[go: up one dir, main page]

RU2453834C2 - Способ определения температуры измерительного датчика - Google Patents

Способ определения температуры измерительного датчика Download PDF

Info

Publication number
RU2453834C2
RU2453834C2 RU2009122509/28A RU2009122509A RU2453834C2 RU 2453834 C2 RU2453834 C2 RU 2453834C2 RU 2009122509/28 A RU2009122509/28 A RU 2009122509/28A RU 2009122509 A RU2009122509 A RU 2009122509A RU 2453834 C2 RU2453834 C2 RU 2453834C2
Authority
RU
Russia
Prior art keywords
temperature
internal resistance
heating device
nernst
measuring
Prior art date
Application number
RU2009122509/28A
Other languages
English (en)
Other versions
RU2009122509A (ru
Inventor
Хольгер РАЙНСХАГЕН (DE)
Хольгер РАЙНСХАГЕН
Лотар ДИЛЬ (DE)
Лотар ДИЛЬ
Original Assignee
Роберт Бош Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Роберт Бош Гмбх filed Critical Роберт Бош Гмбх
Publication of RU2009122509A publication Critical patent/RU2009122509A/ru
Application granted granted Critical
Publication of RU2453834C2 publication Critical patent/RU2453834C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4067Means for heating or controlling the temperature of the solid electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/183Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer characterised by the use of the resistive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/26Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being an electrolyte
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor
    • G05D23/2401Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor using a heating element as a sensing element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2205/00Application of thermometers in motors, e.g. of a vehicle
    • G01K2205/04Application of thermometers in motors, e.g. of a vehicle for measuring exhaust gas temperature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Изобретение используется при определении температуры в измерительных датчиках концентрации кислорода в газовых смесях. Сущность изобретения: в способе определения температуры измерительного датчика, предназначенного для измерения концентрации кислорода в газовых смесях, прежде всего в отработавших газах двигателей внутреннего сгорания, анализируют выдаваемое измерительным элементом Нернста (12) выходное напряжение, соответствующее концентрации кислорода, доводят измерительный датчик до рабочей температуры посредством нагревательного устройства (50), определяют в первой области температур внутреннее сопротивление измерительного элемента Нернста (12) и по нему делают вывод о температуре измерительного элемента Нернста (12), определяют во второй области температур внутреннее сопротивление нагревательного устройства (50) и по нему делают вывод о температуре измерительного элемента Нернста (12). Изобретение позволяет повысить точность определения температуры. 8 з.п. ф-лы, 5 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к способу определения температуры измерительного датчика, охарактеризованному в независимом пункте 1 формулы изобретения. Предлагаемый в изобретении способ может быть реализован в виде компьютерной программы и воплощен в компьютерном программном продукте, содержащем записанный на машиночитаемом носителе программный код для осуществления способа.
Уровень техники
Из публикации DE 19838456 А1 известен соответствующий способ регулирования температуры измерительного датчика, предназначенного для определения концентрации кислорода в газовых смесях, прежде всего в отработавших газах двигателей внутреннего сгорания, при осуществлении которого анализируют выдаваемое измерительным элементом (ячейкой) Нернста выходное напряжение, соответствующее концентрации кислорода, причем измерительный датчик приводят к рабочей температуре посредством нагревательного устройства, а фактическую рабочую температуру определяют путем измерения внутреннего (собственного) сопротивления по переменному току измерительного элемента Нернста. Для того чтобы исключить обусловленные технологией изготовления колебания значения сопротивления, при осуществлении известного способа при вводе измерительного датчика в эксплуатацию и/или при его повторном вводе в эксплуатацию определяют внутреннее сопротивление проводника питания электродов измерительного элемента Нернста переменному току и полученное фактическое внутреннее сопротивление учитывают при определении рабочей температуры. Определение рабочей температуры измерительного датчика на основании внутреннего сопротивления измерительного элемента Нернста возможно лишь в ограниченном объеме, так как температурная характеристика сопротивления электролитов, образующих измерительный датчик, ввиду формы ее кривой допускает точное измерение лишь в ограниченной области температур. Кроме того, эта характеристика имеет переменное смещение, обусловленное сопротивлением проводника питания. Характеристика подвержена ошибкам также вследствие технологических неточностей при изготовлении печатных схем.
Раскрытие изобретения
Предлагаемый в изобретении способ, охарактеризованный в пункте 1 формулы изобретения, имеет то преимущество, что он позволяет определять температуру измерительного датчика, предназначенного для измерения концентрации кислорода в газовых смесях, с большой точностью в широком диапазоне области температур. Для этого в соответствии с изобретением определяют в первой области температур (первом температурном диапазоне) внутреннее сопротивление измерительного элемента Нернста и по нему делают вывод о температуре измерительного элемента Нернста, и определяют во второй области температур (втором температурном диапазоне) внутреннее сопротивление нагревательного устройства и по нему делают вывод о температуре измерительного элемента Нернста. Разбиение рабочего диапазона подобного измерительного датчика на несколько областей температуры, выбираемых таким образом, чтобы обеспечить возможность точного определения температуры измерительного элемента Нернста, позволяет точно определять температуру во всем рабочем диапазоне измерительного датчика.
В зависимых пунктах формулы изобретения описаны предпочтительные варианты осуществления предлагаемого в изобретении способа, охарактеризованного в независимом пункте формулы.
Так, определять внутреннее сопротивление нагревательного устройства и по этому внутреннему сопротивлению делать вывод о температуре измерительного элемента Нернста предпочтительно в то время, когда нагревательное устройство выключено. При этом, например, в случае приведения в действие нагревательного устройства в тактовом режиме, можно всегда использовать тактовые промежутки, когда подача напряжения/тока на средства нагрева не осуществляется.
В предпочтительном варианте осуществления изобретения две области температур не перекрываются, а разнесены. При этом первая область температур заканчивается ниже рабочей температуры измерительного датчика, а вторая область температур начинается выше рабочей температуры измерительного датчика. Это имеет то преимущество, что в первой области температур, т.е. при меньших температурах, находящихся ниже рабочей температуры, измерение внутреннего сопротивления измерительного элемента Нернста позволяет очень точно определять температуру, так как в этой области кривая изменения сопротивления электролита по температуре имеет очень сильный наклон, а значит с изменением температуры сопротивление изменяется очень быстро, что дает высокое разрешение. Во второй же области температур, начинающейся выше температуры измерительного датчика, температура измерительного датчика определяется путем определения внутреннего сопротивления нагревательного устройства. Это связано с тем, что характеристика внутреннего сопротивления нагревательного устройства линейна и в области более высоких температур также проходит с наклоном, обеспечивая достаточно высокое разрешение.
В другом варианте осуществления изобретения, области температур могут перекрываться. В этом случае температуру измерительного элемента Нернста определяют путем определения как внутреннего сопротивления измерительного элемента Нернста, так и внутреннего сопротивления нагревательного устройства. Таким образом, в одной и той же области температур выполняют различными методами два измерения и таким образом получают два значения температуры. При этом предпочтительно использовать внутреннее сопротивление измерительного элемента Нернста, в котором доля, приходящаяся на проводник питания, компенсирована, как это поясняется в публикации DE 19838456 А1, включенной в описание путем ссылки. Вторую область температур используют для подтверждения правдоподобности этого значения.
Для того чтобы откалибровать характеристику зависимости внутреннего сопротивления нагревательного устройства от температуры в отношении ее абсолютного значения, в задаваемой области температур, предпочтительно находящейся непосредственно ниже рабочей температуры измерительного датчика, можно определить как внутреннее сопротивление измерительного элемента Нернста, так и сопротивление нагревательного устройства, и путем сравнения внутреннего сопротивления измерительного элемента Нернста с сопротивлением нагревательного устройства выполнить калибровку абсолютного значения температурной характеристики нагревательного устройства. Иначе говоря, калибровка осуществляется в области температур, в которой посредством определения внутреннего сопротивления элемента Нернста возможно очень точное определение температуры.
Такую калибровку выполняют в новом состоянии измерительного датчика один раз, ее результат сохраняют в памяти и используют в течение всего срока службы датчика. Это позволяет компенсировать погрешности, обусловленные старением внутреннего сопротивления измерительного элемента Нернста, так как в данном случае внутреннее сопротивление нагревательного устройства известно.
Для дальнейшей оптимизации предлагаемого в изобретении способа в области температур, в которой выполняют калибровку, можно также разделять ошибку (погрешность) смещения и пропорциональную ошибку, искажающую характеристику, для чего путем сравнения внутреннего сопротивления включенного нагревательного устройства с внутренним сопротивлением выключенного нагревательного устройства можно определить отношение сопротивления расположенного в форме меандра нагревательного устройства к сопротивлению проводника питания. Это позволяет отделить ошибку смещения от пропорциональной ошибки и, поскольку ошибка смещения устранена калибровкой, компенсировать и пропорциональную ошибку линейной характеристики.
Краткое описание чертежей
Примеры осуществления изобретения поясняются в приведенном ниже описании со ссылкой на прилагаемые чертежи, где показаны:
на фиг.1 - вид в разрезе измерительного датчика, в котором используется предлагаемый в изобретении способ,
на фиг.2а - зависимость внутреннего сопротивления элемента Нернста от температуры,
на фиг.2б - зависимость внутреннего сопротивления нагревательного устройства от температуры,
на фиг.3 - иллюстрация предлагаемого в изобретении способа регулирования температуры посредством характеристик изменения сопротивления элемента Нернста, а также внутреннего сопротивления нагревательного устройства по температуре,
на фиг.4 - схема для регистрации внутреннего сопротивления нагревательного устройства,
на фиг.5 - другая схема для регистрации внутреннего сопротивления нагревательного устройства.
Осуществление изобретения
На фиг.1 показан вид в разрезе измерительной головки измерительного датчика 10. Измерительный датчик 10 выполнен в виде планарного широкополосного измерительного датчика и состоит из нескольких отдельных расположенных друг над другом слоев, которые могут быть структурированы, например, путем пленочного литья, вырубки, трафаретной печати, ламинирования, вырезания, спекания и т.д. В рамках настоящего описания получение слоистой структуры подробно не рассматривается, поскольку оно известно.
Измерительный датчик 10 служит для определения концентрации кислорода в отработавших газах двигателей внутреннего сгорания с целью получения управляющего сигнала для регулирования состава топливовоздушной смеси, на которой работает двигатель внутреннего сгорания.
Измерительный датчик 10 имеет измерительный элемент (ячейку) Нернста 12 и элемент 14 накачки. Измерительный элемент Нернста 12 имеет первый электрод 16 и второй электрод 18, между которыми расположен твердый электролит 20. На электрод 16 через диффузионный барьер 22 воздействуют анализируемые отработавшие газы 24. Измерительный датчик 10 имеет измерительное отверстие 26, в которое могут поступать отработавшие газы 24. В основании измерительного отверстия 26 проходит диффузионный барьер 22, причем образуется полость 28, внутри которой расположен электрод 16. Электрод 18 измерительного элемента Нернста 12 расположен в канале 30 эталонного (опорного) воздуха и подвергается воздействию находящегося в канале 30 эталонного газа, например воздуха. Твердый электролит 20 состоит, например, из оксида циркония, стабилизированного оксидом иттрия, а электроды 16 и 18 выполнены из платины и оксида циркония.
Измерительный датчик 10 соединен с переключательной схемой 32, показанной здесь лишь условно, которая служит для обработки (анализа) сигналов измерительного датчика 10 и управления датчиком 10. При этом электроды 16 и 18 связаны, соответственно, со входами 34 и 36, к которым приложено выходное напряжение UD измерительного элемента Нернста 12.
Элемент 14 накачки состоит из первого электрода 38 и второго электрода 40, между которыми расположен электролит 42. Твердый электролит 42 и в этом случае состоит, например, из оксида циркония, стабилизированного оксидом иттрия, а электроды 38 и 40 также могут быть выполнены из платины и оксида циркония. Электрод 38 также размещен в полости 28 и таким образом также испытывает воздействие отработавших газов 24 через диффузионный барьер 22. Электрод 40 имеет защитное покрытие 44, которое является пористым, и поэтому электрод 40 подвергается воздействию отработавших газов 24 непосредственно. Электрод 40 соединен со входом 46 переключательной схемы 32, а электрод 38 соединен с электродом 16 и вместе с ним подключен ко входу 34 переключательной схемы 32.
Измерительный датчик 10 содержит также нагревательное устройство 50, образованное так называемым меандровым нагревателем и соединенное со входами 52 и 54 переключательной схемы 32. На входы 52 и 54 посредством регулирующей схемы 56 может подаваться напряжение накала UH.
Измерительный датчик работает следующим образом.
Отработавшие газы 24 через измерительное отверстие 26 и диффузионный барьер 22 поступают в полость 28, а значит к электродам 16 измерительного элемента Нернста 12 и к электроду 38 элемента 14 накачки. Ввиду содержания в анализируемых отработавших газах кислорода между электродом 16 и электродом 18, на который воздействует эталонный газ, возникает разность концентраций кислорода. Посредством вывода 34 электрод 16 соединен с источником тока переключательной схемы 32, выдающим постоянный ток. Вследствие разности концентраций кислорода на электродах 16 и 18 устанавливается определенное выходное напряжение UD (напряжение Нернста). При этом измерительный элемент Нернста 12 работает в качестве датчика концентрации кислорода, также называемого кислородным датчиком или лямбда-зондом, определяющего, является ли концентрация кислорода в отработавших газах 24 высокой или низкой. По концентрации кислорода можно понять, является ли топливовоздушная смесь, на которой работает двигатель внутреннего сгорания, богатой или бедной смесью. При переходе из богатой в бедную область, или наоборот, выходное напряжение UD падает или, соответственно, возрастает.
С помощью переключательной схемы 32 выходное напряжение UD используют для определения напряжения накачки UP, которое подается на элемент 14 накачки между его электродами 38 и 40. В зависимости от того, сигнализирует ли выходное напряжение UD о нахождении топливовоздушной смеси в богатой или бедной области, напряжение накачки UP отрицательно или положительно, так что электрод 40 включен в качестве катода или в качестве анода. Соответственно устанавливается ток накачки IP, который можно измерять с помощью измерительного устройства переключательной схемы 32. Ток накачки IP перекачивает ионы кислорода от электрода 40 к электроду 38, или наоборот. Измеренный ток накачки IP служит для управления устройством регулирования состава топливовоздушной смеси, на которой работает двигатель внутреннего сгорания.
Регулятор 56 позволяет подавать на выходы 54 и 52 переключательной схемы 32 напряжение накала UH с возможностью включения и выключения нагревательного устройства 50. Нагревательное устройство 50 позволяет доводить измерительный датчик 10 до рабочей температуры около 780°С и выше. Вследствие колебаний скорости течения и/или температуры отработавших газов 24 отработавшие газы 24 передают на измерительный датчик 10 определенную переменную тепловую энергию. В зависимости от нагревания измерительного датчика 10 отработавшими газами 24 необходимо включение или выключение нагревательного устройства 50. Для определения фактической рабочей температуры измерительного датчика 10 переключательная схема 32 имеет измерительную схему 58, позволяющую измерять внутреннее сопротивление измерительного элемента Нернста 12, включая проводники, ведущие к переключательной схеме 32, по переменному току. Внутреннее сопротивление измерительного элемента Нернста 12 по переменному току зависит от температуры, поэтому по измеренному внутреннему сопротивлению измерительного элемента Нернста 12 переменному току можно определять рабочую температуру. В зависимости от определенной рабочей температуры измерительная схема 58 выдает сигнал 60 в схему 56 управления нагревом.
Определение внутреннего сопротивления измерительного элемента Нернста 12 переменному току само по себе известно и описано, например, в публикации DE 19838456, которое в полном объеме включено в описание путем ссылки. Измерение температуры через сопротивление Ri электролита осуществляется с использованием эффекта ОТК (отрицательного температурного коэффициента).
Путем измерения этого сопротивления определяют температуру и соответствующим образом регулируют мощность, идущую на нагрев, таким образом доводя зонд до рабочей температуры. Если зонд не имеет собственного подогрева, а нагревается только отработавшими газами, можно путем измерения сопротивления определять окружающую температуру или температуру отработавших газов. Однако это измерение возможно только в ограниченной области температур примерно до 800°С. Измерение при более высокой температуре затруднительно.
При определении окружающей температуры или температуры отработавших газов интерес представляют, прежде всего, температуры выше 800°С. Вследствие экспоненциального характера своего падения зависимость сопротивления от температуры в этой области температур имеет пологую характеристику, как показано на фиг.2а, где представлена зависимость внутреннего сопротивления элемента Нернста 12 от температуры. Кроме того, область допустимых отклонений от характеристики 210 расширяется, так как приходящаяся на проводник питания доля сопротивления, непостоянная по технологическим причинам и зависящая от температуры лишь незначительно, возрастает. По этой причине определение высоких температур на основании сопротивления электролита элемента Нернста 12 или же элемента накачки сопряжено с большой погрешностью.
В противоположность внутреннему сопротивлению элемента Нернста 12, т.е. сопротивлению электролита, металлическое сопротивление нагревательного устройства 50 обнаруживает показанное на фиг.2б линейное, а в области более высоких температур, находящейся выше 800°С, более крутое нарастание с повышением температуры. Правда, внутренние сопротивления нагревательного устройства 50 примерно на порядок меньше, чем внутренние сопротивления элемента Нернста 12, поэтому неизвестное смещение, например, обусловленное сопротивлением проводника питания, ведет к повышенной ошибке в корреляции внутреннего сопротивления нагревательного устройства 50 и окружающей температуры или температуры отработавших газов. Для того чтобы использовать такой измерительный датчик для работы с высокой точностью в широком температурном диапазон примерно от 500 до 1200°С, изобретение предусматривает определение температуры в первой области температур по внутреннему сопротивлению Ri элемента Нернста 12, а во второй области температур - по внутреннему сопротивлению Ri нагревательного устройства, как это схематически показано на фиг.3. В первой области температур, имеющей обозначение I, в которой кривая зависимости внутреннего сопротивления Ri элемента Нернста 12 от температуры обнаруживает крутое падение, температуру измерительного датчика определяют путем определения этого внутреннего сопротивления. Во второй области температур, имеющей обозначение II, в которой кривая зависимости внутреннего сопротивления Ri элемента Нернста 12 от температуры изменяется мало, температуру измерительного датчика определяют путем определения внутреннего сопротивления нагревательного устройства 50.
Можно также предусмотреть дополнительное определение температуры по внутреннему сопротивлению нагревательного устройства 50 в области I и сравнение полученного таким образом значения температуры со значением температуры, найденным путем определения внутреннего сопротивления элемента Нернста 12. При этом из этих двух полученных таким образом значений температуры можно также вычислить среднее значение. То же относится соответственно к области II. Кроме того, предлагаемый в изобретении способ позволяет определять также смещение сопротивлений в проводниках питания, для чего требуются известные из уровня техники дополнительные несложные методы измерений, и калибровать характеристику изменения внутреннего сопротивления нагревательного устройства 50 по температуре во время работы датчика или в фазе пуска. Путем такой калибровки, более подробно описанной ниже, можно выполнять измерение внутреннего сопротивления нагревательного устройства 50 с повышенной точностью. Это дает следующие преимущества:
- на точности не сказываются погрешности температурной зависимости внутреннего сопротивления нагревательного устройства 50, обусловленные непостоянством сопротивлений нагревательного устройства 50, связанным с технологией изготовления печатных схем;
- устраняются неизвестные смещения температурной зависимости внутреннего сопротивления нагревательного устройства 50, обусловленные непостоянством сопротивления проводников питания;
- не требуются дополнительные датчики температуры.
Калибровка температурной характеристики нагревательного устройства 50, т.е. зависимости его внутреннего сопротивления от температуры, осуществляется следующим образом: при температуре ТК с помощью температурной зависимости 210 внутреннего сопротивления элемента Нернста 12 выполняют точное определение температуры. Взяв за основу результат этого измерения или нескольких подобных измерений, выполняют калибровку температурной характеристики нагревательного устройства 50, т.е. зависимости его внутреннего сопротивления от температуры, в отношении абсолютного значения этой характеристики. Тогда при высоких температурах в области II температуру определяют с помощью откалиброванной таким образом температурной характеристики нагревательного устройства 50.
Рассмотренное выше измерение температуры осуществляется в то время, когда нагревательное устройство выключено. При этом для нагревателя, управляемого в тактовом режиме, измерение всегда выполняют в промежутки времени, в которых на нагреватель не подается ток/напряжение.
Регистрацию сопротивления можно выполнять, например, в том случае, если - как показано на фиг.4 - нагревательное устройство не получает от батареи напряжение питания UBat, а соединено, например, электронным переключателем 410 с измерительной схемой, содержащей шунтирующее сопротивление RSchunt, на котором вольтметром 420 измеряют падение напряжения и таким образом измеряют внутреннее сопротивление. При этом шунтирующее сопротивление RSchunt может иметь, например, значение 3 Ом, позволяющее очень точно определять сопротивление, так как в случае выключенного нагрева даже при относительно большом шунтирующем сопротивлении RSchunt потери на сопротивлении не уменьшают мощности нагревательного устройства.
Путем сравнения значений внутреннего сопротивления нагревательного устройства 50 при двух сильно различающихся температурах измерительного датчика можно судить об отношении сопротивления меандрового проводника и сопротивления проводов питания. Это позволяет отличить ошибку 240, относимую к меандровому нагревателю, от ошибки 250, относимой к проводам питания (см. фиг.2б). Дело в том, что сопротивление нагревателя складывается из сопротивления проводников питания и сопротивления меандрового проводника, причем зависимость от температуры обнаруживает прежде всего сопротивление меандрового проводника. Если теперь измерять сопротивление при двух температурах, например непосредственно после пуска двигателя транспортного средства и в момент времени, когда уже достигнута рабочая температура датчика 780°С, то можно определить изменение сопротивления нагревательного устройства 50, а по нему и сопротивление меандрового проводника, пропорциональное изменению сопротивления. С помощью сопротивления меандрового проводника можно по сопротивлению нагревательного устройства 50 определить долю сопротивления проводнков питания. Это позволит также отличить ошибку смещения от пропорциональной ошибки.
Компенсация ошибки смещения и пропорциональной ошибки может осуществляться путем измерения в двух или нескольких точках измерения или при двух или нескольких температурах. Условием этого является описанная выше калибровка характеристики 220 в точке ТК посредством точного определения температуры по температурной характеристике 210 элемента Нернста 12, характеризующей зависимость внутреннего сопротивления от температуры.
Далее, измерение внутреннего сопротивления RН нагревательного устройства 50 можно выполнять с помощью схемы, показанной на фиг.5, через шунт, включенный параллельно бестоковому выходу полевого транзистора 510. Этот шунт RSchunt2 в данном случае имеет сопротивление, например, 1 кОм. В этом случае переключение между включенным и выключенным состоянием нагревательного устройства не требуется.
Описанный выше способ может быть реализован, например, в виде компьютерной программы, выполняемой в процессоре, прежде всего в устройстве управления двигателем внутреннего сгорания. Программный код может храниться на машиночитаемом носителе, считываемом устройством управления.

Claims (9)

1. Способ определения температуры измерительного датчика, предназначенного для измерения концентрации кислорода в газовых смесях, прежде всего в отработавших газах двигателей внутреннего сгорания, при осуществлении которого анализируют выдаваемое измерительным элементом Нернста (12) выходное напряжение, соответствующее концентрации кислорода, и доводят измерительный датчик до рабочей температуры посредством нагревательного устройства (50), отличающийся тем, что определяют в первой области температур внутреннее сопротивление измерительного элемента Нернста (12) и по нему делают вывод о температуре измерительного элемента Нернста (12), определяют во второй области температур внутреннее сопротивление нагревательного устройства (50) и по нему делают вывод о температуре измерительного элемента Нернста (12).
2. Способ по п.1, отличающийся тем, что внутреннее сопротивление нагревательного устройства (50) определяют в то время, когда нагревательное устройство (50) выключено.
3. Способ по п.1 или 2, отличающийся тем, что первая область температур и вторая область температур не перекрываются.
4. Способ по п.1 или 2, отличающийся тем, что первая область температур и вторая область температур перекрываются.
5. Способ по п.4, отличающийся тем, что в первой области температур определяют внутреннее сопротивление измерительного элемента Нернста (12) и по нему делают вывод о температуре измерительного элемента Нернста (12), одновременно, благодаря перекрытию двух областей температур, во второй области температур определяют внутреннее сопротивление нагревательного устройства (50) и по нему делают вывод о температуре измерительного элемента Нернста (12), и на основании обеих определенных таким образом температур делают вывод о температуре измерительного датчика.
6. Способ по п.3, отличающийся тем, что первая область температур заканчивается ниже рабочей температуры измерительного датчика, а вторая область температур начинается выше рабочей температуры измерительного датчика.
7. Способ по п.1, отличающийся тем, что в первой области температур, помимо внутреннего сопротивления измерительного элемента Нернста (12), также определяют внутреннее сопротивление нагревательного устройства (50) и путем сравнения внутреннего сопротивления измерительного элемента Нернста (12) с внутренним сопротивлением нагревательного устройства (50) выполняют калибровку температурной характеристики внутреннего сопротивления нагревательного устройства (50) в отношении ее абсолютного значения.
8. Способ по п.7, отличающийся тем, что первая область температур находится непосредственно ниже рабочей температуры измерительного датчика.
9. Способ по п.7 или 8, отличающийся тем, что результат калибровки абсолютного значения температурной характеристики, один раз выполненной в новом состоянии датчика, сохраняют в памяти и используют в течение всего срока службы измерительного датчика.
RU2009122509/28A 2006-11-15 2007-10-23 Способ определения температуры измерительного датчика RU2453834C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006053808.0A DE102006053808B4 (de) 2006-11-15 2006-11-15 Verfahren zur Bestimmung der Temperatur eines Messfühlers
DE102006053808.0 2006-11-15

Publications (2)

Publication Number Publication Date
RU2009122509A RU2009122509A (ru) 2010-12-20
RU2453834C2 true RU2453834C2 (ru) 2012-06-20

Family

ID=38952192

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009122509/28A RU2453834C2 (ru) 2006-11-15 2007-10-23 Способ определения температуры измерительного датчика

Country Status (7)

Country Link
US (1) US8201998B2 (ru)
EP (1) EP2092317A1 (ru)
JP (1) JP4814996B2 (ru)
CN (1) CN101535799B (ru)
DE (1) DE102006053808B4 (ru)
RU (1) RU2453834C2 (ru)
WO (1) WO2008058834A1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2681724C2 (ru) * 2013-09-13 2019-03-12 Форд Глобал Текнолоджиз, Ллк Способ (варианты) и система регулирования мощности нагрева кислородного датчика для уменьшения его деградации под действием воды
RU2691209C2 (ru) * 2016-01-20 2019-06-11 Форд Глобал Текнолоджиз, Ллк Выявление потемнения элемента датчика кислорода
RU2706512C2 (ru) * 2014-10-10 2019-11-19 Форд Глобал Текнолоджиз, Ллк Способ компенсации старения датчика кислорода (варианты)
RU2737168C1 (ru) * 2020-02-05 2020-11-25 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела и механохимии Сибирского отделения Российской академии наук Способ определения температуры измерительного датчика Нернста

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008042268A1 (de) * 2008-09-22 2010-04-01 Robert Bosch Gmbh Verfahren zum Betreiben einer beheizbaren Abgassonde
DE102008042505A1 (de) * 2008-09-30 2010-04-01 Robert Bosch Gmbh Verfahren zum Betreiben eines Abgassensors und Vorrichtung zur Durchführung des Verfahrens
JP5030239B2 (ja) * 2008-10-02 2012-09-19 日本特殊陶業株式会社 ガスセンサの異常診断装置および異常診断方法
DE102008055108A1 (de) * 2008-12-22 2010-07-01 Robert Bosch Gmbh Sensoranordnung mit Temperaturfühler
DE102010002458A1 (de) * 2009-09-11 2011-03-24 Robert Bosch Gmbh Abgassonde
US20110106476A1 (en) * 2009-11-04 2011-05-05 Gm Global Technology Operations, Inc. Methods and systems for thermistor temperature processing
DE102009055041B4 (de) * 2009-12-21 2021-12-09 Robert Bosch Gmbh Verfahren zum schnellen Erreichen der Betriebsbereitschaft einer beheizbaren Abgassonde
DE102010040146A1 (de) 2010-09-02 2012-03-08 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erfassung mindestens einer Eigenschaft eines Gases
DE102010041421A1 (de) * 2010-09-27 2012-03-29 Robert Bosch Gmbh Verfahren zum Betrieb eines Sensorelements
DE102010042013A1 (de) * 2010-10-06 2012-04-12 Robert Bosch Gmbh Verfahren zur Einstellung einer Temperatur eines Sensorelements
DE102010054178A1 (de) * 2010-12-10 2012-06-14 Continental Automotive Gmbh Heizungsregelkreis und Verfahren zur Heizungsregelung, insbesondere bei Zirkonoxid-basierten Sensoren
CN103748460A (zh) * 2011-08-26 2014-04-23 罗伯特·博世有限公司 用于获取测量气体空间中气体的至少一个性能的传感器元件
EP2816350B1 (en) * 2012-02-14 2019-11-06 Toyota Jidosha Kabushiki Kaisha Control device for exhaust gas sensor
WO2014016920A1 (ja) * 2012-07-25 2014-01-30 トヨタ自動車株式会社 燃料噴射装置
DE102015207880A1 (de) * 2015-04-29 2016-11-03 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bestimmung eines Innenwiderstandes eines Sensorelements
JP6306626B2 (ja) * 2016-03-09 2018-04-04 本田技研工業株式会社 オープンエミッション分析の漏れ検出方法及びオープンエミッション分析装置
CN106768426B (zh) * 2016-12-22 2023-11-03 浙江维思无线网络技术有限公司 一种铝电解槽阴极测温传感器及其安装使用方法
CN114625188B (zh) * 2021-03-25 2025-02-18 长城汽车股份有限公司 传感器加热控制方法及控制系统
DE102021113989A1 (de) * 2021-05-31 2022-12-01 Purem GmbH Abgasheizer
CN116048159B (zh) * 2023-01-30 2024-09-13 银河航天(北京)网络技术有限公司 一种基于匹配度的卫星热控管理方法、装置以及存储介质
CN118010808B (zh) * 2024-01-31 2025-02-07 南京高华科技股份有限公司 具有热磁式测温结构的mems微热板式气体传感器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4106308A1 (de) * 1991-02-28 1992-09-03 Bosch Gmbh Robert Verfahren und vorrichtung zur temperaturregelung fuer eine abgassonde
EP0695983A2 (en) * 1994-08-05 1996-02-07 Nippondenso Co., Ltd. Heater control apparatus for oxygen sensor
RU2138799C1 (ru) * 1994-06-02 1999-09-27 Т/О Научно-производственное предприятие "ЭРГ" Газоанализатор
DE19838456A1 (de) * 1998-08-25 2000-03-09 Bosch Gmbh Robert Verfahren zur Temperaturregelung eines Meßfühlers
US6812436B2 (en) * 2002-09-06 2004-11-02 Mitsubishi Denki Kabushiki Kaisha Temperature control apparatus for exhaust gas sensor

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4535316A (en) * 1984-03-26 1985-08-13 Allied Corporation Heated titania oxygen sensor
JPS62238455A (ja) * 1986-04-09 1987-10-19 Ngk Insulators Ltd 酸素分析方法及び装置
JPS63140955A (ja) 1986-12-03 1988-06-13 Japan Electronic Control Syst Co Ltd ヒ−タ付酸素センサのヒ−タ制御装置
DE3711511C1 (de) * 1987-04-04 1988-06-30 Hartmann & Braun Ag Verfahren zur Bestimmung der Gaskonzentrationen in einem Gasgemisch und Sensor zur Messung der Waermeleitfaehigkeit
JP2633641B2 (ja) * 1988-08-26 1997-07-23 本田技研工業株式会社 排気濃度検出装置
US4900412A (en) * 1988-08-24 1990-02-13 General Motors Corporation Heated solid electrolyte oxygen sensor having unique heater element
DE4415980A1 (de) * 1994-05-06 1995-11-09 Bosch Gmbh Robert Vorrichtung zur Temperaturmessung an einer Sauerstoffsonde
JPH11344466A (ja) * 1998-05-29 1999-12-14 Denso Corp ガス濃度センサのヒータ制御装置
DE19845927B4 (de) * 1998-10-06 2013-03-07 Robert Bosch Gmbh Verfahren zum Prüfen eines Meßfühlers
CN1241822A (zh) * 1998-11-13 2000-01-19 康达(成都)电子有限公司 一种氧传感器的制造方法
DE19853601A1 (de) * 1998-11-20 2000-05-25 Bosch Gmbh Robert Verfahren zur Herstellung einer Isolationsschicht und Meßfühler
JP3656453B2 (ja) * 1999-04-01 2005-06-08 トヨタ自動車株式会社 空燃比センサのヒータ制御装置
JP3785024B2 (ja) * 2000-06-15 2006-06-14 株式会社日立製作所 触媒温度検出装置
JP3833467B2 (ja) * 2000-11-22 2006-10-11 三菱電機株式会社 排ガスセンサの劣化検出装置
JP3843881B2 (ja) * 2001-05-31 2006-11-08 株式会社デンソー ガス濃度センサのヒータ制御装置
DE10339967A1 (de) * 2002-08-30 2004-04-15 Denso Corp., Kariya Mehrschicht-Gassensorelement
US7036982B2 (en) * 2002-10-31 2006-05-02 Delphi Technologies, Inc. Method and apparatus to control an exhaust gas sensor to a predetermined termperature
DE102006014681A1 (de) * 2006-03-28 2007-10-04 Robert Bosch Gmbh Gassensor
US7979689B2 (en) * 2008-02-01 2011-07-12 Perceptron, Inc. Accessory support system for remote inspection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4106308A1 (de) * 1991-02-28 1992-09-03 Bosch Gmbh Robert Verfahren und vorrichtung zur temperaturregelung fuer eine abgassonde
RU2138799C1 (ru) * 1994-06-02 1999-09-27 Т/О Научно-производственное предприятие "ЭРГ" Газоанализатор
EP0695983A2 (en) * 1994-08-05 1996-02-07 Nippondenso Co., Ltd. Heater control apparatus for oxygen sensor
DE19838456A1 (de) * 1998-08-25 2000-03-09 Bosch Gmbh Robert Verfahren zur Temperaturregelung eines Meßfühlers
US6812436B2 (en) * 2002-09-06 2004-11-02 Mitsubishi Denki Kabushiki Kaisha Temperature control apparatus for exhaust gas sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2681724C2 (ru) * 2013-09-13 2019-03-12 Форд Глобал Текнолоджиз, Ллк Способ (варианты) и система регулирования мощности нагрева кислородного датчика для уменьшения его деградации под действием воды
RU2706512C2 (ru) * 2014-10-10 2019-11-19 Форд Глобал Текнолоджиз, Ллк Способ компенсации старения датчика кислорода (варианты)
RU2691209C2 (ru) * 2016-01-20 2019-06-11 Форд Глобал Текнолоджиз, Ллк Выявление потемнения элемента датчика кислорода
RU2737168C1 (ru) * 2020-02-05 2020-11-25 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела и механохимии Сибирского отделения Российской академии наук Способ определения температуры измерительного датчика Нернста

Also Published As

Publication number Publication date
CN101535799A (zh) 2009-09-16
JP2009537839A (ja) 2009-10-29
WO2008058834A1 (de) 2008-05-22
US20090308135A1 (en) 2009-12-17
EP2092317A1 (de) 2009-08-26
DE102006053808B4 (de) 2021-01-07
CN101535799B (zh) 2013-04-24
US8201998B2 (en) 2012-06-19
JP4814996B2 (ja) 2011-11-16
RU2009122509A (ru) 2010-12-20
DE102006053808A1 (de) 2008-05-21

Similar Documents

Publication Publication Date Title
RU2453834C2 (ru) Способ определения температуры измерительного датчика
JP5021697B2 (ja) ガス濃度湿度検出装置
US4543176A (en) Oxygen concentration detector under temperature control
US6214207B1 (en) Method and apparatus for measuring oxygen concentration and nitrogen oxide concentration
US4601809A (en) Oxygen concentration detecting system using oxygen sensor including oxygen ion pump
US5413683A (en) Oxygen sensing apparatus and method using electrochemical oxygen pumping action to provide reference gas
US8075759B2 (en) Procedure for the determination of the Lambda values with a broadband Lambda probe
EP1239282B1 (en) Gas sensor and method of heating the same
US6266993B1 (en) Method for testing a measuring sensor
US6254765B1 (en) Method of regulating the temperature of a sensor
JP4796756B2 (ja) 排気ガス内の残量酸素を監視するための測定装置、及び測定装置を操作するための方法
US6712054B2 (en) Device and method for measuring element temperature of air-fuel ratio sensor, and device and method for controlling heater of air-fuel ratio sensor
JP5247780B2 (ja) ガスセンサの校正方法
JP2006527843A (ja) 複数の排ガス成分を測定するための装置と方法
JP2013528810A (ja) ガスセンサを作動するための回路装置
US6939037B2 (en) Determining the temperature of an exhaust gas sensor by means of calibrated internal resistance measurement
US7052596B2 (en) Linear lambda probe evaluation circuit
US6805782B2 (en) Compound layered type of sensing device for multiple measurement
JP3565091B2 (ja) ガス濃度センサの特性計測方法
JP2008516195A (ja) ガス混合物内のガス成分の濃度を決定するためのセンサ・エレメントおよびその作動方法
US20020189942A1 (en) Gas concentration measuring device
JP3869629B2 (ja) 空燃比センサの活性判定装置
US20240133839A1 (en) Gas sensor
JP5826729B2 (ja) 酸素濃度測定方法及び酸素濃度測定装置
US20010020592A1 (en) Method for determining the oxygen content of a measurement gas

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171024