RU2455398C2 - Способ электролитического производства алюминия - Google Patents
Способ электролитического производства алюминия Download PDFInfo
- Publication number
- RU2455398C2 RU2455398C2 RU2010133245/02A RU2010133245A RU2455398C2 RU 2455398 C2 RU2455398 C2 RU 2455398C2 RU 2010133245/02 A RU2010133245/02 A RU 2010133245/02A RU 2010133245 A RU2010133245 A RU 2010133245A RU 2455398 C2 RU2455398 C2 RU 2455398C2
- Authority
- RU
- Russia
- Prior art keywords
- phase
- anodes
- iron
- nickel
- content
- Prior art date
Links
Landscapes
- Electrolytic Production Of Metals (AREA)
Abstract
Изобретение относится к способу электролитического производства алюминия из глиноземсодержащего фторидного расплава. Способ осуществляют с использованием анодов, содержащих двухфазные металлические сплавы на основе меди и железа, в том числе легированные небольшими количествами никеля, состоящих из обогащенной по железу реакционноспособной фазы и обогащенной по меди сплошной инертной фазы и содержащих от 30 до 77 мас.% меди, от 23 до 65 мас.% железа и до 15 мас.% никеля, в которых содержание реакционноспособной фазы в двухфазном сплаве Cu-Fe-Ni составляет 24-83%, а инертная фаза находится в пространстве между дендритами реакционноспособной фазы. Обеспечивается возможность существенно снизить скорости коррозии анодов в глиноземсодержащих фторидных расплавах с рабочей температурой менее 950°С в условиях анодной поляризации, а также обеспечить получение алюминия с низким содержанием металлов - компонентов анода. 2 з.п. ф-лы, 1 табл.
Description
Изобретение относится к области цветной металлургии и может быть использовано для получения металлов электролизом расплавленных электролитов с инертными анодами, в частности для электролитического получения алюминия в криолит-глиноземных расплавах.
В последние десятилетия интенсивно ведутся работы по созданию малорасходуемых («несгораемых» или «инертных») анодов для замены расходуемых углеродистых анодов при электролитическом получении алюминия. В результате замены ожидаются снижение затрат на производство алюминия, большая компактность конструкции технологического аппарата (электролизера) с меньшими тепловыми потерями, повышение экологической безопасности производства. Основное внимание уделяется металлическим сплавам, как более технологичным материалам [1, 2] по сравнению с керамическими и керметными материалами. Первоначально работы в этом направлении были ориентированы на сплавы с высоким содержанием никеля [3-5]. Эти материалы планировалось использовать в расплавах, традиционно применяемых в промышленном производстве алюминия электролизом (криолитовое отношение КО=2.2-3.0, Т=950-1000°С). Здесь и далее криолитовое отношение, КО=[NaF]/[AlF3], представляет собой отношение молярных концентраций фторида натрия и фторида алюминия в расплаве (условно такие расплавы называют высокотемпературными). В дальнейшем было показано, что путем снижения температуры электролита (при одновременном уменьшении КО) удается добиться существенного снижения скорости коррозии ряда металлов (типичных компонентов сплавов) в расплаве при анодной поляризации [2]. В то же время никельсодержащие сплавы демонстрируют существенное ухудшение стабильности при снижении КО расплава из-за преимущественного образования на поверхности анода плохопроводящих слоев фторида никеля [6]. Поэтому начали активно исследоваться сплавы на основе меди с пониженным содержанием никеля [2, 7-14]. Снижение КО и рабочей температуры приводит к смещению равновесий между образующимися на поверхности анода твердыми продуктами окисления и растворенными комплексами металлов в расплаве, что сопровождается образованием в некоторых условиях плохопроводящих слоев на поверхности анода и увеличением скорости его коррозии. Таким образом, при снижении температуры электролиза и соответствующем изменении состава электролита требуется определение составов металлических сплавов, на поверхности которых не образуются непроводящие фазы при анодной поляризации.
Впервые сплавы на основе меди/железа/никеля в качестве материала для малорасходуемых анодов, эксплуатируемых в расплавах с высоким содержанием фторида алюминия (с низким КО и температурой плавления), были предложены в [7]. В качестве оптимального материала предлагался высокопористый (плотностью 60-70% от теоретической) анод из сплава, содержащего от 25 до 70 мас.% Cu, от 15 до 60 мас.% Ni и 1 до 30 мас.% Fe. При этом анод изготавливается методами порошковой металлургии и эксплуатируется в расплаве, содержащем 42-48 мол.% AlF3. В дальнейшем работы в этом направлении активно развивались [8-14].
Прототипом настоящего изобретения является патент [14], в котором были достигнуты наилучшие результаты по деградационной стойкости таких металлических сплавов. В данном патенте предложено использовать в качестве материала для малорасходуемого анода сплавы, содержащие от 10 до 70 мас.% Cu, от 15 до 60 мас.% Ni, остальное железо. В [14] приводится также уточненный интервал составов: от 20 до 50 мас.% Cu, от 20 до 40 мас.% Ni и от 20 до 40 мас.% Fe. Поскольку все такие сплавы являются двухфазными, так как при их кристаллизации из металлического расплава фаза, богатая железом, формируется в виде дендритов, в пространстве между которыми затем кристаллизуется вторая фаза, богатая медью, то для обеспечения наилучшей деградационной стойкости в прототипе предложено подвергать отливки специальной термической обработке для получения метастабильного однофазного состояния. Электролиз предлагается проводить при температуре не выше 900°С в криолит-глиноземных расплавах с температурой ликвидуса 715-860°С, путем пропускания постоянного тока между катодами и анодами.
Исследования деградационного поведения сплавов системы медь/железо/никель в расплавах различного состава показали, что составы, предложенные в [14], не являются оптимальными: в них присутствует значительное количество никеля, что во многих случаях приводит к образованию блокирующих слоев непроводящего фторида никеля и быстрому разрушению анода. Кроме того, сплавы, подвергнутые специальной термической обработке для получения метастабильного однофазного состояния, менее стабильны в условиях электрохимической поляризации по сравнению с двухфазными сплавами того же элементного состава.
Существенным недостатком прототипа является значительная скорость коррозии материала анода, делающая невозможным использование таких составов в промышленности из-за слишком высокого уровня загрязнения алюминия компонентами анода. Концентрация никеля, меди и железа в получаемом катодном алюминии регулируется ГОСТ 11069-2001. В нем в частности указано, что содержание меди и никеля не должно превышать 0.05 и 0.03% соответственно, а железа 0.35% для алюминия технической чистоты.
Задачей настоящего изобретения является повышение коррозионной стойкости инертных анодов на основе сплавов системы Cu-Fe-Ni по сравнению со сплавами, составы которых предложены в патенте [14].
Решение поставленной задачи достигается тем, что в способе электролитического производства алюминия из глиноземсодержащего фторидного расплава в электролизере при температуре менее 950°С путем пропускания постоянного тока между катодами и анодами согласно заявляемому изобретению используют аноды, изготовленные из двухфазного сплава Cu-Fe-Ni, состоящего из обогащенной по железу реакционноспособной фазы, формирующейся в виде дендритов, и обогащенной по меди сплошной инертной фазы, и содержащие от 30 до 77 мас.% меди, от 23 до 65 мас.% железа и до 15 мас.% никеля.
Способ могут дополнять следующие существенные признаки.
В способе могут быть использованы аноды, в которых содержание железа в двухфазном сплаве Cu-Fe-Ni превышает содержание никеля не менее чем в два раза.
В способе могут быть использованы аноды, в которых содержание реакционноспособной фазы в двухфазном сплаве Cu-Fe-Ni составляет 24-83%, а инертная фаза находится в пространстве между дендритами реакционноспособной фазы.
Следовательно, решение поставленной задачи достигается в первую очередь снижением общего содержания никеля в сплаве до значений, не превышающих 15 мас.%, при указанном в формуле изобретения содержании меди и железа. С целью снижения риска образования оксидов и фторидов никеля содержание железа в сплаве должно, по крайней мере, вдвое превышать содержание никеля.
Также было доказано, что двухфазные сплавы демонстрируют более высокую стабильность в ходе электрохимической поляризации по сравнению с однофазными сплавами того же элементного состава. При этом одна из фаз, богатая железом, в составе двухфазного сплава растворяется и окисляется значительно быстрее второй фазы и поэтому называется реакционноспособной фазой. Соответственно, вторая фаза, обогащенная по меди, называется инертной фазой. Наличие реакционноспособной фазы и непрерывность сплошной инертной фазы оказывают существенное влияние на механизм и скорость коррозии анода.
Только при наличии реакционноспособной фазы и непрерывности сплошной инертной фазы обеспечивается равномерное окисление сплава и сдерживается его механическое разрушение после окисления и растворения реакционноспособной фазы в поверхностном слое анода. Содержание обеих фаз в системе Cu-Fe-Ni при постоянном содержании Ni в количестве до 15 мас.% можно изменять в широких пределах.
Количество фаз в сплаве однозначно связано с его элементным составом и может быть легко определено с использованием соответствующей трехкомпонентной фазовой диаграммы. Оптимальный элементный состав используемых анодов: от 30 до 77 мас.% Cu, до 15 мас.% Ni и от 23 до 65 мас.% Fe, - однозначно определяет оптимальные соотношения фаз. Содержание реакционноспособной фазы в двухфазном сплаве Cu-Fe-Ni может составлять 24-83%, а инертная фаза находится в пространстве между дендритами реакционноспособной фазы.
Таким образом, поставленная задача решается при одновременной оптимизации состава и ключевых параметров микроструктуры материала анода - наличия реакционноспособной фазы и непрерывности сплошной инертной фазы.
Достигаемый при использовании изобретения технический результат обеспечивается благодаря повышению коррозионной стойкости анодов, используемых в процессе электролиза глиноземсодержащих фторидных расплавов при температуре менее 950°С, что гарантирует снижение загрязнения получаемого алюминия компонентами анода.
Для экспериментальной проверки заявляемых материалов были подготовлены образцы анодов различного состава (см. в таблице), и проведено их испытание в условиях анодной поляризации в криолит-глиноземных расплавах различного состава. Образцы металлических анодов Cu-Fe с добавкой Ni и без нее различного состава изготавливались путем плавления исходных порошков чистых металлов в печи сопротивления в инертной атмосфере. Расплав выдерживали в течение 10-30 минут при температуре 1600-1650°С для усреднения состава, затем отливали в форму. Получаемые цилиндрические аноды диаметром от 8 до 15 мм и высотой от 30 до 150 мм приваривались путем электродуговой сварки к токоподводу. Электролиз проводили при анодной плотности тока около 0.3-0.7 А/см2 в графитовом тигле, содержащем 400 граммов расплава. Испытания проводились при температурах 760 и 920°С в расплавах с КО 1.3 и 1.86 соответственно и содержанием глинозема 2%. Расплав готовился из смеси реагентов Na3AlF6, AlF3, Al2O3 квалификации не ниже «ч». В качестве катодов использовался графит. В ходе электролиза проводилась периодическая загрузка в расплав глинозема с интервалом 30 мин. Продолжительность испытаний составляла не менее 2-х часов. Глубина погружения электродов в расплав, как правило, составляла 10-15 мм (рабочая площадь анода - около 3-4 см2).
Для количественного сопоставления скорости коррозии двухфазных сплавов, демонстрирующих в ходе электролиза образование протяженного пористого слоя за счет селективного окисления и растворения реакционноспособной фазы, использовалась величина интегральной скорости коррозии, которая характеризует долю тока (в процентах), расходуемую на окисление металлической основы анода в ходе электролиза. Интегральная скорость коррозии рассчитывалась на основании электронно-микроскопических данных, полученных с поперечных шлифов образцов после лабораторных испытаний. При этом расчет производили исходя не только из изменения геометрических размеров анода, но и с учетом объема пор, образовавшихся в поверхностном слое сплава. Таким образом, показатель интегральной скорости коррозии анодов характеризует величину среднего остаточного тока коррозии для заданной общей плотности тока в ходе электролиза. Так как все эксперименты проводились в идентичных условиях, то рассчитанная интегральная скорость коррозии может быть использована для прямого сопоставления наблюдаемой скорости коррозии материалов с различной микроструктурой и протяженностью пористых слоев.
Из данных таблицы следует, что образец анода по прототипу (№1) демонстрирует высокую скорость коррозии. В то же время переход от однофазного сплава к двухфазному и снижение содержания никеля в составе сплава приводят к быстрому уменьшению общей скорости окисления материала, что связано со снижением вероятности образования фторидов никеля. Тем не менее, небольшие количества никеля в сплаве, приводящие к образованию в оксидном слое феррита никеля, позитивно сказываются на деградационной устойчивости материала. Так, минимальную скорость коррозии демонстрирует сплав с содержанием никеля около 8 мас.%. Высокую стабильность также демонстрируют двухкомпонентные сплавы Cu-Fe, у которых содержание реакционноспособной фазы близко к 50-60%. Наилучшую устойчивость к окислению демонстрируют сплавы №6 и №11. Для таких материалов достигается минимальное поступление в расплав (а тем самым и в алюминий) компонентов анода.
Как показывают результаты лабораторного тестирования, предлагаемые материалы оптимизированного состава и микроструктуры обладают высокой стабильностью в глиноземсодержащих фторидных расплавах в условиях анодной поляризации. Поэтому аноды из этих материалов имеют низкую скорость коррозии и позволяют получать алюминий с низким содержанием компонентов сплава.
Claims (3)
1. Способ электролитического производства алюминия из глиноземсодержащего фторидного расплава в электролизере при температуре менее 950°С путем пропускания постоянного тока между катодами и анодами, отличающийся тем, что используют аноды, изготовленные из двухфазного сплава Cu-Fe-Ni, состоящего из обогащенной по железу реакционно-способной фазы и обогащенной по меди сплошной инертной фазы и содержащие от 30 до 77 мас.% меди, от 23 до 65 мас.% железа и до 15 мас.% никеля.
2. Способ по п.1, отличающийся тем, что используют аноды, в которых содержание железа в двухфазном сплаве Cu-Fe-Ni превышает содержание никеля не менее чем в два раза.
3. Способ по п.1, отличающийся тем, что используют аноды, в которых содержание реакционно-способной фазы в двухфазном сплаве Cu-Fe-Ni составляет 24-83%, а инертная фаза находится в пространстве между дендритами реакционно-способной фазы.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2010133245/02A RU2455398C2 (ru) | 2010-08-09 | 2010-08-09 | Способ электролитического производства алюминия |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2010133245/02A RU2455398C2 (ru) | 2010-08-09 | 2010-08-09 | Способ электролитического производства алюминия |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2010133245A RU2010133245A (ru) | 2012-02-20 |
RU2455398C2 true RU2455398C2 (ru) | 2012-07-10 |
Family
ID=45854201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2010133245/02A RU2455398C2 (ru) | 2010-08-09 | 2010-08-09 | Способ электролитического производства алюминия |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2455398C2 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015026257A1 (ru) * | 2013-08-19 | 2015-02-26 | Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" | Анод на основе железа для получения алюминия электролизом расплавов |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2524848A1 (en) * | 2003-05-08 | 2004-12-02 | Northwest Aluminum Technologies | Cu-ni-fe anode for use in aluminum producing electrolytic cell |
RU2291915C1 (ru) * | 2005-07-29 | 2007-01-20 | Общество с ограниченной ответственностью "Инженерно-технологический центр" | Оксидный материал для несгораемых анодов алюминиевых электролизеров (варианты) |
RU2344201C2 (ru) * | 2006-12-19 | 2009-01-20 | Государственное Образовательное Учреждение Высшего Профессионального Образования "Дагестанский Государственный Технический Университет" (Дгту) | Устройство для преобразования энергии |
RU2352690C2 (ru) * | 2003-10-07 | 2009-04-20 | Алюминиюм Пешинэ | Инертный анод, предназначенный для получения алюминия электролизом в расплавленных солях, и способ получения этого анода |
-
2010
- 2010-08-09 RU RU2010133245/02A patent/RU2455398C2/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7077945B2 (en) * | 2002-03-01 | 2006-07-18 | Northwest Aluminum Technologies | Cu—Ni—Fe anode for use in aluminum producing electrolytic cell |
CA2524848A1 (en) * | 2003-05-08 | 2004-12-02 | Northwest Aluminum Technologies | Cu-ni-fe anode for use in aluminum producing electrolytic cell |
RU2352690C2 (ru) * | 2003-10-07 | 2009-04-20 | Алюминиюм Пешинэ | Инертный анод, предназначенный для получения алюминия электролизом в расплавленных солях, и способ получения этого анода |
RU2291915C1 (ru) * | 2005-07-29 | 2007-01-20 | Общество с ограниченной ответственностью "Инженерно-технологический центр" | Оксидный материал для несгораемых анодов алюминиевых электролизеров (варианты) |
RU2344201C2 (ru) * | 2006-12-19 | 2009-01-20 | Государственное Образовательное Учреждение Высшего Профессионального Образования "Дагестанский Государственный Технический Университет" (Дгту) | Устройство для преобразования энергии |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015026257A1 (ru) * | 2013-08-19 | 2015-02-26 | Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" | Анод на основе железа для получения алюминия электролизом расплавов |
RU2570149C1 (ru) * | 2013-08-19 | 2015-12-10 | Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" | Анод на основе железа для получения алюминия электролизом расплавов |
AU2013398387B2 (en) * | 2013-08-19 | 2017-06-29 | Obshestvo S Ogranichennoy Otvetstvennost'yu "Ob'edinennaya Kompania "Inzhenerno-Tekhnologicheskiy Tsentr" | Iron-based anode for producing aluminum by electrolysis of melts |
US10711359B2 (en) | 2013-08-19 | 2020-07-14 | United Company RUSAL Engineering and Technology Centre LLC | Iron-based anode for obtaining aluminum by the electrolysis of melts |
NO347912B1 (en) * | 2013-08-19 | 2024-05-13 | Obshchestvo S Ogranichennoy Otvetstvennostyu Obedinennaya Kompaniya Rusal Inzhenerno Tekh Tsenter | Iron-based anode for producing aluminum by electrolysis of melts |
Also Published As
Publication number | Publication date |
---|---|
RU2010133245A (ru) | 2012-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pawlek | Inert anodes: an update | |
US5024737A (en) | Process for producing a reactive metal-magnesium alloy | |
KR101684813B1 (ko) | 알루미늄 전해를 위해 사용된 전해조 및 상기 전해조를 이용하는 전해방법 | |
US20090166217A1 (en) | Electrode | |
CN101717969A (zh) | 一种适用于金属熔盐电解槽惰性阳极的合金材料 | |
Gallino et al. | Oxidation and corrosion of highly alloyed Cu–Fe–Ni as inert anode material for aluminum electrowinning in as-cast and homogenized conditions | |
US20240191382A1 (en) | Method for preparing rare earth alloys | |
WO2009054819A1 (en) | Production of tungsten and tungsten alloys from tungsten bearing compounds by electrochemical methods | |
CN102011144A (zh) | 适用于金属熔盐电解槽惰性阳极的镍基合金材料 | |
RU2570149C1 (ru) | Анод на основе железа для получения алюминия электролизом расплавов | |
Padamata et al. | Improving corrosion resistance of Cu− Al-based anodes in KF− AlF3− Al2O3 melts | |
CA2876336C (en) | Inert alloy anode for aluminum electrolysis and preparing method thereof | |
RU2455398C2 (ru) | Способ электролитического производства алюминия | |
Kovrov et al. | Oxygen evolving anodes for aluminum electrolysis | |
WO2010001151A1 (en) | Method of determining the extent of a metal oxide reduction | |
WO2012143719A2 (en) | Methods and apparatus for the production of metal | |
JPH0688280A (ja) | 希土類及び他の金属の合金を製造する電解法 | |
He | The Metal Phase Selection of 10NiO-NiFe 2 O 4-Based Cermet Anodes for Aluminum Electrolysis | |
RU2819113C1 (ru) | Способ электролитического получения сплавов алюминия со скандием | |
JP7515880B2 (ja) | 鉄スクラップ中のトランプエレメントの電気化学的分離方法 | |
RU2819114C1 (ru) | Способ электролитического получения сплавов алюминия с иттрием с использованием кислородвыделяющего анода | |
RU2599312C1 (ru) | Электролитический способ непрерывного получения алюминиевого сплава со скандием | |
AU2006260791B2 (en) | Electrode | |
Zhang et al. | Electrolytic Preparation of Al-Sm Alloy in SmF3-LiF-Sm2O3 Molten Salt System | |
RU2629418C1 (ru) | Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия |