RU2421662C2 - Газотурбинный двигатель и способ обнаружения частичного погасания факела в газотурбинном двигателе - Google Patents
Газотурбинный двигатель и способ обнаружения частичного погасания факела в газотурбинном двигателе Download PDFInfo
- Publication number
- RU2421662C2 RU2421662C2 RU2009132539/06A RU2009132539A RU2421662C2 RU 2421662 C2 RU2421662 C2 RU 2421662C2 RU 2009132539/06 A RU2009132539/06 A RU 2009132539/06A RU 2009132539 A RU2009132539 A RU 2009132539A RU 2421662 C2 RU2421662 C2 RU 2421662C2
- Authority
- RU
- Russia
- Prior art keywords
- gas
- temperature
- temperatures
- measurements
- turbine engine
- Prior art date
Links
- 230000008033 biological extinction Effects 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000002485 combustion reaction Methods 0.000 claims abstract description 63
- 238000005259 measurement Methods 0.000 claims description 70
- 238000001514 detection method Methods 0.000 claims description 54
- 230000008859 change Effects 0.000 claims description 30
- 238000009529 body temperature measurement Methods 0.000 claims description 7
- 238000011156 evaluation Methods 0.000 claims description 6
- 230000000694 effects Effects 0.000 abstract description 4
- 238000012986 modification Methods 0.000 abstract 1
- 230000004048 modification Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000000446 fuel Substances 0.000 description 14
- 238000013461 design Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000012854 evaluation process Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/02—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
- F23N5/10—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermocouples
- F23N5/102—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermocouples using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D21/00—Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
- F01D21/003—Arrangements for testing or measuring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/26—Starting; Ignition
- F02C7/262—Restarting after flame-out
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/24—Preventing development of abnormal or undesired conditions, i.e. safety arrangements
- F23N5/242—Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2225/00—Measuring
- F23N2225/08—Measuring temperature
- F23N2225/16—Measuring temperature burner temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2225/00—Measuring
- F23N2225/08—Measuring temperature
- F23N2225/21—Measuring temperature outlet temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2231/00—Fail safe
- F23N2231/06—Fail safe for flame failures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2241/00—Applications
- F23N2241/20—Gas turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- Control Of Turbines (AREA)
Abstract
Изобретение относится к способу обнаружения частичного погасания факела в газотурбинном двигателе. Газовая турбина имеет газовый канал для направления движущего газа и несколько камер сгорания, при этом каждая из камер сгорания ведет в газовый канал и содержит горелку. Способ содержит этапы: измерения через определенное время первой температуры в каждой из, по меньшей мере, двух точек измерения, расположенных ниже по потоку камер сгорания в газовом канале, измерения через определенное время второй температуры в каждой из, по меньшей мере, двух горелок и обнаружения частичного погасания факела из измерений первых температур и измерений вторых температур, при этом обнаружение частичного погасания факела включает в себя этап определения первого параметра обнаружения, при этом первый параметр обнаружения определяется из скорости изменения разброса между измерениями первых температур в различных точках измерения. Изобретение позволяет повысить надежность и экономичность. 2 н. и 8 з.п. ф-лы, 3 ил.
Description
УРОВЕНЬ ТЕХНИКИ
Настоящее изобретение относится к способу обнаружения частичного погасания факела в газотурбинном двигателе, имеющем газовый канал для направления движущего газа и несколько камер сгорания, при этом каждая из камер сгорания ведет в газовый канал и содержит горелку. Кроме того, изобретение относится к газотурбинному двигателю упомянутого типа.
В таком газотурбинном двигателе общеизвестного уровня техники газовый канал или канал потока газа проходит через секцию сгорания, расположенную между компрессорной и турбинной секциями. Секция сгорания может включать в себя круговой массив камер сгорания. Воздух под высоким давлением от компрессора проходит через секцию сгорания, где он смешивается с топливом и сгорает. Как упомянуто выше, камеры сгорания каждая содержит горелку для воспламенения смеси воздух/топливо, особенно во время запуска газотурбинного двигателя.
Газообразные продукты сгорания выходят из секции сгорания с тем, чтобы привести в движение турбинную секцию, которая приводит в действие компрессор. В одновальных конструкциях турбины высокого давления и низкого давления турбинной секции механически соединены и вместе приводят в движение выходной приводной вал. В двухвальных конструкциях турбина низкого давления (силовая турбина) является механически независимой, т.е. только приводит в движение выходной приводной вал, а турбина высокого давления или так называемая компрессорная турбина приводит в действие компрессор. Это объединение работает в качестве газогенератора для турбины низкого давления. Газообразные продукты сгорания выходят из турбинной секции через выпускной канал.
Частичное погасание факела определяется в виде погасания факела в подмножестве камер сгорания, т.е. в одной или более, но не во всех камерах сгорания. Погасание факела во всех камерах сгорания рассматривалось бы полным погасанием факела. В случае такого частичного погасания факела не все поданное топливо сгорает в секции сгорания, что приводит к ухудшению общей работы и производительности двигателя. В случае частичного обрыва факела топливо продолжает подаваться системой управления в секцию сгорания в стремлении соответствия расходу топлива. Включение топлива в секцию сгорания, которое не полностью сгорело, имеет неблагоприятный результат образования высокого уровня выбросов и несгоревших углеводородов. Кроме того, это попадание несгоревшего топлива в воздух создает огнеопасную смесь, которая может быть воспламенена любой горячей зоной или искрой и может привести к последующему взрыву в выпускном канале.
Различные системы были разработаны для обнаружения состояний частичного погасания факела в газотурбинном двигателе. Эти системы включают в себя измерительные системы обнаружения, которые используют инфракрасные (ИК) и ультрафиолетовые (УФ) датчики для обнаружения наличия или отсутствия факела в заданных местах. Этот тип систем обнаружения очень сильно зависит от расположения датчиков и может неправильно определить отсутствие факела. Более того, пламенно-температурные детекторы периодически испытывают недостаток загрязнения маслом или копотью, вызывающего отказ обнаружения. Кроме того, эти системы обнаружения факела, в большинстве случаев, являются дорогостоящими в обеспечении и техническом обслуживании.
GB 2282221 A описывает пламенно-температурный детектор для газотурбинного двигателя. Пламенно-температурный детектор содержит первый температурный датчик и второй температурный датчик, которые оба предусмотрены для обнаружения температуры окружающей среды снаружи камеры сгорания. Кроме того, второй температурный датчик предусмотрен также для обнаружения инфракрасного излучения от камеры сгорания. Первый температурный датчик и второй температурный датчик расположены в первом полом элементе и во втором полом элементе, соответственно. В то время как первый полый элемент является открытым по направлению к потоку воздуха, второй полый элемент является открытым не только по направлению к потоку воздуха, но и также к направлению, которое обеспечивает прямую видимость факела в камере сгорания через отверстие для подачи разбавляющего воздуха в камеру сгорания. Тепло от потока воздуха в камеру сгорания может конвективно передаваться на оба температурных датчика. Кроме конвективной теплопередачи инфракрасное излучение от факела внутри камеры сгорания может передаваться через отверстие на второй температурный датчик. В случае успешного воспламенения факел внутри камеры сгорания выделяет инфракрасное излучение, которое может быть обнаружено вторым температурным датчиком, но не первым температурным датчиком, таким образом оба температурных датчика определяют различные значения температуры. В случае, когда воспламенение не было успешным, оба температурных датчика измеряют только тепло, конвективно переданное от потока воздуха, таким образом оба определяют одинаковую температуру.
EP 1637805 A2 описывает способ обнаружения воспламенения для газовой турбины. В этом способе, изменение температуры, измеренной вниз по потоку турбины через определенное время, используется для того, чтобы сделать вывод, было ли воспламенение успешным.
US 4283634 описывает осуществление способа обнаружения частичного обрыва факела с многовальной турбиной.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Первой целью настоящего изобретения является обеспечение способа обнаружения частичного погасания факела в газотурбинном двигателе, посредством которого вышеупомянутые недостатки могут быть уменьшены и, в особенности, облегчено более надежное обнаружение частичного погасания факела, в частности, во время запуска и приложения нагрузки. Второй целью изобретения является обеспечение выгодного газотурбинного двигателя.
Первая цель достигается, в соответствии с настоящим изобретением, посредством обеспечения способа обнаружения частичного погасания факела в газотурбинном двигателе, имеющем газовый канал для направления движущего газа и несколько камер сгорания, при этом каждая из камер сгорания ведет в газовый канал и содержит горелку. Способ включает этапы: измерения через определенное время первой температуры в каждой из, по меньшей мере, двух точек измерения, расположенных вниз по потоку от камер сгорания в газовом канале, и предпочтительно в каждой из, по меньшей мере, трех таких точек измерения; измерения через определенное время второй температуры в каждой из, по меньшей мере, двух горелок и предпочтительно в каждой из, по меньшей мере, трех горелок; и обнаружения частичного погасания факела из измерений первых температур и измерений вторых температур, при этом указанное обнаружение частичного погасания факела включает в себя этап определения первого параметра обнаружения, при этом указанный первый параметр обнаружения определяется из скорости изменения разброса между указанными измерениями первых температур в различных точках измерения. В частности, измерение через определенное время второй температуры в каждой из, по меньшей мере, двух горелок может происходить в пилотных горелках.
Вторая цель достигается, в соответствии с настоящим изобретением, посредством обеспечения газотурбинного двигателя, имеющего газовый канал для направления движущего газа и несколько камер сгорания, при этом каждая из камер сгорания ведет в газовый канал и содержит горелку, при этом газовый канал содержит первый температурный датчик в каждой из, по меньшей мере, двух точек измерения, расположенных вниз по потоку от камер сгорания, и предпочтительно в каждой из, по меньшей мере, трех таких точек измерения, при этом каждый температурный датчик приспособлен для измерения через определенное время первой температуры. Каждая из, по меньшей мере, двух горелок и предпочтительно каждая из, по меньшей мере, трех горелок содержит второй температурный датчик (например, в пилотных горелках) для измерения через определенное время второй температуры. Газотурбинный двигатель дополнительно включает в себя средство оценки для обнаружения частичного погасания факела из измерений первых температур и измерений вторых температур.
Другими словами, первые температурные датчики размещены, по меньшей мере, в двух точках измерения в газовом канале в области вниз по потоку от камер сгорания, т.е. в области турбинной секции, или далее вниз по потоку. Предпочтительно количество первых температурных датчиков в газовом канале составляет от 12 до 16. Однако более чем 16 или менее чем 12 температурных датчиков также может быть использовано. Температурные датчики в газовом канале осуществляют мониторинг поведения во времени так называемых значений первых температур. Кроме того, вторые температурные датчики размещены, по меньшей мере, в двух горелках, предпочтительно во всех горелках, например от 6 до 8 горелках. Однако это не следует подразумевать ограничением, так как более чем 8 или менее чем 6 горелок может присутствовать. Температурные датчики в горелках определяют поведение во времени так называемых значений вторых температур. Из измерений первых температур и измерений вторых температур может быть определено, произошло ли частичное погасание факела, т.е. произошло ли погасание факела в подмножестве камер сгорания. Во время безошибочной работы газотурбинного двигателя каждая камера сгорания имеет факел.
Изобретение основывается на понимании, что посредством измерения через определенное время первых температур в различных точках измерения можно осуществлять мониторинг развития во времени однородности температурного поля в газовом канале. Частичное погасание факела обычно сопровождается увеличением неоднородности температурного поля в газовом канале. Следовательно, является возможным получить первый признак частичного погасания факела из значений первых температур.
Затем, изобретение основывается на понимании, что, кроме того, частичное погасание факела сопровождается расхождением температурных градиентов в горелках, в особенности на наконечниках горелок. Это приводит к увеличению разброса измерений температур в различных горелках. Следовательно, измерение вторых температур в горелках, например в пилотных горелках, обеспечивает дополнительный признак частичного погасания факела.
Сочетание измерений первых температур и измерений вторых температур в соответствии с изобретением обеспечивает особенно надежное обнаружение частичного погасания факела. Это, как и различия динамического поведения между вторыми температурными датчиками в горелках и первыми температурными датчиками в газовом канале в ответ на изменения температуры потока газа и обстоятельство, заключающееся в том, что температура газового канала изменяется во время запуска, может быть существенным. Температура газового канала кратко изменяется вследствие модуляции топлива или сопла и динамического поведения процесса горения и так далее даже без обрыва факела, имеющего место в отдельной камере сгорания. Следовательно, сочетание измерений первых температур и измерений вторых температур в соответствии с изобретением учитывает динамический характер этих параметров и приводит к более надежному обнаружению частичного погасания факела, и ложное обнаружение частичного погасания факела в значительной степени предотвращается.
В соответствии с решением по изобретению, частичные погасания факелов во время запуска двигателя обнаруживаются с большей надежностью. Это позволяет предотвратить ложное обнаружение погасаний факелов, приводя к уменьшенному количеству остановок двигателя при запуске. Уменьшенное количество остановок при запуске приводит к увеличенному ожидаемому сроку службы газотурбинного двигателя и улучшает его работу в общем. Более того, система обнаружения в соответствии с изобретением может быть установлена в существующие газотурбинные силовые установки.
Предпочтительно температурные датчики для осуществления измерений температур содержат термопары. Термопары, использующиеся в газовом канале, должны обладать малой теплоемкостью и, следовательно, высокой скоростью отклика с тем, чтобы они обеспечивали хорошее представление температурного поля в газовом канале при любом режиме работы.
В предпочтительном варианте осуществления, обнаружение частичного погасания факела включает в себя этап определения первого параметра обнаружения, который определяется скоростью изменения разброса между измерениями первых температур в различных точках измерения. Таким образом, осуществляется мониторинг изменения во времени температурного рельефа между различными точками измерения в газовом канале. Предпочтительно первый параметр обнаружения определяется скоростью изменения среднеквадратического отклонения измерений первых температур в различных точках измерения. Это означает, что среднеквадратическое отклонение между температурами, измеренными в различных точках измерения в газовом канале, вычисляется для каждого измерения, т.е. для каждого момента времени измерений. Из изменения во времени разброса, в особенности, среднеквадратического отклонения, вычисляется скорость изменения. Разброс или среднеквадратическое отклонение первых температурных датчиков в газовом канале обеспечивает систему информацией об однородности температурного поля в газовом канале. В случае идеально однородного распределения температурного поля (все термопары в газовом канале с одинаковой температурой) среднеквадратическое отклонение имеет значение ноль. Ситуация частичного погасания факела сопровождается увеличением неоднородности температурного поля в канале, и это приводит к увеличению среднеквадратического отклонения. Увеличение разброса или среднеквадратического отклонения может иметь различные причины (например, расхождение производительности камер сгорания), но обрыв факела является легко узнаваемым с помощью характерной высокой скорости деформации температурного поля канала - высокой скорости изменения разброса или среднеквадратического отклонения.
Более того, предпочтительным является, если первый параметр обнаружения, который в дальнейшем обозначается с помощью D1, определяется посредством вычисления сглаженной скорости изменения разброса между измерениями первых температур в различных точках измерения. Более того, предпочтительным является, если первый параметр D1 обнаружения детально вычисляется, как изложено ниже:
где - расчетное значение скорости изменения среднеквадратического отклонения между измерениями первых температур в различных точках измерения для текущего временного шага,
- действительное значение скорости изменения среднеквадратического отклонения между измерениями первых температур в различных точках измерения для текущего временного шага,
- расчетное значение скорости изменения среднеквадратического отклонения между измерениями первых температур в различных точках измерения для предыдущего временного шага,
w1 - весовой коэффициент, и
d1=(1-w1) - коэффициент затухания.
Коэффициент затухания может иметь значение приблизительно 0,7. Однако, подходящий коэффициент затухания может зависеть, в частности, от частоты измерений при мониторинге и/или типа использующейся термопары.
В дополнительном предпочтительном варианте осуществления, обнаружение частичного погасания факела включает в себя этап определения второго параметра обнаружения, который определяется из разброса между скоростями изменения измерений вторых температур в различных горелках. Второй параметр обнаружения предпочтительно представляет собой среднеквадратическое отклонение скоростей изменения измерений вторых температур в различных горелках. Когда факел присутствует в камере сгорания, имеет место положительная, но умеренная скорость изменения температурного датчика в соответствующей горелке. С помощью вычисления второго параметра обнаружения из скоростей изменения измерений вторых температур вместо вычисления второго параметра из действительных температур, может быть получен более точный признак наличия факела в соответствующих камерах сгорания.
Несовпадения температур между различными горелками, в особенности между наконечниками горелок, во время запуска иногда могут быть обманчивыми, так как они являются результатом совместного влияния зажигания отдельного факела и первоначальной температуры отдельной горелки. Таким образом, меньшая температура наконечника горелки может быть вызвана поздним зажиганием, по сравнению с другими горелками, или даже горелкой, которая только что была заменена в прогретом двигателе. С помощью вычисления разброса или среднеквадратического отклонения между скоростями изменения обеспечивается информация о синхронности горения. В случае, при котором камеры сгорания являются идеально синхронизированными (температурные датчики с одинаковой скоростью изменения температуры), среднеквадратическое отклонение имеет значение ноль. Ситуация частичного погасания факела обычно сопровождается расхождением температурных градиентов горелок, в особенности температурных градиентов наконечников горелок, и это приводит к увеличению среднеквадратического отклонения.
В дополнительном предпочтительном варианте осуществления, второй параметр обнаружения определяется посредством вычисления разброса сглаженных скоростей изменения измерений вторых температур в различных горелках. Предпочтительно, сглаженные скорости изменения для соответствующей горелки j в текущий временной шаг t вычисляются, как изложено ниже:
w2 - весовой коэффициент, и
d2=(1-w2) - коэффициент затухания.
Коэффициент затухания может, например, составлять приблизительно 0,9. Однако подходящий коэффициент затухания может зависеть, в частности, от частоты измерений при мониторинге и/или типа использующейся термопары. Из вычисленных сглаженных скоростей изменения разброс или среднеквадратическое отклонение вычисляется для получения второго параметра D2 обнаружения.
В дополнительном предпочтительном варианте осуществления, первый параметр обнаружения сравнивается с первым пороговым значением, второй параметр обнаружения сравнивается со вторым пороговым значением, и частичное погасание факела выявляется, если оба параметра обнаружения превышают соответствующее пороговое значение. Например, первое пороговое значение может иметь величину приблизительно 5°C/с, а второе пороговое значение может иметь величину приблизительно 0,5°C/с. Однако подходящие величины для первого и второго пороговых значений могут зависеть, в частности, от конструкции двигателя и/или типа использующейся термопары. Кроме того, вместо статических пороговых значений также могут быть использованы динамические пороговые значения.
Более того, предпочтительным является, если частичное погасание факела выявляется только, если оба параметра обнаружения превышают соответствующее пороговое значение в течение заданного количества последовательных измерений соответствующего параметра обнаружения. Предпочтительно для выявления частичного погасания факела используется некоторое количество последовательных измерений, например три последовательных измерения. Однако наиболее предпочтительное количество последовательных измерений зависит от частоты измерений. В качестве альтернативы, также время задержки может быть задано для соответствующих параметров обнаружения, предоставляя промежуток времени, в течение которого параметры обнаружения должны превышать соответствующие пороговые значения перед тем, как выявляется ситуация частичного обрыва факела. Это время задержки может изменяться в качестве функции, в частности, частоты измерений и может, например, составлять приблизительно 0,5 секунд и для первого, и для второго параметра обнаружения.
Более того, предпочтительным является, если вторые температуры измеряются на наконечниках соответствующих горелок, обращенных к соответствующим камерам сгорания. Предпочтительно температурные датчики встроены в наконечники горелок, которые обладают большой массой и, следовательно, большой тепловой инерцией. Когда факел присутствует в камере сгорания, в наконечнике горелки имеет место тепловой поток, дающий положительную, но умеренную степень изменения температуры датчика наконечника горелки.
Более того, предпочтительным является, если газотурбинный двигатель содержит силовую турбину, подлежащую приведению в движение движущим газом, продолжающуюся выпускным каналом, и, по меньшей мере, две точки измерения для измерения первых температур расположены в области выхода силовой турбины к выпускному каналу. Этот вариант осуществления является особенно применимым для одновальных газотурбинных двигателей, но также может быть применен для двухвальных двигателей. В предпочтительном варианте осуществления, приблизительно 12 температурных датчиков расположены на выходе силовой турбины. Однако более или менее чем 12 температурных датчиков также может быть использовано.
В дополнительном предпочтительном варианте осуществления, газотурбинный двигатель содержит турбину высокого давления и турбину низкого давления, при этом каждая турбина приводится в движение движущим газом, а также промежуточный канал для направления движущего газа от турбины высокого давления к турбине низкого давления, и, по меньшей мере, две точки измерения для измерения первых температур расположены в промежуточном канале. Размещение температурных датчиков в промежуточном канале является особенно применимым для двухвальных газотурбинных двигателей, но также может быть применено для одновальных двигателей. Подходящее количество температурных датчиков в промежуточном канале может, например, составлять приблизительно 16 температурных датчиков. Однако изобретение также может быть осуществлено с более или менее чем 16 температурных датчиков.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Подробное описание настоящего изобретения предложено ниже со ссылкой на прилагаемые схематические чертежи, на которых:
Фиг.1 - вид в разрезе первого варианта осуществления газотурбинного двигателя в соответствии с изобретением;
Фиг.2 - вид в разрезе второго варианта осуществления газотурбинного двигателя в соответствии с изобретением; и
Фиг.3 - вид в продольном разрезе пилотной горелки, размещенной в газотурбинных двигателях в соответствии с фиг.1 и 2.
ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Фиг.1 иллюстрируют первый вариант осуществления газотурбинного двигателя 10 в виде одновального газотурбинного двигателя. Газотурбинный двигатель 10 содержит один вал 12 ротора, несущий и компрессор 14, и силовую турбину 16. Газовый канал 34 направляет движущий газ 18 через двигатель 10, начиная от впускной секции 20 через компрессор 14, секцию 22 сгорания, силовую турбину 16 и выпускной канал 26.
В левой части двигателя 10 в соответствии с фиг.1 движущий газ 18 в виде воздуха проходит через впускную секцию 20 в компрессор 14. Затем, компрессор 14 сжимает движущий газ 18. Далее, движущий газ 18 входит в секцию 22 сгорания двигателя 10, в которой он смешивается с топливом и воспламеняется в камерах 24 сгорания. Секция 22 сгорания содержит круговой массив камер 24 сгорания, из которых только одна показана на фиг.1 и которые ведут в газовый канал 34.
Сгоревший движущий газ 18 проходит через силовую турбину 16, расширяясь там и приводя в движение вал 12 ротора. Далее расширенный движущий газ 18 входит в выпускной канал 26. На выходе 28 силовой турбины 16 в выпускной канал 26 несколько первых температурных датчиков 30a в виде так называемых выходных термопар силовых турбин размещено в различных точках 32a измерения. Вследствие размещения первых температурных датчиков 30a на выходе 28 силовой турбины точки 32a измерения расположены вниз по потоку от камер 24 сгорания.
Камеры 24 сгорания каждая содержит горелку 36 для подачи топлива во внутреннюю часть соответствующей камеры 24 сгорания и воспламенения смеси топливо/воздух. Горелка 36 содержит пилотную горелку 37. Такая пилотная горелка 37 детально показана на фигуре 3. Пилотная горелка 37 включает в себя топливный впускной канал 38 для подачи топлива в пилотную горелку 37. Затем, топливо направляется к поверхности 40 или наконечнику пилотной горелки 37. Кроме того, каждая пилотная горелка 37 включает в себя второй температурный датчик 42 в виде так называемой термопары наконечника горелки, предусмотренный для измерения температуры на поверхности 40 горелки. Температуры, измеренные через определенное время первыми температурными датчиками 30a и вторыми температурными датчиками 42, оцениваются с помощью средства 44 оценки. В качестве результата этой оценки принимается решение, произошло ли частичное погасание факела, т.е. погасание факела в подмножестве камер 24 сгорания. Алгоритм оценки будет описан позже в тексте. Однако следует отметить, что необязательно требуется, чтобы термопара находилась в пилотной горелке. Другие расположения в горелке 36, позволяющие измерение температуры в горелке, в частности в наконечнике горелки, также являются возможными.
На фиг.2 показан второй вариант осуществления газотурбинного двигателя 10 в соответствии с изобретением в виде так называемого двухвального двигателя. Газотурбинный двигатель 10 в соответствии с фиг.2 отличается от двигателя 10 в соответствии с фиг.1 тем, что два механически независимых вала 46 и 48 ротора размещены в нем вместо одного вала 12 ротора в соответствии с фиг.1. Силовая турбина 16 в соответствии с фиг.1 в варианте осуществления в соответствии с фиг.2 разделена на турбину 50 высокого давления и турбину 52 низкого давления.
Турбина 50 высокого давления присоединена к первому валу 46 ротора, как и компрессор 14. Турбина 52 низкого давления смонтирована на втором валу 48 ротора. Газовый канал 34 включает в себя промежуточный канал 54 для направления движущего газа 18 от турбины 50 высокого давления к турбине 52 низкого давления. Вместо размещения первых температурных датчиков 30a на выходе 28 силовой турбины в соответствии с фиг.1 первые температурные датчики 30b размещены в различных точках 32b измерения в промежуточном канале 54 двигателя 10 в соответствии с фиг. 2. Вторые температурные датчики 42 размещены, как и в варианте осуществления в соответствии с фиг.1, на соответствующих поверхностях 40 пилотных горелок 37. Также, газотурбинный двигатель 10 в соответствии с фиг.2 включает в себя средство 44 оценки для оценки измерений первых температур и измерений вторых температур для того, чтобы принять решение, произошло ли частичное погасание факела.
Средство 44 оценки в соответствии с фиг.1 и 2 приспособлено для выполнения процесса оценки, описанного ниже:
Первые температуры T1i,t (i=1, 2, …, n) снимаются с первых температурных датчиков 30a и 30b, соответственно, где n - количество первых температурных датчиков 30a и 30b, соответственно, а t - текущий временной шаг.
Затем средняя температура
вычисляется. Затем вычисляется среднеквадратическое отклонение
В качестве следующего шага, скорость изменения среднеквадратического отклонения,, вычисляется, используя процедуру численного дифференцирования:
где t - текущий временной шаг, (t-Δt) - предыдущий временной шаг, а Δt - промежуток времени [между шагами].
Далее, первый параметр D1 обнаружения, являющийся сглаженной скоростью изменения среднеквадратического отклонения, вычисляется, как изложено ниже:
где - расчетное значение скорости изменения среднеквадратического отклонения между измерениями первых температур в различных точках 32a и 32b измерения, соответственно, для текущего временного шага,
w1 - весовой коэффициент, и
d1=(1-w1) - коэффициент затухания.
В качестве следующего шага, D1 сравнивается с пороговым значением.
Затем, вторые температуры снимаются со вторых температурных датчиков 42 - T2j,t (j=1, 2, …, m), где m - количество вторых температурных датчиков 42, а t - текущий временной шаг.
Соответствующие скорости изменения вторых температур вычисляются, d(T2j,t)/dt, используя процедуру численного дифференцирования:
где t - текущий временной шаг, (t-Δt) - предыдущий временной шаг, а Δt - промежуток времени между шагами.
В качестве следующего шага, соответствующие сглаженные скорости изменения вторых температур вычисляются:
w2 - весовой коэффициент, и
d2=(1-w2) - коэффициент затухания.
Затем, среднее значение сглаженных первых производных вторых температур вычисляется:
В качестве следующего шага, вычисляется среднеквадратическое отклонение, являющееся вторым параметром D2 обнаружения:
Далее, D2 сравнивается с соответствующим пороговым значением.
Если во время периода мониторинга D1 превышает его заданное пороговое значение в течение заданного количества последовательных измерений и D2 также превышает его заданное пороговое значение в течение заданного количества последовательных измерений, выявляется частичное погасание факела. Следовательно, частичное погасание факела обнаруживается, только если и D1, и D2 превышают их пороговые значения. Этот подход основывается на взаимосвязанном влиянии камеры сгорания на первые температурные датчики. Влияниями завихрений - различных распределений влияния камеры сгорания на первые температурные датчики 30a и 30b, соответственно, при различных режимах работы - можно пренебрегать, используя этот способ обнаружения, благодаря обстоятельству, заключающемуся в том, что «модель» температурного поля газового канала представляется с помощью однозначно определяемого параметра - среднеквадратического отклонения всех первых температур.
Отдельные вторые температурные датчики 42 на наконечнике горелки и первые температурные датчики 30a и 30b, соответственно, в газовом канале могут вызвать ложное обнаружение обрыва факела в камере сгорания вследствие временного расхождения первых и вторых температур, например в случае ситуации вспышки пламени. Для предотвращения этого ложного обнаружения применен принцип голосования, т.е. критерии требуют превышения заданных пороговых значений обоими из сигналов D1 и D2, и, таким образом, способ обнаружения обеспечивает очень надежное обнаружение частичного погасания факела. Задержки в критериях обнаружения преимущественно представлены для предотвращения ложного обнаружения в случае внезапных скачков сигналов D1 и D2, которые могут быть вызваны ошибками измерений температурных датчиков.
Claims (10)
1. Способ обнаружения частичного погасания факела в газотурбинном двигателе, имеющем газовый канал для направления движущего газа и несколько камер сгорания, при этом каждая из камер сгорания ведет в газовый канал и содержит горелку, при этом способ включает этапы:
измерения через определенное время первой температуры в каждой из, по меньшей мере, двух точек измерения, расположенных ниже по потоку камер сгорания в газовом канале,
измерения через определенное время второй температуры в каждой из, по меньшей мере, двух горелок и
обнаружения частичного погасания факела из измерений первых температур и измерений вторых температур, при этом обнаружение частичного погасания факела включает в себя этап определения первого параметра обнаружения, который определяется из скорости изменения разброса между измерениями первых температур в различных точках измерения.
измерения через определенное время первой температуры в каждой из, по меньшей мере, двух точек измерения, расположенных ниже по потоку камер сгорания в газовом канале,
измерения через определенное время второй температуры в каждой из, по меньшей мере, двух горелок и
обнаружения частичного погасания факела из измерений первых температур и измерений вторых температур, при этом обнаружение частичного погасания факела включает в себя этап определения первого параметра обнаружения, который определяется из скорости изменения разброса между измерениями первых температур в различных точках измерения.
2. Способ по п.1, при котором первый параметр обнаружения определяют посредством вычисления сглаженной скорости изменения разброса между измерениями первых температур в различных точках измерения.
3. Способ по п.1, при котором обнаружение частичного погасания факела включает в себя этап определения второго параметра обнаружения, при этом второй параметр обнаружения определяют из разброса между скоростями изменения измерений вторых температур в различных горелках.
4. Способ по п.3, при котором второй параметр обнаружения определяют посредством вычисления разброса сглаженных скоростей изменения измерений вторых температур в различных горелках.
5. Способ по п.1, при котором первый параметр обнаружения сравнивают с первым пороговым значением, второй параметр обнаружения сравнивают со вторым пороговым значением и частичное погасание факела выявляется, если оба параметра обнаружения превышают соответствующее пороговое значение.
6. Способ по п.5, при котором частичное погасание факела выявляется только, если оба параметра обнаружения превышают соответствующее пороговое значение в течение заданного количества последовательных измерений соответствующего параметра обнаружения.
7. Способ по п.1, при котором вторые температуры измеряют на наконечниках соответствующих горелок, обращенных к соответствующим камерам сгорания.
8. Способ по п.1, при котором газотурбинный двигатель дополнительно содержит силовую турбину, подлежащую приведению в движение движущим газом, продолжающуюся выпускным каналом, и, по меньшей мере, две точки измерения для измерения первых температур расположены в области выхода силовой турбины к выпускному каналу.
9. Способ по п.1, при котором газотурбинный двигатель содержит турбину высокого давления и турбину низкого давления, при этом каждая турбина подлежит приведению в движение движущим газом, а также промежуточный канал для направления движущего газа от турбины высокого давления к турбине низкого давления, и, по меньшей мере, две точки измерения для измерения первых температур расположены в промежуточном канале.
10. Газотурбинный двигатель, имеющий газовый канал для направления движущего газа и несколько камер сгорания, при этом каждая из камер сгорания ведет в газовый канал и содержит горелку, при этом газовый канал содержит первый температурный датчик в каждой из, по меньшей мере, двух точек измерения, расположенных ниже по потоку камер сгорания, при этом каждый температурный датчик выполнен с возможностью измерения через определенное время первой температуры, отличающийся тем, что
каждая из, по меньшей мере, двух горелок содержит второй температурный датчик для измерения через определенное время второй температуры, а газотурбинный двигатель дополнительно включает в себя средство оценки для обнаружения частичного погасания факела из измерений первых температур и измерений вторых температур, причем газотурбинный двигатель выполнен с возможностью реализации способа по любому из пп.1-9.
каждая из, по меньшей мере, двух горелок содержит второй температурный датчик для измерения через определенное время второй температуры, а газотурбинный двигатель дополнительно включает в себя средство оценки для обнаружения частичного погасания факела из измерений первых температур и измерений вторых температур, причем газотурбинный двигатель выполнен с возможностью реализации способа по любому из пп.1-9.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07002015A EP1953454A1 (en) | 2007-01-30 | 2007-01-30 | Method of detecting a partial flame failure in a gas turbine engine and a gas turbine engine |
EP07002015.1 | 2007-01-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2009132539A RU2009132539A (ru) | 2011-03-10 |
RU2421662C2 true RU2421662C2 (ru) | 2011-06-20 |
Family
ID=38116994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2009132539/06A RU2421662C2 (ru) | 2007-01-30 | 2008-01-28 | Газотурбинный двигатель и способ обнаружения частичного погасания факела в газотурбинном двигателе |
Country Status (6)
Country | Link |
---|---|
US (1) | US8474269B2 (ru) |
EP (2) | EP1953454A1 (ru) |
CN (1) | CN101595344B (ru) |
MX (1) | MX2009008076A (ru) |
RU (1) | RU2421662C2 (ru) |
WO (1) | WO2008092822A1 (ru) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013180981A1 (en) * | 2012-05-29 | 2013-12-05 | Honeywell International Inc. | Burner flame detection and monitoring system |
RU2578012C1 (ru) * | 2015-03-23 | 2016-03-20 | Открытое акционерное общество "Авиадвигатель" | Способ определения погасания камеры сгорания газотурбинного двигателя |
RU2696919C1 (ru) * | 2018-04-18 | 2019-08-07 | Акционерное общество "РОТЕК" (АО "РОТЕК") | Способ и система оценки технического состояния узлов газовой турбины по температурным полям |
RU2711724C1 (ru) * | 2018-10-04 | 2020-01-21 | Акционерное общество "РОТЕК" (АО "РОТЕК") | Способ оценки положения эпицентра теплового поля выхлопа газотурбинной установки |
RU2745051C1 (ru) * | 2018-02-27 | 2021-03-18 | Сименс Акциенгезелльшафт | Способ анализа для газовой турбины |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8684276B2 (en) * | 2009-08-20 | 2014-04-01 | Enerco Group, Inc. | Portable catalytic heater |
US8725448B2 (en) | 2010-09-23 | 2014-05-13 | Siemens Energy, Inc. | Self validating gas turbine engine flame detection system using duel optical verification |
EP2469167A1 (en) | 2010-12-22 | 2012-06-27 | Siemens Aktiengesellschaft | System for aerating liquid fuel with gas for a gas turbine and method for aerating liquid fuel with gas for a gas turbine |
EP2469041A1 (en) | 2010-12-22 | 2012-06-27 | Siemens Aktiengesellschaft | Method of detecting a predetermined condition in a gas turbine and failure detection system for a gas turbine |
FR2970304B1 (fr) * | 2011-01-11 | 2013-02-08 | Turbomeca | Procede de demarrage d'une turbomachine |
EP2487415A1 (en) | 2011-02-10 | 2012-08-15 | Siemens Aktiengesellschaft | An arrangement for preparation of liquid fuel for combustion and a method of preparing liquid fuel for combustion |
JP5675456B2 (ja) * | 2011-03-25 | 2015-02-25 | 三菱重工業株式会社 | 監視装置、ガスタービンプラント、及びガスタービンの監視方法 |
US20130040254A1 (en) * | 2011-08-08 | 2013-02-14 | General Electric Company | System and method for monitoring a combustor |
US8601861B1 (en) * | 2012-08-10 | 2013-12-10 | General Electric Company | Systems and methods for detecting the flame state of a combustor of a turbine engine |
FR3022303B1 (fr) * | 2014-06-12 | 2016-07-01 | Snecma | Procede de detection d'une degradation d'une canalisation de turboreacteur |
EP3239684A1 (en) | 2016-04-29 | 2017-11-01 | Siemens Aktiengesellschaft | Fault diagnosis during testing of turbine unit |
DK3589590T3 (da) | 2017-02-28 | 2023-08-28 | Saint Gobain Seva | Legering til glasfiberspinder |
IT201700028071A1 (it) * | 2017-03-14 | 2018-09-14 | Nuovo Pignone Tecnologie Srl | Metodi per rilevare un guasto in un bruciatore di un combustore e sistemi a turbina |
EP4015783B1 (en) * | 2020-12-18 | 2025-01-29 | Ansaldo Energia Switzerland AG | Gas turbine engine with flame failure protection base on exhaust gas temperature and method of operating a gas turbine engine |
EP4116545A1 (en) * | 2021-07-05 | 2023-01-11 | Siemens Energy Global GmbH & Co. KG | Continuous flow engine measurement arrangement |
CN114893301B (zh) * | 2022-04-14 | 2023-09-08 | 北京动力机械研究所 | 小型涡扇发动机参控温度参数判故方法及冗余控制方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4283634A (en) * | 1971-06-23 | 1981-08-11 | Westinghouse Electric Corp. | System and method for monitoring and controlling operation of industrial gas turbine apparatus and gas turbine electric power plants preferably with a digital computer control system |
US3747340A (en) * | 1971-08-12 | 1973-07-24 | Ford Motor Co | Flame sensing system for a turbine engine |
US4115998A (en) * | 1975-12-08 | 1978-09-26 | General Electric Company | Combustion monitor |
GB2282221A (en) * | 1993-09-22 | 1995-03-29 | Rolls Royce Plc | A flame detector |
JPH07189741A (ja) * | 1993-12-10 | 1995-07-28 | Solar Turbines Inc | 燃焼室1次ゾーン温度決定制御装置及び方法 |
US5551227A (en) * | 1994-12-22 | 1996-09-03 | General Electric Company | System and method of detecting partial flame out in a gas turbine engine combustor |
RU8087U1 (ru) | 1996-09-26 | 1998-10-16 | Николай Александрович Барков | Устройство контроля пламени горелки |
RU2183795C2 (ru) | 2000-05-17 | 2002-06-20 | Шутиков Владимир Антонович | Устройство для контроля наличия пламени |
US6442943B1 (en) * | 2001-05-17 | 2002-09-03 | General Electric Company | Methods and apparatus for detecting turbine engine flameout |
JP2006083730A (ja) * | 2004-09-15 | 2006-03-30 | Hitachi Ltd | ガスタービンの着火検出方法 |
RU42625U1 (ru) | 2004-09-29 | 2004-12-10 | Открытое акционерное общество "ВНИПИгаздобыча" | Горелка факельная газовая |
US7739873B2 (en) * | 2005-10-24 | 2010-06-22 | General Electric Company | Gas turbine engine combustor hot streak control |
-
2007
- 2007-01-30 EP EP07002015A patent/EP1953454A1/en not_active Withdrawn
-
2008
- 2008-01-28 EP EP08708266.5A patent/EP2108093B1/en active Active
- 2008-01-28 RU RU2009132539/06A patent/RU2421662C2/ru active
- 2008-01-28 MX MX2009008076A patent/MX2009008076A/es active IP Right Grant
- 2008-01-28 US US12/524,788 patent/US8474269B2/en active Active
- 2008-01-28 WO PCT/EP2008/050943 patent/WO2008092822A1/en active Application Filing
- 2008-01-28 CN CN2008800035554A patent/CN101595344B/zh active Active
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013180981A1 (en) * | 2012-05-29 | 2013-12-05 | Honeywell International Inc. | Burner flame detection and monitoring system |
RU2578012C1 (ru) * | 2015-03-23 | 2016-03-20 | Открытое акционерное общество "Авиадвигатель" | Способ определения погасания камеры сгорания газотурбинного двигателя |
RU2745051C1 (ru) * | 2018-02-27 | 2021-03-18 | Сименс Акциенгезелльшафт | Способ анализа для газовой турбины |
RU2696919C1 (ru) * | 2018-04-18 | 2019-08-07 | Акционерное общество "РОТЕК" (АО "РОТЕК") | Способ и система оценки технического состояния узлов газовой турбины по температурным полям |
WO2019203696A1 (ru) * | 2018-04-18 | 2019-10-24 | Акционерное Общество "Ротек" | Способ и система оценки технического состояния узлов газовой турбины |
RU2711724C1 (ru) * | 2018-10-04 | 2020-01-21 | Акционерное общество "РОТЕК" (АО "РОТЕК") | Способ оценки положения эпицентра теплового поля выхлопа газотурбинной установки |
Also Published As
Publication number | Publication date |
---|---|
EP2108093B1 (en) | 2017-07-19 |
CN101595344A (zh) | 2009-12-02 |
RU2009132539A (ru) | 2011-03-10 |
MX2009008076A (es) | 2009-08-12 |
US8474269B2 (en) | 2013-07-02 |
WO2008092822A1 (en) | 2008-08-07 |
CN101595344B (zh) | 2011-11-16 |
EP2108093A1 (en) | 2009-10-14 |
US20100024431A1 (en) | 2010-02-04 |
EP1953454A1 (en) | 2008-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2421662C2 (ru) | Газотурбинный двигатель и способ обнаружения частичного погасания факела в газотурбинном двигателе | |
US8434291B2 (en) | Systems and methods for detecting a flame in a fuel nozzle of a gas turbine | |
US20080275620A1 (en) | Ignition detecting method for gas turbine | |
JP5346190B2 (ja) | 燃料正規化出力応答を利用したガスタービン燃焼消焔検出のための方法及びシステム | |
EP0815354B1 (en) | Method and apparatus for detecting blowout in a gas turbine combustor | |
CN103154440A (zh) | 检测燃气涡轮机中预定状态的方法和用于燃气涡轮机的失效检测系统 | |
EP2107305A1 (en) | Gas turbine system and method | |
JP2012082824A (ja) | 燃焼器内における火炎状態を判定するためのシステム及び方法 | |
FR2962522A1 (fr) | Systemes, procedes et dispositif pour confirmer l'allumage d'une turbine a gaz | |
JPH07317567A (ja) | ガスターボ装置団の調整のための方法 | |
JP4113728B2 (ja) | フレームアウトを検出する方法、フレームアウト検出装置及びガスタービンエンジン | |
EP3810992B1 (en) | Acoustic flashback detection in a gas turbine combustion section | |
JP7369069B2 (ja) | ガスタービンの着火検知方法及び着火検知装置、ガスタービンシステム、並びにプログラム | |
US20150226436A1 (en) | Flashback detection in gas turbine engines using distributed sensing | |
JPH07208734A (ja) | 火炎検出システム | |
EP2447609B1 (en) | Method for operating a fan assisted, atmospheric gas burner | |
JPH09287483A (ja) | ガスタービンとその失火検出方法 | |
CN111855221A (zh) | 一种燃气轮机燃烧状态监测方法及系统 | |
EP3327351A1 (en) | Method for operating a fan assisted, atmospheric gas burner appliance | |
JP2001033038A (ja) | ガスタービンの火炎検出装置 | |
JPH11148370A (ja) | ガスタービン | |
Bahous et al. | Assessment of UV Sensors for Flameout Detection | |
Quentin et al. | Modified Fuel Control for a Large Heavy-Duty Combustion Turbine-Generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner | ||
PC41 | Official registration of the transfer of exclusive right |
Effective date: 20210713 |