RU2475947C1 - Selective amplifier - Google Patents
Selective amplifier Download PDFInfo
- Publication number
- RU2475947C1 RU2475947C1 RU2012104386/08A RU2012104386A RU2475947C1 RU 2475947 C1 RU2475947 C1 RU 2475947C1 RU 2012104386/08 A RU2012104386/08 A RU 2012104386/08A RU 2012104386 A RU2012104386 A RU 2012104386A RU 2475947 C1 RU2475947 C1 RU 2475947C1
- Authority
- RU
- Russia
- Prior art keywords
- transistor
- emitter
- output
- current
- bus
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 18
- 238000004891 communication Methods 0.000 abstract description 4
- 230000003321 amplification Effects 0.000 abstract 1
- 238000003199 nucleic acid amplification method Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Landscapes
- Amplifiers (AREA)
Abstract
Description
Изобретение относится к области радиотехники и связи и может использоваться в устройствах СВЧ-фильтрации радиосигналов систем сотовой связи, спутникового телевидения, радиолокации и т.п.The invention relates to the field of radio engineering and communication and can be used in microwave filtering devices of radio signals from cellular communication systems, satellite television, radar, etc.
В задачах выделения высокочастотных и СВЧ-сигналов сегодня широко используются интегральные операционные усилители со специальными элементами RC-коррекции, формирующими амплитудно-частотную характеристику резонансного типа [1, 2]. Однако классическое построение таких избирательных усилителей (ИУ) (RC-фильтров) сопровождается значительными энергетическими потерями, которые идут в основном на обеспечение статического режима достаточно большого числа вспомогательных, универсальных транзисторов, образующих операционный усилитель СВЧ-диапазона [1, 2]. В этой связи достаточно актуальной является задача построения СВЧ узкоспециализированных избирательных усилителей на трех-четырех транзисторах, обеспечивающих выделение спектра сигналов с достаточно высокой добротностью резонансной характеристики Q=2÷10 и f0=1÷5 ГГц.Integrated operational amplifiers with special RC correction elements that form the amplitude-frequency characteristic of the resonance type are widely used today in the tasks of extracting high-frequency and microwave signals [1, 2]. However, the classical construction of such selective amplifiers (DIs) (RC filters) is accompanied by significant energy losses, which are mainly used to ensure the static mode of a sufficiently large number of auxiliary, universal transistors forming an operational amplifier of the microwave range [1, 2]. In this regard, quite urgent is the task of constructing microwave highly specialized selective amplifiers on three to four transistors, which provide the selection of a spectrum of signals with a sufficiently high quality factor of the resonance characteristic Q = 2 ÷ 10 and f 0 = 1 ÷ 5 GHz.
Известны схемы каскодных избирательных усилителей (ИУ) с выходным эмиттерным повторителем [3-7], которые обеспечивают формирование амплитудно-частотной характеристики коэффициента усиления по напряжению (АЧХ) в заданном диапазоне частот Δf=fв-fн. Причем их верхняя граничная частота fв иногда формируется инерционностью транзисторов схемы (емкостью на подложку), а нижняя fн определяется входным корректирующим конденсатором.Known schemes cascode selective amplifiers (DUTs) with an output emitter follower [3-7], which provide the formation of the amplitude-frequency characteristics of the voltage gain (AFC) in a given frequency range Δf = f in -f n . Moreover, their upper cutoff frequency f in is sometimes formed by the inertia of the transistors of the circuit (capacitance per substrate), and the lower f n is determined by the input correction capacitor.
Ближайшим прототипом заявляемого устройства является избирательный усилитель, представленный в патенте ES 2079397, fig.9. Он содержит первый 1 входной транзистор, эмиттер которого через первый 2 токостабилизирующий двухполюсник связан с первой 3 шиной источника питания, база подключена к первому 4 источнику дополнительного напряжения, а коллектор связан с эмиттером согласующего транзистора 5, второй источник дополнительного напряжения 6, соединенный с базой согласующего транзистора 5, выходной транзистор 7, коллектор которого связан со второй 8 шиной источника питания, эмиттер подключен к потенциальному выходу устройства 9, а база соединена с коллектором согласующего транзистора 5 и через первый вспомогательный резистор 10 связана со второй 8 шиной источника питания, второй 11 токостабилизирующий двухполюсник, первый вывод которого связан с эмиттером выходного транзистора 7, а второй вывод подключен к первой 3 шине источника питания.The closest prototype of the claimed device is a selective amplifier, presented in patent ES 2079397, fig.9. It contains the first 1 input transistor, the emitter of which is connected through the first 2 current-stabilizing bipolar to the first 3 bus of the power supply, the base is connected to the first 4 additional voltage source, and the collector is connected to the emitter of the
Существенный недостаток известного устройства состоит в том, что он не обеспечивает высокую добротность - амплитудно-частотной характеристики (АЧХ) и коэффициент усиления по напряжению К0>1 на частоте квазирезонанса (f0=1÷5 ГГц).A significant disadvantage of the known device is that it does not provide high quality factor - amplitude-frequency characteristics (AFC) and voltage gain K 0 > 1 at the frequency of quasi-resonance (f 0 = 1 ÷ 5 GHz).
Основная задача предлагаемого изобретения состоит в повышении добротности АЧХ усилителя и его коэффициента усиления по напряжению на частоте квазирезонанса f0. Это позволяет в ряде случаев уменьшить общее энергопотребление и реализовать высококачественное избирательное устройство СВЧ диапазона с f0=1÷5 ГГц.The main objective of the invention is to increase the quality factor of the frequency response of the amplifier and its voltage gain at the frequency of quasi-resonance f 0 . This allows in some cases to reduce the total power consumption and to implement a high-quality microwave device with f 0 = 1 ÷ 5 GHz.
Поставленная задача решается тем, что в избирательном усилителе фиг.1, содержащем первый 1 входной транзистор, эмиттер которого через первый 2 токостабилизирующий двухполюсник связан с первой 3 шиной источника питания, база подключена к первому 4 источнику дополнительного напряжения, а коллектор связан с эмиттером согласующего транзистора 5, второй источник дополнительного напряжения 6, соединенный с базой согласующего транзистора 5, выходной транзистор 7, коллектор которого связан со второй 8 шиной источника питания, эмиттер подключен к потенциальному выходу устройства 9, а база соединена с коллектором согласующего транзистора 5 и через первый вспомогательный резистор 10 связана со второй 8 шиной источника питания, второй 11 токостабилизирующий двухполюсник, первый вывод которого связан с эмиттером выходного транзистора 7, а второй вывод подключен к первой 3 шине источника питания, предусмотрены новые элементы и связи - между коллектором первого 1 входного транзистора и общей шиной источников питания включен по переменному току первый 12 корректирующий конденсатор, а между первым выводом второго 11 источника опорного тока и эмиттером первого 1 входного транзистора включен второй 13 корректирующий конденсатор, причем общий узел второго 13 корректирующего конденсатора и первого вывода второго 11 источника опорного тока соединен с токовым входом 14 устройства.The problem is solved in that in the selective amplifier of figure 1, containing the first 1 input transistor, the emitter of which is connected through the first 2 current-stabilizing bipolar to the first 3 bus of the power supply, the base is connected to the first 4 additional voltage source, and the collector is connected to the emitter of the
Схема избирательного усилителя-прототипа показана на чертеже фиг.1. На чертеже фиг.2 представлена схема заявляемого устройства в соответствии с п.1 формулы изобретения.A diagram of a selective prototype amplifier is shown in FIG. 1. The drawing of figure 2 presents a diagram of the inventive device in accordance with
На чертеже фиг.3 показана схема ИУ фиг.2 в соответствии с п.2 формулы изобретения.The drawing of figure 3 shows a diagram of the DUT of figure 2 in accordance with
На чертеже фиг.4 показан ИУ фиг.3, в котором используется преобразователь 11 входного напряжения uвх во входной ток iвх устройства, а также показано конкретное исполнение источников дополнительных напряжений 4, 6.The drawing of FIG. 4 shows the DUT of FIG. 3, in which a
На чертеже фиг.5 показан ИУ фиг.4 (фиг.3), в котором преобразователь 11 входного напряжения uвх во входной ток устройства iвх выполнен на основе дифференциального каскада (элементы 20, 21, 22).The drawing of Fig. 5 shows the DUT of Fig. 4 (Fig. 3), in which the
На чертеже фиг.6 приведена схема заявляемого ИУ фиг.5 в среде Cadence на моделях SiGe интегральных транзисторов.The drawing of Fig.6 shows a diagram of the inventive DUT of Fig.5 in a Cadence environment on SiGe models of integrated transistors.
На чертеже фиг.7 показана зависимость коэффициента усиления по напряжению от частоты ИУ фиг.6 в крупном масштабе, а на чертеже фиг.8 - частотная зависимость коэффициента усиления ИУ фиг.6 в более мелком масштабе.The drawing of Fig.7 shows the dependence of the voltage gain on the frequency of the DUT of Fig.6 on a large scale, and the drawing of Fig.8 is the frequency dependence of the gain of the DUT of Fig.6 on a smaller scale.
Избирательный усилитель фиг.2 содержит первый 1 входной транзистор, эмиттер которого через первый 2 токостабилизирующий двухполюсник связан с первой 3 шиной источника питания, база подключена к первому 4 источнику дополнительного напряжения, а коллектор связан с эмиттером согласующего транзистора 5, второй источник дополнительного напряжения 6, соединенный с базой согласующего транзистора 5, выходной транзистор 7, коллектор которого связан со второй 8 шиной источника питания, эмиттер подключен к потенциальному выходу устройства 9, а база соединена с коллектором согласующего транзистора 5 и через первый вспомогательный резистор 10 связана со второй 8 шиной источника питания, второй 11 токостабилизирующий двухполюсник, первый вывод которого связан с эмиттером выходного транзистора 7, а второй вывод подключен к первой 3 шине источника питания. Между коллектором первого 1 входного транзистора и общей шиной источников питания включен по переменному току первый 12 корректирующий конденсатор, а между первым выводом второго 11 источника опорного тока и эмиттером первого 1 входного транзистора включен второй 13 корректирующий конденсатор, причем общий узел второго 13 корректирующего конденсатора и первого вывода второго 11 источника опорного тока соединен с токовым входом 14 устройства.The selective amplifier of Fig. 2 contains a first 1 input transistor, the emitter of which is connected through the first 2 current-stabilizing bipolar to the first 3 bus of the power supply, the base is connected to the first 4 additional voltage source, and the collector is connected to the emitter of the
На чертеже фиг.3, в соответствии с п.2 формулы изобретения, коллектор первого 1 входного транзистора соединен с эмиттером согласующего транзистора 5 через первый 15 дополнительный резистор, а первый вывод второго 11 токостабилизирующего двухполюсника связан с эмиттером выходного транзистора 7 через второй 16 дополнительный резистор.In the drawing of FIG. 3, in accordance with
На чертеже фиг.4 показан ИУ фиг.3, в котором используется преобразователь 11 входного напряжения (uвх, 19) во входной ток iвх устройства, а также показано конкретное исполнение источников дополнительных напряжений 4, 6, которые в частном случае реализованы на p-n переходах 17 и резисторе 18.The figure 4 shows the
На чертеже фиг.5 показан ИУ фиг.4 (фиг.3), в котором преобразователь 11 входного напряжения (uвх, 19) во входной ток устройства (iвх) выполнен на основе классического дифференциального каскада (элементы 20, 21, 22).The figure 5 shows the DUT 4 (3), wherein the input voltage converter 11 (u Rin, 19) in the input device current (i Rin) is based on a classical differential stage (
Рассмотрим работу ИУ фиг.2.Consider the operation of the DUT figure 2.
Источник входного сигнала в виде задающего тока iвх посредством входной дифференцирующей цепи, образованной конденсатором 13 и входными сопротивлениями транзисторов 1 и 7, изменяет эмиттерный ток входного транзистора 1, нагрузочная цепь которого, состоящая из конденсатора 12 и входного сопротивления транзистора 5, обеспечивает его интегрирующее преобразование в приращение эмиттерного и коллекторного тока транзистора 5. Активное сопротивление нагрузки транзистора 5 реализует масштабное преобразование этого приращения во входное напряжение и ток базы транзистора выходной цепи 7. Емкостной характер эмиттерной (выходной) цепи схемы в совокупности с указанными выше преобразованиями входного сигнала обеспечивает реализацию полосно-пропускающей характеристики ИУ, амплитудно-частотная характеристика которого имеет максимум на частоте квазирезонанса f0. Взаимодействие выходной цепи 9 с разделительным конденсатором 13 и, следовательно, эмиттерной цепью транзистора 1 способствует организации контура регенеративной обратной связи, которая в области нижних частот (f<<f0) (в силу характера проводимости конденсатора 13) имеет реактивный характер и в силу блокирующих свойств конденсатора 12 в области верхних частот (f>>f0) сохраняет свои реактивные свойства. Таким образом, обратная связь оказывается вещественной только на частоте квазирезонанса, чем и объясняется увеличение добротности схемы Q и ее коэффициента усиления К0. В силу масштабного преобразования тока коллектора транзистора 5 во входной ток транзистора 7, глубина этой вещественной обратной связи не только не влияет на частоту квазирезонанса ИУ, но и непосредственно определяет численное значение Q и К0.The input source of the driving current i Rin by the input of the differentiating circuit formed by
Покажем аналитически, что более высокие значения К0 и Q в рабочем диапазоне частот реализуются в схеме фиг.2.Let us show analytically that higher values of K 0 and Q in the operating frequency range are implemented in the scheme of figure 2.
Действительно, в результате анализа можно найти, что комплексный коэффициент передачи по напряжению ИУ фиг.2 определяется по формуле:Indeed, as a result of the analysis, we can find that the complex voltage transfer coefficient of the DUT of FIG. 2 is determined by the formula
где f - частота сигнала;where f is the signal frequency;
Q - добротность АЧХ избирательного усилителя;Q is the quality factor of the frequency response of the selective amplifier;
К0 - коэффициент усиления ИУ на частоте квазирезонанса f0.To 0 is the gain of the DUT at the frequency of quasi-resonance f 0 .
Анализ схемы фиг.2 приводит к следующим соотношениям:Analysis of the circuit of figure 2 leads to the following relationships:
τ1=C12h11.5, τ2=C13(h11.1+h11.7)τ 1 = C 12 h 11.5 , τ 2 = C 13 (h 11.1 + h 11.7 )
где h11.i - входное сопротивление i-го транзистора;where h 11.i is the input resistance of the i-th transistor;
αi - статический коэффициент передачи тока эмиттера i-го транзистора.α i is the static current transfer coefficient of the emitter of the i-th transistor.
Как видно из (4) и (3), соотношение между R10 и h11.5 обеспечивает реализацию любого необходимого значения добротности Q и коэффициента усиления К0 схемы ИУ при сохранении неизменного значения частоты квазирезонанса f0. Одним из важных свойств ИУ фиг.2 является возможность параметрической оптимизации его чувствительности при ограниченных значениях добротности. Как видно из (4), при реализации условия R10=h11.5 (замена R10 на прямосмещенный переход)As can be seen from (4) and (3), the ratio between R 10 and h 11.5 provides the implementation of any necessary value of the Q factor and gain K 0 of the DUT circuit while maintaining a constant value of the frequency of quasi-resonance f 0 . One of the important properties of the DUT of FIG. 2 is the possibility of parametric optimization of its sensitivity with limited Q factors. As can be seen from (4), when the condition R 10 = h 11.5 is realized (replacing R 10 with a forward biased transition)
Поэтому реализация условияTherefore, the implementation of the condition
обеспечиваетprovides
При параметрических чувствительностяхWith parametric sensitivities
Кроме этого, схема ИУ фиг.2 может иметь τ1=τ2, что способствует увеличению ее динамичного диапазона. В этом случаеIn addition, the circuit of the DUT of FIG. 2 can have τ 1 = τ 2 , which helps to increase its dynamic range. In this case
Следовательно, выполнение условия R10=2h11.5 (в коллекторной цепи транзистора 5 используется два прямосмещенных перехода) обеспечивает реализацию высокой добротностиTherefore, the fulfillment of the condition R 10 = 2h 11.5 (two forward-biased transitions are used in the collector circuit of transistor 5) provides high quality factor
которая определяется статическим коэффициентом усиления по току базы β используемых транзисторов.which is determined by the static current gain of the base β of the transistors used.
Важной особенностью схемы является возможность режимной настройки ее частоты квазирезонанса f0. Как видно из (2) при условии, что h11.i≈φт/Iэ An important feature of the circuit is the possibility of modifying its quasi-resonance frequency f 0 . As can be seen from (2) provided that h 11.i ≈φ t / I e
где Ii - ток i-го токостабилизирующего двухполюсника.where I i is the current of the i-th current-stabilizing two-terminal network.
Как видно из полученного соотношения токи I2 и I11 могут использоваться и для цепей реализации перестраиваемого ИУ с коррекцией закона управления.As can be seen from the obtained ratio, the currents I 2 and I 11 can also be used for circuits for the implementation of a tunable DUT with correction of the control law.
При этом частота квазирезонанса (2) и ее параметрическая чувствительность сохраняются неизменными.In this case, the frequency of quasi-resonance (2) and its parametric sensitivity remain unchanged.
Как видно из чертежа фиг.3, на котором показана практическая реализация схемы фиг.2, сформулированные выше условия легко реализуются на базе входного преобразователя «напряжение-ток» (дифференциального каскада), обеспечивающего преобразование входного напряжения uвх во входной ток iвх.1 избирательного усилителя.As seen from the figure 3, which shows a practical implementation of the
Данные теоретические выводы подтверждают графики фиг.7, фиг.8.These theoretical conclusions confirm the graphs of Fig.7, Fig.8.
Таким образом, заявляемое схемотехническое решение характеризуется более высокими значениями коэффициента усиления К0 на частоте квазирезонанса f0 и повышенными величинами добротности Q, характеризующей его избирательные свойства.Thus, the claimed circuit solution is characterized by higher values of the gain K 0 at the frequency of quasi-resonance f 0 and increased values of the quality factor Q, characterizing its selective properties.
БИБЛИОГРАФИЧЕСКИЙ СПИСОКBIBLIOGRAPHIC LIST
1. Design of Bipolar Differential OpAmps with Unity Gain Bandwidth up to 23 GHz / N.Prokopenko, A.Budyakov, K.Schmalz, C.Scheytt, P.Ostrovskyy \\ Proceeding of the 4-th European Conference on Circuits and Systems for Communications - ECCSC'08 / Politehnica University, Bucharest, Romania: July 10-11, 2008. - pp.50-53.1. Design of Bipolar Differential OpAmps with Unity Gain Bandwidth up to 23 GHz / N.Prokopenko, A. Budyakov, K.Schmalz, C.Scheytt, P. Ostrovskyy \\ Proceeding of the 4-th European Conference on Circuits and Systems for Communications - ECCSC'08 / Politehnica University, Bucharest, Romania: July 10-11, 2008 .-- pp. 50-53.
2. СВЧ СФ-блоки систем связи на базе полностью дифференциальных операционных усилителей / Прокопенко Н.Н., Будяков А.С., К.Schmalz, С.Scheytt \\ Проблемы разработки перспективных микро- и наноэлектронных систем - 2010. Сборник трудов / под общ. ред. академика РАН А.Л.Стемпковского. - М.: ИППМ РАН, 2010. - С.583-586.2. Microwave SF blocks of communication systems based on fully differential operational amplifiers / Prokopenko NN, Budyakov AS, K.Schmalz, S.Scheytt \\ Problems of developing promising micro- and nanoelectronic systems - 2010. Proceedings / under the general. ed. Academician of the Russian Academy of Sciences A.L. Stempkovsky. - M .: IPPM RAS, 2010. - P.583-586.
3. Патент ES 2079397, fig.9.3. ES patent 2079397, fig. 9.
4. Патентная заявка US 2010/0283543, fig.1.4. Patent application US 2010/0283543, fig. 1.
5. Патентная заявка US 2010/0283542, fig.2.5. Patent application US 2010/0283542, fig.2.
6. Патент US 7633344, fig.1.6. Patent US 7633344, fig. 1.
7. Ежков Ю.А. «Справочник по схемотехнике усилителей», М.: ИП «РадиоСофт», 2002 г., стр.113, рис.6.18.7. Ezhkov Yu.A. “Handbook of amplifier circuitry”, M.: RadioSoft IE, 2002, p. 113, Fig. 6.18.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012104386/08A RU2475947C1 (en) | 2012-02-08 | 2012-02-08 | Selective amplifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012104386/08A RU2475947C1 (en) | 2012-02-08 | 2012-02-08 | Selective amplifier |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2475947C1 true RU2475947C1 (en) | 2013-02-20 |
Family
ID=49121186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012104386/08A RU2475947C1 (en) | 2012-02-08 | 2012-02-08 | Selective amplifier |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2475947C1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2079397T3 (en) * | 1989-06-09 | 1996-01-16 | Telefunken Microelectron | DISPOSITION OF A CIRCUIT FOR THE CONVERSION OF FREQUENCIES. |
EP0818880B1 (en) * | 1996-07-11 | 2005-05-18 | Nokia Corporation | Gain control circuit for a linear power amplifier |
RU2421880C1 (en) * | 2010-05-13 | 2011-06-20 | Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ГОУ ВПО "ЮРГУЭС") | Broadband amplifier |
RU2432669C1 (en) * | 2010-10-15 | 2011-10-27 | Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ГОУ ВПО "ЮРГУЭС") | Broadband amplifier |
-
2012
- 2012-02-08 RU RU2012104386/08A patent/RU2475947C1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2079397T3 (en) * | 1989-06-09 | 1996-01-16 | Telefunken Microelectron | DISPOSITION OF A CIRCUIT FOR THE CONVERSION OF FREQUENCIES. |
EP0818880B1 (en) * | 1996-07-11 | 2005-05-18 | Nokia Corporation | Gain control circuit for a linear power amplifier |
RU2421880C1 (en) * | 2010-05-13 | 2011-06-20 | Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ГОУ ВПО "ЮРГУЭС") | Broadband amplifier |
RU2432669C1 (en) * | 2010-10-15 | 2011-10-27 | Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ГОУ ВПО "ЮРГУЭС") | Broadband amplifier |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2467470C1 (en) | Selective amplifier | |
RU2479112C1 (en) | Selective amplifier | |
RU2475947C1 (en) | Selective amplifier | |
RU2467469C1 (en) | Selective amplifier | |
RU2488955C1 (en) | Non-inverting current amplifier-based selective amplifier | |
RU2469466C1 (en) | Selective amplifier | |
RU2469462C1 (en) | Selective amplifier | |
RU2480896C1 (en) | Selective amplifier | |
RU2475943C1 (en) | Selective amplifier | |
RU2475945C1 (en) | Selective amplifier | |
RU2467471C1 (en) | Selective amplifier | |
RU2468506C1 (en) | Selective amplifier | |
RU2475938C1 (en) | Selective amplifier | |
RU2468505C1 (en) | Selective amplifier | |
RU2480895C1 (en) | Selective amplifier | |
RU2488953C1 (en) | Selective amplifier | |
RU2479108C1 (en) | Selective amplifier | |
RU2479109C1 (en) | Selective amplifier | |
RU2475948C1 (en) | Selective amplifier | |
RU2480894C1 (en) | Selective amplifier | |
RU2479116C1 (en) | Selective amplifier | |
RU2479106C1 (en) | Selective amplifier | |
RU2468499C1 (en) | Selective amplifier | |
RU2479115C1 (en) | Selective amplifier | |
RU2479110C1 (en) | Selective amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20140209 |