RU2475766C1 - Способ определения передаточной функции линейной радиоэлектронной системы - Google Patents
Способ определения передаточной функции линейной радиоэлектронной системы Download PDFInfo
- Publication number
- RU2475766C1 RU2475766C1 RU2011144801/28A RU2011144801A RU2475766C1 RU 2475766 C1 RU2475766 C1 RU 2475766C1 RU 2011144801/28 A RU2011144801/28 A RU 2011144801/28A RU 2011144801 A RU2011144801 A RU 2011144801A RU 2475766 C1 RU2475766 C1 RU 2475766C1
- Authority
- RU
- Russia
- Prior art keywords
- vector
- transfer function
- resolution
- matrix
- measurements
- Prior art date
Links
- 238000012546 transfer Methods 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 14
- 239000013598 vector Substances 0.000 claims abstract description 43
- 238000005259 measurement Methods 0.000 claims abstract description 23
- 239000011159 matrix material Substances 0.000 claims abstract description 22
- 230000009471 action Effects 0.000 claims abstract description 9
- 238000001228 spectrum Methods 0.000 claims abstract description 7
- 230000000694 effects Effects 0.000 claims abstract description 6
- 230000036962 time dependent Effects 0.000 claims abstract description 5
- 230000021615 conjugation Effects 0.000 claims description 2
- 230000017105 transposition Effects 0.000 claims description 2
- 238000004891 communication Methods 0.000 abstract description 2
- 230000003321 amplification Effects 0.000 abstract 1
- 238000003199 nucleic acid amplification method Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 230000010363 phase shift Effects 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 3
- 238000001720 action spectrum Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
Abstract
Изобретение относится к способам определения передаточных функций линейных радиоэлектронных систем. Техническим результатом является сокращение числа измеряемых величин и упрощение измерительного аппарата. Технический результат достигается благодаря тому, что способ включает следующее: на вход системы подают известное воздействие и проводят измерения на выходе системы, причем диапазон контролируемых частот, в котором определяют передаточную функцию, разбивают на элементы разрешения, размер которых определяется требуемой точностью определения передаточной функции, формируют входное воздействие с известным комплексным спектром, включающим частоты контролируемого диапазона, всем элементам разрешения ставят в соответствие зависящие от времени весовые коэффициенты, задают моменты измерений и формируют весовую матрицу из специальных комбинаций коэффициентов усиления для всех элементов разрешения во все заданные моменты измерений, измеряют в заданные моменты времени мощность сигнала на выходе анализируемой системы и формируют из измеренных значений мощности вектор измерений, составляют векторно-матричное уравнение измерений, включающее вектор измерений, весовую матрицу и вспомогательный вектор, определяют из уравнения измерений оценку вспомогательного вектора, из компонент полученной оценки вспомогательного вектора составляют матрицу, по первому столбцу матрицы определяют передаточную функцию анализируемой системы в дискретизированном по элементам разрешения варианте в виде вектора, i-я компонента которого равна оценке значения передаточной функции в i-м элементе разрешения.
Description
Изобретение относится к области радиоэлектроники, а именно - к определению передаточных функций линейных радиоэлектронных систем.
Передаточная функция является исчерпывающей характеристикой линейной радиоэлектронной системы в частотной области. Эта функция комплексная и может быть представлена в виде
H(jω)=A(ω)ejφ(ω),
где A(ω) - амплитудно-частотная характеристика системы, φ(ω) - ее фазо-частотная характеристика, ω - текущая круговая частота, j - комплексная единица.
Передаточная функция позволяет определить реакцию системы на любое известное входное воздействие. Так, если S(ω) - спектр входного воздействия, то спектр выходного сигнала определяется соотношением
Спектр выходного сигнала (1) часто является достаточной для дальнейшей обработки информацией. По нему можно определить временной выходной сигнал с помощью обратного преобразования Фурье:
Выражения (1) и (2) позволяют говорить об актуальности определения передаточной функции линейной радиоэлектронной системы.
Известен способ определения передаточной функции линейной системы [1], который состоит в том, что составляют дифференциальное уравнение системы, связывающее входной и выходной сигналы, заменяют в этом уравнении на (jω)k и выражают комплексную передаточную функцию системы как отношение выходного сигнала к входному.
Недостатком этого способа является то, что он применим только при известной схеме и параметрах системы.
В общем случае, при неизвестных или известных не точно параметрах и/или схеме системы, применяют способ (прототип) [2], в соответствии с которым на вход системы подают известные зондирующие гармонические воздействия на разных частотах и для каждого воздействия измеряют комплексный выходной сигнал. Отношение выходного сигнала к входному определяет значение передаточной функции на частоте сигнала. Перебрав частоты контролируемого диапазона, в котором требуется определить передаточную функцию, с шагом, определяемым требуемой точностью, получают в дискретизированном варианте комплексную передаточную функцию линейной системы.
Недостатком прототипа является
1. Необходимость измерять комплексный выходной сигнал, т.е. необходимость измерять две величины - амплитуду и фазовый сдвиг выходного сигнала относительно входного воздействия.
2. Необходимость перестройки измерительной аппаратуры под частоту каждого зондирующего входного воздействия.
Технической задачей данного изобретения является создание способа определения передаточной функции линейной радиоэлектронной системы, позволяющего сократить число измеряемых величин и упростить измерительную аппаратуру.
Поставленная задача достигается тем, что в способе определения передаточной функции линейной радиоэлектронной системы, заключающемся в том, что на вход системы подают известное воздействие и проводят измерения на выходе системы, согласно изобретению диапазон контролируемых частот, в котором определяют передаточную функцию, разбивают на элементы разрешения, размер которых Ω определяется требуемой точностью определения передаточной функции, формируют входное воздействие с известным комплексным спектром S(ω), включающим частоты контролируемого диапазона, где ω - круговая частота, всем элементам разрешения ставят в соответствие зависящие от времени весовые коэффициенты ,
где k - номер элемента разрешения, j - комплексная единица, t - время, задают N моментов измерений t1, t2, … tN и формируют весовую матрицу
где K - число элементов разрешения в диапазоне контролируемых частот, * означает комплексное сопряжение, измеряют в заданные моменты времени t1, t2, … tN мощность сигнала на выходе анализируемой системы, формируют из измеренных значений мощности вектор измерений , где p(ti) - мощность выходного сигнала в момент ti, индекс T обозначает транспонирование, составляют векторно-матричное уравнение измерений , где - вспомогательный вектор, определяют из уравнения измерений оценку вспомогательного вектора, из компонент полученной оценки вспомогательного вектора составляют матрицу
где - оценка i-й компоненты вспомогательного вектора, qij - значение соответствующей компоненты матрицы, по первому столбцу матрицы Q определяют передаточную функцию анализируемой системы в дискретизированном по элементам разрешения варианте в виде вектора , i-я компонента которого равна оценке значения передаточной функции в i-м элементе разрешения.
Положительный эффект достигается за счет того, что вместо измерения комплексного выходного сигнала, включающего измерение как амплитуды сигнала, так и его фазового сдвига, как это делается в прототипе для каждой из множества зондирующих гармоник, подаваемых на вход системы, в заявляемом способе достаточно измерять мощность выходного сигнала, подавая на вход интегральное воздействие, которое включает множество зондирующих гармоник. Таким образом, вместо двух измеряемых величин в прототипе (амплитуды и фазового сдвига), в заявляемом способе требуются измерения лишь одной величины - мощности, которая, к тому же, проще измеряется. Перестраивать измерительную аппаратуру под разные частоты входных воздействий при этом не требуется, что упрощает измерительную аппаратуру.
Обоснование способа.
Обозначим диапазон контролируемых частот, в котором требуется определить передаточную функцию линейной радиоэлектронной системы, как (ωн, ωк) и подадим на вход системы воздействие, комплексный спектр которого S(ω) известен и включает частоты этого диапазона.
Дискретизируем диапазон контролируемых частот на элементы разрешения с шагом дискретизации Ω и запишем выражение (2) в дискретизированной форме как интегральную сумму:
где k - номер элемента разрешения, K - число элементов разрешения в диапазоне контролируемых частот.
Введем обозначения: - зависящий от времени весовой коэффициент, соответствующий k-му элементу разрешения, и hk=H(kΩ) - значение комплексной передаточной функции в k-м элементе разрешения. С учетом введенных обозначений перепишем (3) в векторной форме:
где - зависящий от времени весовой вектор, - вектор передаточной функции, компонентами которой являются значения передаточной функции, дискретизированные по элементам разрешения.
Заметим, что для любого заданного t все K весовых коэффициентов и, следовательно, весовой вектор известны, так как известны спектр входного воздействия S(ω) и размер элемента разрешения Ω.
Будем искать передаточную функцию системы в дискретизированном варианте в виде вектора . Найдя этот вектор, мы определим передаточную функцию системы с шагом дискретизации Ω, который может быть выбран произвольно из соображений требуемой точности определения передаточной функции.
В уравнении (4) g(t) - выходной комплексный сигнал, содержащий все гармоники входного воздействия, преобразованные линейной системой. Будем измерять не сам этот сигнал, что затруднительно, а его мощность.
Мощность выходного сигнала, с учетом (4), запишем следующим образом:
Заметим, что вектор (6) известен для любого заданного t: он формируется из комбинаций известных весовых коэффициентов. Вектор (7) неизвестен; он включает в качестве компонент К2 комбинаций из элементов искомого вектора передаточной функции и, хотя сам не является искомым вектором, однако однозначно определяется компонентами последнего. В контексте решаемой задачи вектор является вспомогательным.
Найдем вспомогательный вектор . Для этого измерим мощность выходного сигнала в некоторые заданные моменты времени t1, t2, … tN и запишем уравнения измерений для этих моментов аналогично (5):
Перепишем систему уравнений (8) в векторно-матричной форме:
- весовая матрица.
В уравнении (9) вектор измерений и весовая матрица известны. Найдем из этого уравнения оценку вспомогательного вектора . Сделать это можно, например, методом псевдообращения [3] по формуле
Если векторы ν(t1), ν(t2), … ν(tN) линейно независимы, то согласно [4] оценка определяется более удобным для вычислений выражением
Получив оценку вспомогательного вектора , определим по ней оценку искомого вектора . Для этого составим из элементов вектора квадратную матрицу, учитывая при этом структуру вектора (7):
где - оценка i-й компоненты вектора , знак ∧ обозначает оценку, qij - значение соответствующей компоненты матрицы.
По первому столбцу матрицы (10) определим оценку вектора передаточной функции . Представим компоненты этого вектора в комплексной форме:
где i - номер компоненты.
Тогда из(10) получим
Полагая, что φ1=0 и что первый элемент первого столбца в (10) определен точно, находим
Тогда для второго элемента столбца запишем
откуда находим
Проведя аналогичные выкладки для всех компонент первого столбца, определим искомую передаточную функцию в дискретизированном по элементам разрешения варианте в виде оценки вектора
i-я компонента которого равна оценке значения передаточной функции в i-м элементе разрешения.
Компоненты вектора (11) представляют собой дискретные значения комплексной передаточной функции H(ω) в каждом элементе разрешения. Таким образом, задача определения передаточной функции линейной системы решена с точностью размера элемента разрешения Ω. При этом для решения не потребовалось отдельных измерений для множества зондирующих гармоник входного воздействия, не потребовалось также измерять комплексные выходные сигналы, включая их амплитуду и фазовый сдвиг, как это делается в прототипе. Вместо этого, согласно изобретению, достаточно измерить мощность выходного сигнала в разные моменты времени при подаче на вход широкополосного воздействия - суммарного сигнала, включающего частоты контролируемого диапазона.
Преимущества предлагаемого способа по сравнению с прототипом следующие.
1. Сокращение числа измеряемых величин, на основе которых определяется передаточная функция системы: в прототипе необходимо измерять как амплитуду, так и фазовую составляющую выходного сигнала, в то время как в заявляемом способе достаточно измерять только мощность выходного сигнала.
2. Упрощение используемой для измерений аппаратуры, которое достигается, во-первых, за счет того, что мощность измерить проще, чем комплексный сигнал, а, во-вторых, за счет того, что не требуется перестраивать аппаратуру под разные частоты множества зондирующих гармоник, как это делается в прототипе.
Источники информации
1. Харкевич А.А. Основы радиотехники. - М.: Государственное изд-во литературы по вопросам связи и радио, 1962, с.107-108.
2. Гоноровский И.С. Радиотехнические цепи и сигналы: Учебник для вузов. - 4-е изд. - М.: Радио и связь, 1986, с.152 (прототип).
3. Гантмахер Ф.Р. Теория матриц. - 4-е изд. - М.: Наука. Гл. ред. физ.-мат. лит., 1988, с.35.
4. Самойленко В.И., Пузырев В.А., Грубрин И.В. Техническая кибернетика: Учеб. пособие. - Ь.: Изд-во МАИ, 1994, с.265.
Claims (1)
- Способ определения передаточной функции линейной радиоэлектронной системы, заключающийся в том, что на вход системы подают известное воздействие и проводят измерения на выходе системы, отличающийся тем, что диапазон контролируемых частот, в котором определяют передаточную функцию, разбивают на элементы разрешения, размер которых Ω определяется требуемой точностью определения передаточной функции, формируют входное воздействие с известным комплексным спектром S(ω), включающим частоты контролируемого диапазона, где ω - круговая частота, всем элементам разрешения ставят в соответствие зависящие от времени весовые коэффициенты , где k - номер элемента разрешения, j - комплексная единица, t - время, задают N моментов измерений t1, t2, … tN и формируют весовую матрицу
где К - число элементов разрешения в диапазоне контролируемых частот, * означает комплексное сопряжение, измеряют в заданные моменты времени t1, t2, … tN мощность сигнала на выходе анализируемой системы, формируют из измеренных значений мощности вектор измерений , где p(ti) - мощность выходного сигнала в момент ti, индекс Т обозначает транспонирование, составляют векторно-матричное уравнение измерений , где - вспомогательный вектор, определяют из уравнения измерений оценку вспомогательного вектора, из компонент полученной оценки вспомогательного вектора составляют матрицу
где - оценка i-й компоненты вспомогательного вектора, qij - значение соответствующей компоненты матрицы, по первому столбцу матрицы Q определяют передаточную функцию анализируемой системы в дискретизированном по элементам разрешения варианте в виде вектора i-я компонента которого равна оценке значения передаточной функции в i-м элементе разрешения.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011144801/28A RU2475766C1 (ru) | 2011-11-07 | 2011-11-07 | Способ определения передаточной функции линейной радиоэлектронной системы |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011144801/28A RU2475766C1 (ru) | 2011-11-07 | 2011-11-07 | Способ определения передаточной функции линейной радиоэлектронной системы |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2475766C1 true RU2475766C1 (ru) | 2013-02-20 |
Family
ID=49121100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011144801/28A RU2475766C1 (ru) | 2011-11-07 | 2011-11-07 | Способ определения передаточной функции линейной радиоэлектронной системы |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2475766C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2645913C1 (ru) * | 2016-11-08 | 2018-02-28 | Федеральное государственное бюджетное учреждение науки Институт солнечно-земной физики Сибирского отделения Российской академии наук (ИСЗФ СО РАН) | Способ измерения передаточной функции радиотехнической линейной стационарной системы |
CN114491392A (zh) * | 2022-02-07 | 2022-05-13 | 西安交通大学 | 一种基于s域线性方程组消除SPND延迟的方法及系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1191785A1 (ru) * | 1984-05-24 | 1985-11-15 | Ленинградский Ордена Ленина И Ордена Трудового Красного Знамени Государственный Университет Им.А.А.Жданова | Модул ционный способ спектрального анализа |
SU1817034A1 (en) * | 1990-12-17 | 1993-05-23 | Tsnii Granit | Method of determining spectral characteristics of random signals |
US7027933B2 (en) * | 2000-11-16 | 2006-04-11 | Ciphergen Biosystems, Inc. | Method for analyzing mass spectra |
US20090076737A1 (en) * | 2004-10-28 | 2009-03-19 | Cerno Bioscience Llc | Qualitative and quantitative mass spectral analysis |
-
2011
- 2011-11-07 RU RU2011144801/28A patent/RU2475766C1/ru not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1191785A1 (ru) * | 1984-05-24 | 1985-11-15 | Ленинградский Ордена Ленина И Ордена Трудового Красного Знамени Государственный Университет Им.А.А.Жданова | Модул ционный способ спектрального анализа |
SU1817034A1 (en) * | 1990-12-17 | 1993-05-23 | Tsnii Granit | Method of determining spectral characteristics of random signals |
US7027933B2 (en) * | 2000-11-16 | 2006-04-11 | Ciphergen Biosystems, Inc. | Method for analyzing mass spectra |
US20090076737A1 (en) * | 2004-10-28 | 2009-03-19 | Cerno Bioscience Llc | Qualitative and quantitative mass spectral analysis |
Non-Patent Citations (1)
Title |
---|
Гоноровский И.С. Радиотехнические цепи и сигналы, 1986. * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2645913C1 (ru) * | 2016-11-08 | 2018-02-28 | Федеральное государственное бюджетное учреждение науки Институт солнечно-земной физики Сибирского отделения Российской академии наук (ИСЗФ СО РАН) | Способ измерения передаточной функции радиотехнической линейной стационарной системы |
CN114491392A (zh) * | 2022-02-07 | 2022-05-13 | 西安交通大学 | 一种基于s域线性方程组消除SPND延迟的方法及系统 |
CN114491392B (zh) * | 2022-02-07 | 2024-04-16 | 西安交通大学 | 一种基于s域线性方程组消除SPND延迟的方法及系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | The development of phasemeter for Taiji space gravitational wave detection | |
Ljung et al. | Issues in sampling and estimating continuous-time models with stochastic disturbances | |
US8154311B2 (en) | Method and device for characterizing the linear properties of an electrical component | |
Augustyn et al. | Improved sine-fitting algorithms for measurements of complex ratio of AC voltages by asynchronous sequential sampling | |
RU2475766C1 (ru) | Способ определения передаточной функции линейной радиоэлектронной системы | |
Xie et al. | Analog circuits soft fault diagnosis using Rényi’s entropy | |
Toma | Advanced Signal Processing and Command Synthesis for Memory‐Limited Complex Systems | |
Volkers et al. | The influence of source impedance on charge amplifiers | |
Belega et al. | Estimation of the multifrequency signal parameters by interpolated DFT method with maximum sidelobe decay | |
Volkova et al. | Qualitative theory and identification of dynamic system with one degree of freedom | |
Sukhinets et al. | Analysis of converters with heterogeneous three-pole chain structure | |
RU2431853C1 (ru) | Способ спектрального анализа электрического сигнала | |
Detkov | Optimal evaluation of discrete continuous markov processes from observed digital signals | |
Härter et al. | Neural networks in auroral data assimilation | |
Ahadi et al. | A direct method for acoustic impedance measurement based on the measurement of electrical impedance of acoustic transmitter | |
RU2455653C1 (ru) | Способ спектрального анализа электрического сигнала | |
RU2561336C1 (ru) | Способ измерения параметров элементов многоэлементных нерезонансных линейных двухполюсников | |
Manstein et al. | A device for shallow frequency-domain electromagnetic induction sounding | |
Lin et al. | Measuring the phase response of a seismometer using superimposed sine signals | |
RU2117306C1 (ru) | Способ определения частоты узкополосного сигнала | |
Csurcsia | Nonparametric identification of linear time-varying systems | |
Alotto et al. | Identification of multilayer soil models for grounding systems from surface measurements | |
Dudek et al. | Spectral density estimation for a class of spectrally correlated processes | |
RU2671299C9 (ru) | Способ измерения параметров подстилающей среды и устройство для его осуществления | |
RU2695025C1 (ru) | Двухзондовый способ измерения фазовых сдвигов распределённой RC-структуры |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20181108 |