителя воздуха;
- привод дополнительного компрессора может быть выполнен в виде электродвигателя. Это позволяет при работе только ночью, за счет разности тарифов в оплате электроэнергии, повысить прибыльность использования энергосистемы;
- привод дополнительного компрессора может быть выполнен в виде поршневого двигателя внутреннего сгорания или газотурбинного двигателя. Это обеспечивает энергосистеме автономность и независимость от других источников электроэнергии;
- потребитель мощности дополнительного турбодетандера может быть выполнен в виде насоса, гидродинамически по входу, связанному с источником воды, а по выходу - с потребителем воды повышенного давления. Это позволяет повысить потребительское качество системы;
- потребитель мощности дополнительного турбодетандера может быть выполнен в виде дополнительного электрогенератора. Это позволяет при работе только днем повысить прибыльность использования энергосистемы за счет разности дневных и ночных тарифов в оплате электроэнергии;
- накопитель воздуха может быть расположен в водоеме под уровнем воды. Это снижает габариты энергосистемы и повышает надежность ее работы за счет исключения неблагоприятного внешнего воздействия на энергосистему пожаров, ураганов и других стихийных бедствий.
Таким образом, решены поставленные в изобретении задачи. Достигается стабильное и эффективное обеспечение потребителей достаточным количеством электроэнергии, холодом и теплом при пониженном уровне ветропотенциала с дополнительным повышением потребительских свойств энергосистемы.
Настоящее изобретение поясняется последующим подробным описанием конструкции энергосистемы и ее работы со ссылкой на иллюстрации, представленные на фиг.1-2, где:
на фиг.1 изображена общая схема универсальной комплексной энергосистемы;
на фиг.2 - развитие общей схемы энергосистемы.
Универсальная комплексная энергосистема для получения электричества, холода и тепла содержит (см. фиг.1) ветродвигатель 1, агрегатированный с приводимым им через энергоузел 2 компрессором 3, накопитель 4 воздуха, теплообменник 5 с горячим 6 и холодным 7 контурами, потребитель 8 теплого воздуха, турбодетандер 9, агрегатированный с приводимым им электрогенератором 10 и потребитель 11 холодного воздуха. Энергоузел 2 может быть выполнен в виде мультипликатора или электропреобразователя (не показано). Где компрессор 3 соединен газодинамически входом с атмосферой, а выходом - через горячий контур 6 теплообменника 5 с входом накопителя 4 воздуха. Турбодетандер 9 соединен газодинамически входом через запорный орган 12 с выходом накопителя 4 воздуха, а выходом с входом потребителя 11 холодного воздуха. Вход и выход холодного 7 контура теплообменника 5 соединены между собой через потребитель 8 теплого воздуха. Энергосистема включает источник 13 природного газа повышенного давления, потребитель 14 природного газа, дополнительный компрессор 15 с приводом 16 и дополнительный турбодетандер 17 с потребителем мощности 18. Где турбодетандер 17 и потребитель мощности 18 заключены в капсулу 19. Причем дополнительный компрессор 15 газодинамически входом соединен с атмосферой, а выходом - через обратный клапан 20 с входом накопителя 4 воздуха. Притом дополнительный турбодетандер 17 газодинамически входом через запорные органы 21 и 22 соединен с источником 13 природного газа и выходом накопителя 4 воздуха, а выходом - через запорные органы 23 и 24 с потребителем 14 природного газа и входом потребителя 11 холодного воздуха.
Энергосистема (см. фиг.2) может включать потребитель 25 смеси природного газа с воздухом и эжектор 26, содержащий эжектирующее и эжектируемые сопла (не показано). Где дополнительный турбодетандер 17 газодинамически соединен входом через запорный орган 27 с атмосферой, а выходом - перед запорными органами 23 и 24 потребителя 14 природного газа и потребителя 11 холодного воздуха через запорный орган 28 и эжектируемое сопло эжектора 26 с входом потребителя 25 смеси природного газа и воздуха. Причем эжектирующее сопло эжектора 26 газодинамически соединено через запорный орган 29 с источником 13 природного газа повышенного давления.
Турбодетандер 9, агрегатированный с электрогенератором 10, также может быть заключен в дополнительную капсулу 30.
Накопитель 4 воздуха может быть выполнен в виде гибкой оболочки. Гибкая оболочка накопителя 4 может быть расположена внутри ограничивающей несущей конструкции (не показано), например, в виде сетчатой оболочки.
Накопитель 4 воздуха может быть выполнен в виде естественной или искусственной полости в земле (не показано).
Привод 16 дополнительного компрессора 15 может быть выполнен в виде электродвигателя, поршневого двигателя внутреннего сгорания или газотурбинного двигателя.
Потребитель мощности 18 дополнительного турбодетандера 17 может быть выполнен в виде насоса, гидродинамически по входу, связанному с источником воды, а по выходу - с потребителем воды повышенного давления или в виде дополнительного электрогенератора.
Накопитель 4 воздуха может быть расположен в водоеме под уровнем воды (не показано).
Работа универсальной комплексной энергосистемы в основной комплектации (см. фиг.1) осуществляется следующим образом.
Воздух из атмосферы (при работе ветродвигателя 1 вместе с энергоузлом 2) поступает в компрессор 3, где повышаются его температура и давление. Далее воздух проходит через горячий контур 6 теплообменника 5, где в холодном контуре 7 отдает тепло хладагенту, идущему к потребителю тепла 8, и охлажденный поступает в накопитель воздуха 4. В накопителе воздуха 4 воздух дополнительно охлаждается до температуры, близкой к температуре окружающей среды, и, выходя из него, через запорный орган 12 поступает в турбодетандер 9. В турбодетандере 9 воздух расширяется, его давление понижается практически до давления окружающей среды, а температура - до величины, существенно меньшей температуры окружающей среды. Перепад давления воздуха в турбодетандере 9 создает крутящий момент на его валу. Он начинает вращаться и образующаяся мощность передается механически связанному с ним электрогенератору 10. Из турбодетандера 9 холодный воздух поступает к потребителю холодного воздуха 11. Сжатый воздух из накопителя 4 через запорный орган 22 может поступать в дополнительный турбодетандер 17, который генерируемую мощность передает потребителю 18, а получаемый холодный воздух из дополнительного турбодетандера 17 поступает через запорный орган 24 к потребителю 11 холодного воздуха при закрытых запорных органах 21 и 23.
При необходимости увеличения генерируемой энергии при недостаточном запасе сжатого воздуха в накопителе 4 производится закрытие запорных органов 22 и 24 с подключением энергосистемы к источнику 13 природного газа за счет открытия запорных органов 21 и 23. В этом варианте работы энергосистемы природный газ повышенного давления поступает в дополнительный турбодетандер 17 с обеспечением выработки им мощности для потребителя 18, а далее природный газ пониженного давления поступает в потребитель 14 природного газа. Размещение при этом дополнительного турбодетандера 17 с потребителем 18 мощности в капсуле дополнительно расширяет потребительское качество энергосистемы, повышая ее надежность за счет исключения возможности попадания природного газа в окружающую среду. В качестве потребителя 14 природного газа может быть различное энергогенерирующее оборудование по производству электричества, холода и тепла.
Одновременно с компрессором 3 в накопитель 4 поступает воздух от дополнительного компрессора 15, приводимого в работу приводом 16.
При использовании в качестве потребителя мощности 18 водяного насоса повышается потребительское качество энергосистемы за счет обеспечения потребителя (не показано) водой повышенного давления, создаваемого водяным насосом.
Важное значение приобретает использование в качестве привода 16 электродвигателя, который может за счет разности тарифов ночного и дневного электричества, работая только ночью, создавать дополнительную прибыль пользователям комплексной энергосистемы, что будет рассмотрено в прилагаемом далее примере расчета.
Важное значение в уменьшении стоимости получаемой энергии, а также для обеспечения автономности энергосистемы, может играть использование в качестве привода 16 дополнительного компрессора 15 поршневого двигателя или газотурбинного двигателя. Это может иметь большое значение в тех случаях, когда недостаточен ветропотенциал при отсутствии посторонних источников электроэнергии. Привод 16 в виде поршневого двигателя, приводящего в работу дополнительный компрессор 15 с питанием от источника топлива может способствовать первоначальной закачке накопителя 4 сжатым воздухом.
В качестве примера расчета рассмотрим вполне реальные условия работы дополнительного компрессора 15 с приводом от электродвигателя мощностью 6 кВт, расходом воздуха Gк=0,06 кг/с и степенью повышения давления πк=2,0 при мощности дополнительного турбодетандера до 12 кВт при расходе воздуха Gт=1,0 кг/с и степени понижения давления πт=1,4.
При заданных условиях при работе дополнительного компрессора в течение 6 часов ночью будет израсходовано 36 кВт-часов электрической энергии с ее оплатой в 36 рублей (1 рубль за 1 кВт-час). При этом накоплено сжатого воздуха в количестве 1296 кг. Этот воздух при полном срабатывании (с учетом первоначально имеющегося запаса сжатого воздуха в накопителе 4) в дополнительном турбодетандере 14 сможет сгенерировать 4,3 кВт-час электроэнергии и такое же количество холода, что/равносильно как бы затрате 8,6 кВт-час электроэнергии, т.к. при генерации 1 кВт холодного воздуха в турбохолодильной машине затрачивается мощность в 2 кВт. Таким образом, будет условно полезно произведено в дополнительном турбодетандере энергии в 12,9 кВт-час (4,3+8,6). С учетом дневного тарифа в 4 руб. за 1 кВт-час стоимость 12,9 кВт-час составит 51,6 руб. Отсюда следует, что в идеальной постановке положительная разница в оплате стоимости электроэнергии составит при реализации настоящего изобретения 15,6 рублей (51,6-36) в сутки. При допущении об использовании только 80% полученного запаса сжатого воздуха эта разница составит чуть более 4 рублей.
В отдельных случаях, когда требуется снижение в 2,0-3,0 раза подачи природного газа к энергогенерирующему оборудованию без заметного снижения эффективности работы энергосистемы, целесообразно использовать ее в комплектации, представленной на фиг.2.
Работа универсальной комплексной энергосистемы в модернизированной комплектации (см. фиг.2) осуществляется следующим образом.
При закрытых запорных органах 21, 22, 23 и 24 и открытых запорных органах 27, 28 и 29 природный газ повышенного давления из источника 13 поступает в эжектор 26, снижая давление в эжектирующем сопле, которое связано с выходом дополнительного турбодетандера 17, вход которого через открытый запорный орган 27 связан с атмосферой. В результате понижения давления на выходе турбодетандера 17 в него поступает воздух из атмосферы, генерируя мощность, передаваемую потребителю 18. Воздух после турбодетандера 17 поступает в эжектируемое сопло эжектора 26 смешиваясь с природным газом, поступающим через эжектирующее сопло в эжектор 26, с поступлением смеси природного газа с воздухом в потребитель 25.
Таким образом, реализация представленного технического решения позволит решить поставленную задачу стабильного и эффективного обеспечения потребителей требуемым количеством электроэнергии, холода и тепла при пониженном уровне ветропотенциала с дополнительным повышением потребительских качеств.
Предлагаемая энергосистема может найти применение в местах и с повышенным уровнем ветропотенциала, а также в отдаленных районах при отсутствии источников электроэнергии, позволяя при высоких экологических показателях получать в требуемых количествах различные виды энергии: электричество, холод и тепло.

Claims (12)

1. Универсальная комплексная энергосистема для получения электричества, холода и тепла, содержащая ветродвигатель, агрегатированный с приводимым им через энергоузел компрессором, накопитель воздуха, теплообменник с горячим и холодным контурами, потребитель теплого воздуха, турбодетандер, агрегатированный с приводимым им электрогенератором, и потребитель холодного воздуха, где компрессор соединен газодинамически входом с атмосферой, а выходом через горячий контур теплообменника с входом накопителя воздуха, турбодетандер соединен газодинамически входом через запорный орган с выходом накопителя воздуха, а выходом с входом потребителя холодного воздуха, вход и выход холодного контура теплообменника соединены между собой через потребителя теплого воздуха, отличающаяся тем, что энергосистема включает источник природного газа повышенного давления, потребитель природного газа, дополнительный компрессор с приводом и дополнительный турбодетандер с потребителем мощности, где последние заключены в капсулу, причем дополнительный компрессор газодинамически входом соединен с атмосферой, а выходом через запорный орган с входом накопителя воздуха, притом дополнительный турбодетандер газодинамически входом через запорные органы соединен с источником природного газа и с выходом накопителя воздуха, а выходом через запорные органы с потребителем природного газа и со входом потребителя холодного воздуха.
2. Энергосистема по п.1, отличающаяся тем, что включает потребитель смеси природного газа с воздухом и эжектор, содержащий эжектирующее и эжектируемые сопла, где дополнительный турбодетандер газодинамически соединен входом через запорный орган с атмосферой, а выходом перед запорными органами потребителя природного газа и потребителя холодного воздуха через эжектируемое сопло эжектора и запорный орган с входом потреби теля газовоздушной смеси, причем эжектирующее сопло эжектора газодинамически соединено через запорный орган с источником природного газа повышенного давления.
3. Энергосистема по п.1, отличающаяся тем, что турбодетандер, агрегатированный с электрогенератором, заключен в дополнительную капсулу.
4. Энергосистема по п.1, отличающаяся тем, что накопитель воздуха выполнен в виде гибкой оболочки.
5. Энергосистема по п.4, отличающаяся тем, что гибкая оболочка расположена внутри ограничивающей несущей конструкции.
6. Энергосистема по п.5, отличающаяся тем, что ограничивающая несущая конструкция выполнена в виде сетчатой оболочки.
7. Энергосистема по п.1, отличающаяся тем, что накопитель воздуха выполнен в виде естественной или искусственной полости в земле.
8. Энергосистема по п.1, отличающаяся тем, что привод дополнительного компрессора выполнен в виде электродвигателя.
9. Энергосистема по п.1, отличающаяся тем, что привод дополнительного компрессора выполнен в виде поршневого двигателя внутреннего сгорания или газотурбинного двигателя.
10. Энергосистема по п.1, отличающаяся тем, что потребитель мощности дополнительного турбодетандера выполнен в виде насоса, гидродинамически по входу связанному с источником воды, а по выходу с потребителем воды повышенного давления.
11. Энергосистема по п.1, отличающаяся тем, что потребитель мощности дополнительного турбодетандера выполнен в виде дополнительного электрогенератора.
12. Энергосистема по п.1, отличающаяся тем, что накопитель воздуха расположен в водоеме под уровнем воды.
RU2011139730/06A 2011-09-30 2011-09-30 Универсальная комплексная энергосистема RU2489589C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011139730/06A RU2489589C2 (ru) 2011-09-30 2011-09-30 Универсальная комплексная энергосистема

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011139730/06A RU2489589C2 (ru) 2011-09-30 2011-09-30 Универсальная комплексная энергосистема

Publications (2)

Publication Number Publication Date
RU2011139730A RU2011139730A (ru) 2013-04-10
RU2489589C2 true RU2489589C2 (ru) 2013-08-10

Family

ID=49151640

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011139730/06A RU2489589C2 (ru) 2011-09-30 2011-09-30 Универсальная комплексная энергосистема

Country Status (1)

Country Link
RU (1) RU2489589C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105221345A (zh) * 2015-09-26 2016-01-06 国网山东省电力公司济南供电公司 一种热电联供型压缩空气储能系统及其控制方法
RU2662787C1 (ru) * 2017-06-08 2018-07-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный энергетический университет" (ФГБОУ ВО "КГЭУ") Ветрогидроаккумулирующая электроустановка
RU2751420C1 (ru) * 2020-11-30 2021-07-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Кислородно-топливная энергоустановка

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4896499A (en) * 1978-10-26 1990-01-30 Rice Ivan G Compression intercooled gas turbine combined cycle
US5622044A (en) * 1992-11-09 1997-04-22 Ormat Industries Ltd. Apparatus for augmenting power produced from gas turbines
RU2145386C1 (ru) * 1997-12-23 2000-02-10 Гуров Валерий Игнатьевич Способ работы газотурбинной установки
RU2354838C2 (ru) * 2007-11-19 2009-05-10 Валерий Игнатьевич Гуров Газотурбинная энергетическая установка
RU90543U1 (ru) * 2009-04-17 2010-01-10 Валерий Игнатьевич Гуров Комбинированная система для получения электричества, холода и тепла
RU91743U1 (ru) * 2009-11-25 2010-02-27 Валерий Игнатьевич Гуров Ветроагрегатная система для получения электричества, холода и тепла

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4896499A (en) * 1978-10-26 1990-01-30 Rice Ivan G Compression intercooled gas turbine combined cycle
US4896499B1 (ru) * 1978-10-26 1992-09-15 G Rice Ivan
US5622044A (en) * 1992-11-09 1997-04-22 Ormat Industries Ltd. Apparatus for augmenting power produced from gas turbines
RU2145386C1 (ru) * 1997-12-23 2000-02-10 Гуров Валерий Игнатьевич Способ работы газотурбинной установки
RU2354838C2 (ru) * 2007-11-19 2009-05-10 Валерий Игнатьевич Гуров Газотурбинная энергетическая установка
RU90543U1 (ru) * 2009-04-17 2010-01-10 Валерий Игнатьевич Гуров Комбинированная система для получения электричества, холода и тепла
RU91743U1 (ru) * 2009-11-25 2010-02-27 Валерий Игнатьевич Гуров Ветроагрегатная система для получения электричества, холода и тепла

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105221345A (zh) * 2015-09-26 2016-01-06 国网山东省电力公司济南供电公司 一种热电联供型压缩空气储能系统及其控制方法
RU2662787C1 (ru) * 2017-06-08 2018-07-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный энергетический университет" (ФГБОУ ВО "КГЭУ") Ветрогидроаккумулирующая электроустановка
RU2751420C1 (ru) * 2020-11-30 2021-07-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Кислородно-топливная энергоустановка

Also Published As

Publication number Publication date
RU2011139730A (ru) 2013-04-10

Similar Documents

Publication Publication Date Title
EP2378100B1 (en) System and method of using a compressed air storage system with a gas turbine
ES2286884T3 (es) Funcionamiento de una turbina de gas con aire comprimido suplementario.
AU2009338124B2 (en) CAES plant using humidified air in the bottoming cycle expander
US9422948B2 (en) Energy storage system and method for storing energy and recovering the stored energy using the system
US20110094229A1 (en) Adiabatic compressed air energy storage system with combustor
Jakiel et al. Adiabatic compressed air energy storage plants for efficient peak load power supply from wind energy: the European project AA-CAES
US20110016864A1 (en) Energy storage system
JP2009047170A (ja) 燃焼タービンの冷却媒体供給方法
KR101257844B1 (ko) 압축공기 저장발전시스템의 고온고압 압축공기를 이용한 지열발전장치
CN104220727A (zh) 太阳能辅助燃气轮机系统
RU2489589C2 (ru) Универсальная комплексная энергосистема
CN103080502B (zh) 利用太阳热燃气轮机系统
EP2586997A2 (en) Compressed air energy storage system and method of operating such a system
RU112279U1 (ru) Комплексная энергосистема
RU101104U1 (ru) Комбинированная энергосистема
CN106460664B (zh) 使用补充空气系统的燃气涡轮机效率和调节速度改进
RU90543U1 (ru) Комбинированная система для получения электричества, холода и тепла
RU91743U1 (ru) Ветроагрегатная система для получения электричества, холода и тепла
RU117511U1 (ru) Система для получения электроэнергии, холодного и теплого воздуха
CN104053884B (zh) 用于发电站的控制和馈送的方法以及发电站
Al Zohbi et al. Thermodynamic Analysis of Diabatic and Adiabatic Compressed Air Energy Storage Systems
RU119076U1 (ru) Система для получения электроэнергии, холодного и теплового воздуха
KR101082934B1 (ko) 압축공기저장 발전시스템 및 이의 제어방법
RU2662787C1 (ru) Ветрогидроаккумулирующая электроустановка
JP5691078B2 (ja) 再生サイクル型ガスタービンシステムおよび発電プラント

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151001