[go: up one dir, main page]

RU2415694C2 - Эмульсии типа "вода в масле в воде" гидроксаматных полимеров и способы их применения - Google Patents

Эмульсии типа "вода в масле в воде" гидроксаматных полимеров и способы их применения Download PDF

Info

Publication number
RU2415694C2
RU2415694C2 RU2007135349/05A RU2007135349A RU2415694C2 RU 2415694 C2 RU2415694 C2 RU 2415694C2 RU 2007135349/05 A RU2007135349/05 A RU 2007135349/05A RU 2007135349 A RU2007135349 A RU 2007135349A RU 2415694 C2 RU2415694 C2 RU 2415694C2
Authority
RU
Russia
Prior art keywords
water
polymer
oil
hydroxamate
emulsion
Prior art date
Application number
RU2007135349/05A
Other languages
English (en)
Other versions
RU2007135349A (ru
Inventor
Фрэнклин А. БАЛЛЕНТАЙН (US)
Фрэнклин А. БАЛЛЕНТАЙН
Моррис ЛЭВЕЛЛИН (US)
Моррис Лэвеллин
Original Assignee
Сайтек Текнолоджи Корп.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сайтек Текнолоджи Корп. filed Critical Сайтек Текнолоджи Корп.
Publication of RU2007135349A publication Critical patent/RU2007135349A/ru
Application granted granted Critical
Publication of RU2415694C2 publication Critical patent/RU2415694C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/06Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom by treating aluminous minerals or waste-like raw materials with alkali hydroxide, e.g. leaching of bauxite according to the Bayer process
    • C01F7/0646Separation of the insoluble residue, e.g. of red mud
    • C01F7/0653Separation of the insoluble residue, e.g. of red mud characterised by the flocculant added to the slurry
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/14Aluminium oxide or hydroxide from alkali metal aluminates
    • C01F7/144Aluminium oxide or hydroxide from alkali metal aluminates from aqueous aluminate solutions by precipitation due to cooling, e.g. as part of the Bayer process
    • C01F7/148Separation of the obtained hydroxide, e.g. by filtration or dewatering
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/26Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
    • C02F2103/28Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof from the paper or cellulose industry
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0015Obtaining aluminium by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Группа изобретений относится к флокулянтам и способам их применения для флокуляции и отделения суспендированных твердых частиц от промышленного обрабатываемого потока. Способ флокуляции включает следующие стадии: введение в поток водорастворимого полимера в количестве, эффективном для флокуляции суспендированных твердых частиц; отделение флокулированных твердых частиц от него. При этом водорастворимым полимером является гидроксаматный полимер эмульсии типа "вода в масле в воде", непрерывная фаза которой содержит водорастворимую соль, например, содержащую алюминий или кальций. Обрабатываемым потоком является поток способа Байера, в частности, поток тригидрата оксида алюминия или поток красного шлама. В качестве гидроксаматного полимера используют, например, полимер акриламида. Композиция, содержащая эмульсию типа "вода в масле в воде" водорастворимого полимера, включающего гидроксаматный полимер, в качестве непрерывной фазы включает водный раствор водорастворимой соли алюминия или кальция. При этом гидроксаматный полимер является производным акриламида или сложного акрилатного эфира. Группа изобретений обеспечивает улучшение стабильности водорастворимого полимера при хранении, особенно при низких температурах, и упрощение его использования в качестве флокулянта. 2 н. и 15 з.п. ф-лы, 8 табл.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к флокулянтам и способам их применения и, более конкретно, к флокулянтам в виде эмульсии гидроксаматного полимера и к способам флокулирования твердых частиц в промышленных обрабатываемых потоках. Флокулянты и способы настоящего изобретения находят применение в таких промышленных способах, как способ Байера извлечения оксида алюминия из бокситной руды.
Предпосылки создания изобретения
Промышленные способы, которые используют жидкую среду, наиболее часто используют технологию разделения твердые частицы - жидкость. В случае водных систем часто используются флокулянты для улучшения способа разделения. Указанные способы осуществляются в различных отраслях, таких как выделение минеральных твердых материалов из водных систем, получение пульпы и бумаги и обработка бумажных отходов, а также обработка промышленных и городских отходов. В настоящее время флокулянты изготавливаются и продаются либо как твердые порошковые формы, которые трудны для растворения, либо как жидкие формы, которые являются более легкими в обращении и применении. Жидкие формы включают эмульсии типа «вода в масле» водорастворимых полимеров. Они используются в течение многих десятилетий в различных промышленных применениях. Однако указанные формы продукта имеют некоторые недостатки. Одна из проблем использования формы продукта типа «вода в масле» имеет место, когда встречаются низкие температуры (ниже температуры замерзания эмульсии). Часто эмульсия типа «вода в масле» становится обращенной в процессе оттаивания, образуя нерастворимые гели, которые превращают продукт в неиспользуемый. Водные растворы водорастворимых полимеров также имеют тенденцию к замерзанию при выдержке при низких температурах, делая их неподходящими для неблагоприятного климата. Формы эмульсии типа «вода в масле» также страдают от необходимости предварительного разбавления в водной среде перед использованием, таким образом, вводя дополнительные затраты на емкости для хранения и специальное оборудование растворения. Когда способом является способ Байера, стадия предварительного разбавления приводит к дополнительной проблеме, поскольку она вводит воду в способ, делая необходимым введение дополнительной каустической соды для того, чтобы поддержать щелочность системы.
Поэтому имеется необходимость в улучшенных формах продукта флокулянта, которые могут использоваться в промышленных способах с преодолением указанных недостатков.
Способ Байера почти везде используется для получения оксида алюминия из боксита. В данном способе необработанная бокситная руда сначала обрабатывается раствором каустической соды при температуре в интервале 140-250°C. Это дает в результате растворение (варку) большей части алюминийсодержащих минералов, особенно тригидрата оксида алюминия Al(OH)3 (гибсита) и моногидрата алюминия - бемита, с получением перенасыщенного раствора алюмината натрия (полный щелок). Получаемые концентрации растворенных материалов являются очень высокими, причем концентрации гидроксида натрия составляют более 150 г/л, а растворенного оксида алюминия - более 120 г/л. Любые нерастворенные твердые частицы, обычно оксиды железа, которые известны как красный шлам, затем отделяются физически от алюминатного раствора. Обычно для улучшения осаждения и удаления мелких твердых частиц используется полимерный флокулянт. Оставшиеся суспендированные твердые частицы удаляются стадией фильтрации. Отфильтрованный прозрачный раствор или щелок охлаждают и вводят в него в качестве зародышеобразователя тригидрат оксида алюминия с осаждением части растворенного оксида алюминия. После осаждения оксида алюминия указанный истощенный или израсходованный щелок повторно нагревают и повторно используют для растворения более свежего боксита.
В осветленный натрийалюминатный щелок вводят в качестве зародышеобразователя кристаллы тригидрата оксида алюминия, чтобы вызвать осаждение оксида алюминия в форме тригидрата оксида алюминия Al(OH)3. Частицы или кристаллы тригидрата оксида алюминия затем отделяются от концентрированного каустического щелока. Кристаллы тригидрата оксида алюминия обычно отделяются от щелока, в котором они образуются, осаждением и/или фильтрацией. Крупные частицы осаждаются легко, но мелкие частицы осаждаются медленно, давая потери выхода. Мелкие частицы также могут забивать фильтры. Мелкие частицы тригидрата оксида алюминия, которые не осаждаются легко, наиболее часто рециклируются обратно на варку с израсходованным щелоком. Неизвлеченный тригидрат оксида алюминия затем повторно варится и повторно осаждается во втором цикле способа Байера, излишне затрачивая энергию и снижая способность экстрагировать оксид алюминия израсходованного щелока. Поэтому весьма желательно осаждать как много больше тригидрата с тем, чтобы ограничить вредные последствия указанных проблем.
Канадский патент № 825234, октябрь 1969 г., использует декстран, сульфат декстрана и комбинации с анионными солями для улучшения флокуляции и фильтрации тригидрата оксида алюминия из его щелочных растворов. Патент США № 5041269, август 1991 г. (Moody et al.) использует флокулянт для извлечения кристаллов тригидрата оксида алюминия, содержащий комбинацию декстрана или некоторых других полисахаридов вместе с анионным полимерным флокулянтом, включающим акриловый мономер.
Предусмотренный декстран, однако, является плохим флокулянтом для кристаллов, дающим плохое осветление надосадочной жидкости.
Патент США 4767540 описывает использование гидроксаматных полимеров для флокулирования суспендированных твердых частиц в способе Байера.
Заявка на Австралийский патент AU-B-46114/93 описывает использование некоторых гидроксаматных полимеров для осветления твердых частиц гидрата в способе Байера.
US 6608137 описывает эмульсии типа "вода в масле" гидроксаматных полимеров. Указанные полимеры должны сначала растворяться и предварительно разбавляться в водной среде (часто в щелоке способа Байера) перед тем, как они могут быть введены в осаждаемый/осветляемый щелок способа Байера.
Таким образом, задачей настоящего изобретения является создание новых композиций с высокими характеристиками, дисперсий типа "вода в масле в воде" водорастворимых полимеров, которые могут вводиться непосредственно в промышленные обрабатываемые потоки, такие как потоки способа Байера, без предварительного разбавления, таким образом, исключая необходимость в дорогостоящих сосудах для хранения и связанного с этим насосного и разбавительного оборудования. Эмульсии типа "вода в масле в воде" гидроксаматных полимеров настоящего изобретения также показывают улучшенную стабильность при хранении по сравнению с существующими растворами и эмульсиями типа "вода в масле" полимеров, особенно при воздействии экстремальных условий низкой температуры.
Также задачей настоящего изобретения является создание более эффективного способа Байера, в котором флокуляция, осаждение, осветление и отделение твердых частиц способа Байера, включая тригидрат оксида алюминия и твердых частиц красного шлама, из обрабатываемых потоков улучшается при введении в обрабатываемый поток эмульсии типа "вода в масле в воде" гидроксаматного полимера.
Указанные и другие задачи настоящего изобретения описаны подробно ниже.
Подробное описание изобретения
В одном варианте настоящее изобретение предусматривает композицию эмульсии типа "вода в масле в воде" водорастворимого полимера, в которой непрерывная водная или водяная фаза состоит из водного раствора водорастворимой соли. Предпочтительно, эмульсия типа "вода в масле в воде" представляет собой эмульсию типа "вода в масле в воде" гидроксаматного полимера. Прерывной фазой является эмульсия типа "вода в масле" водорастворимого полимера, предпочтительно, водорастворимого гидроксаматного полимера. Термины «эмульсия», «микроэмульсия» или «дисперсия» используются тождественно с указанием, что полимер присутствует в форме небольших частиц или капель, диспергированных в масляной фазе эмульсии типа "масло в воде". Размер частиц может составлять от 0,01 мкм до 50 мкм, и они могут быть в форме микроэмульсии или микродисперсии. Частицы могут также содержать мало или немного воды в интервале от 0 до 90% остального полимера. Предпочтительно, размер частиц находится в интервале 0,05-10 мкм. Эмульсии типа "вода в масле в воде" гидроксаматного полимера могут быть получены смешением эмульсии или дисперсии типа "вода в масле" гидроксаматного полимера с водным или водяным раствором водорастворимой соли. Водорастворимой солью может быть любая соль, которая предотвращает растворение полимера. Предпочтительно, соль представляет собой соль, содержащую алюминий или кальций.
Согласно другому аспекту данного изобретения предусматривается улучшенный способ флокуляции, осветления и отделения твердых частиц от промышленного обрабатываемого потока, содержащий введение в обрабатываемый поток эмульсии, или дисперсии, типа "вода в масле в воде" водорастворимого полимера. Когда обрабатываемым потоком является поток способа Байера, твердые частицы состоят из красного шлама (отходов) или твердых частиц тригидрата оксида алюминия (продукта). Эмульсия, или дисперсия, типа "вода в масле в воде" водорастворимого полимера вводится в количестве, эффективном для улучшения осветления указанного обрабатываемого потока, при снижении количества суспендированных твердых частиц, присутствующих в надосадочной жидкости. Когда обрабатываемым потоком является поток способа Байера, предпочтительным флокулянтом является эмульсия типа "вода в масле в воде" гидроксаматного полимера, но может включать другие флокулянты, таки как полимеры акриловой кислоты.
Гидроксаматные полимеры являются хорошо известными специалистам в данной области техники и специально рассматриваются, когда являются способами их получения, в заявке на патент Соединенного королевства 2171127 и в патентах США №№ 3345344, 4480067, 4532046, 4536296 и 4587306, 4767540 и 6608137, которые поэтому приводятся здесь в качестве ссылки. Обычно указанные гидроксаматные полимеры могут быть получены взаимодействием боковых реакционных групп в растворе с гидроксиламином или его солью при температуре в интервале от примерно 50°C до 100°C. От примерно 1 до 90% доступных реакционных групп полимера могут быть замещены гидроксамовыми группами в соответствии с указанными методиками.
Эмульсии типа "вода в масле в воде" полимеров данного изобретения могут быть получены при введении в раствор водорастворимой соли эмульсии типа "вода в масле" полимера, наиболее предпочтительно, гидроксаматного полимера. Предпочтительно, порядок введения может быть обратимым, т.е. водный раствор водорастворимой соли может быть введен в эмульсию типа "вода в масле" полимера, который является, наиболее предпочтительно, гидроксаматным полимером. Альтернативно, порядок введения может быть обратным, т.е. водный раствор водорастворимой соли может быть введен в эмульсию типа "вода в масле" гидроксаматного полимера. Предпочтительно, полимером является гидроксаматный полимер, когда обрабатываемым субстратом является поток способа Байера. Способы получения эмульсии типа "вода в масле" гидроксаматного полимера описаны в US 6608137, который поэтому приводится здесь в качестве ссылки. Обычно полимер главной цепи получается при образовании эмульсии типа "вода в масле" водорастворимого мономера, такого как акриламид, при диспергировании мономерной фазы в масле и надосадочной фазе и проведении полимеризации в отсутствие кислорода традиционной технологией полимеризации, например, при введении редокс-инициаторов, термических инициаторов, например, азо-инициаторов, или при применении УФ-излучения в присутствии УФ-инициаторов. Полимерная главная цепь затем взаимодействует с гидроксиламином с образованием гидроксаматного полимера. Концентрация гидроксаматного полимера, присутствующего в эмульсии типа "вода в масле" гидроксаматного полимера, может находиться в интервале от 1 до 60%, обычно в интервале от 10 до 30%. Концентрация соли, присутствующей в водном растворе, должна быть такой, как при предварительном растворении гидроксаматного полимера. Предпочтительный интервал концентрации водорастворимой соли составляет от 0,1 до 10% по отношению к эмульсии типа "вода в масле в воде". Наиболее предпочтительно, интервал составляет 1-5%. Подходящие водорастворимые соли включают алюминат натрия, сульфат натрия, хлорид натрия, хлорид калия и т.п. Соли алюминия являются предпочтительными. Отношение эмульсии типа "вода в масле" гидроксаматного полимера к водному раствору водорастворимой соли, которая используется для получения дисперсии типа "вода в масле в воде" гидроксаматного полимера, может находиться в интервале от 1:99 до 99:1, предпочтительно, от 10:90 до 90:10, наиболее предпочтительно, 20-50%.
Может использоваться любая эмульсия "вода в масле" гидроксаматного полимера. Гидроксамовые полимеры или гидроксаматные полимеры являются хорошо известными в технике и могут быть получены послеполимеризационным получением производного из полимеров, содержащих боковые реакционные группы, такие как боковые сложноэфирные, амидные, ангидридные и нитрильные группы и т.п., при их взаимодействии с гидроксиламином или его солью при температуре в интервале от примерно 20°C до примерно 100°C в течение нескольких часов. Мономеры, подходящие для получения предшественника полимеров, включают акриламид и сложные эфиры (мет)акриловой кислоты, такие как метилакрилат. От примерно 1 до 90 мол.% доступных реакционных групп предшественника полимера могут быть замещены гидроксамовыми группами в соответствии с указанными методиками. Такое послеполимеризационное получение производного может осуществляться в эмульсии типа "вода в масле" или в дисперсной форме, как описано в US 6608137. Молекулярная масса гидроксаматного полимера может находиться в интервале от 1000 до 50х106. Гидроксаматный полимер, предпочтительно, имеет средневесовую молекулярную массу не менее примерно 0,1 млн, предпочтительно, с ХВ примерно 0,5-40 дл/г при измерении в 1М NaCl при 30°C.
Степень гидроксамации может находиться в интервале от 1 до примерно 90 мол.% и, предпочтительно, в интервале от примерно 5 до примерно 75 мол.% и, наиболее предпочтительно, от примерно 10 до примерно 50 мол.%.
Гидроксаматный полимер в предпочтительном варианте является преимущественно анионным, хотя он может также содержать неионные или катионные звенья. В полимер могут быть введены анионные мономерные звенья, иные, чем звенья гидроксамового мономера, и ими обычно являются карбоновые кислоты или сульфокислоты, и ими обычно являются производные (мет)акриловых кислот, сульфоалкилакриламиды, такие как 2-сульфопропилакриламид или акриламидодиметилпропилсульфокислота.
Полимеры, используемые в настоящем изобретении, используются при введении их либо непосредственно в обрабатываемый поток как эмульсия типа "вода в масле в воде" гидроксаматного полимера, либо в форме предварительно разбавленных водных растворов. Обрабатываемым потоком может быть любой промышленный обрабатываемый поток, из которого необходимо удалить твердые частицы. Указанные способы могут включать способы обогащения минеральных соединений, такие как используются в извлечении оксида алюминия, фосфата и других промышленных минералов, меди, цинка, свинца и благородных металлов, в производстве пульпы и бумаги, для переработки бумажных отходов, а также для переработки промышленных и городских отходов. Предпочтительно, обрабатываемым потоком является поток способа Байера, например, поток, содержащий красный шлам или твердые частицы тригидрата оксида алюминия. Эмульсия типа "вода в масле в воде" гидроксаматного полимера вводится в обрабатываемый поток, содержащий красный шлам или твердые частицы тригидрата оксида алюминия, в количестве, по меньшей мере достаточном для осаждения суспендированных твердых частиц. Обычно для достижения наилучших результатов должно использоваться по меньшей мере примерно 0,1 мг гидроксаматного полимера на 1 л обрабатываемого потока. Более предпочтительно, вводится не менее 1,0 мг гидроксаматного полимера. Понятно, что более высокие количества, чем уже установлено, могут использоваться без отступления от объема изобретения, хотя обычно достигается точка, в которой дополнительные количества гидроксаматного полимера не улучшают степень отделения по сравнению с уже достигнутыми максимальными степенями отделения. Таким образом, когда достигается указанная точка, использование избыточных количеств является неэкономичным.
Введение эмульсии типа "вода в масле в воде" гидроксаматного полимера улучшает прозрачность надосадочной жидкости, снижая в результате количество суспендированных твердых веществ, которые обычно являются очень мелкодисперсными. Улучшение прозрачности надосадочной жидкости минимизирует потери тригидрата оксида алюминия и улучшает фильтрацию надосадочной жидкости при снижении забивания фильтра или исключает необходимость фильтрации.
Предполагается, что осветляющая добавка гидроксаматного полимера будет улучшать разделение оксид алюминия - каустический щелок на вакуумном фильтре при образовании более пористого осадка на фильтре.
Когда обрабатываемым потоком является поток красного шлама, достигаются лучшие степени осаждения и прозрачность надосадочной жидкости по сравнению с известными полимерами. Также неожиданно было установлено, что эмульсии типа "вода в масле в воде" гидроксаматного полимера данного изобретения являются более эффективными флокулянтами для обработки красных шламов, которые загрязняются кремнийсодержащими минералами, общеизвестными как продукты обескремнивания, или ПОК (DSP).
Сравнительный пример А
Продукт Superfloc HF80 представляет собой коммерчески доступную эмульсию типа "вода в масле", содержащую полимер, имеющий примерно 60 мол.% гидроксаматных групп. Он выпускается фирмой Cytec Industries Inc. of Garret Mountain, Нью-Джерси.
Примеры 1-6
Получение эмульсий типа "вода в масле в воде" гидроксаматного полимера
Шесть (6) образцов стабильных полимерных эмульсий типа "вода в масле в воде" получают при использовании следующей методики. Концентрации компонентов в каждом из 6 образцов показаны в таблице 1. Порошковые тригидрат алюмината натрия (Na2O·Al2O3·3H2O) и гидроксид натрия растворяют в деионизированной воде. Затем быстро вводят продукт Superfloc HF80 в интенсивно перемешиваемый раствор алюмината натрия и гидроксида натрия с образованием стабильных эмульсий типа "вода в масле в воде" гидроксаматного полимера.
Figure 00000001
Примеры 7-15
Получение эмульсий типа "вода в масле в воде" гидроксаматного полимера
Стабильные эмульсии типа "вода в масле в воде" гидроксаматных полимеров получают при использовании следующей методики. 250 г/л гидрата сульфата алюминия (Al2(SO4)3·18H2O) и 100% гидроксида натрия растворяют в деионизированной воде. Затем продукт примера А быстро добавляют к интенсивно перемешиваемому каустическому раствору сульфата алюминия. В таблице 2 представлены несколько составов эмульсии типа "вода в масле в воде", которые получают по указанной методике.
Таблица 2
Пример Части
250 г/л
раствора
сульфата
алюминия
Части
Al2(SO4)3
18H2O в
составе
% Al2(SO4)3
18H2O в
составе
Части
NaOH в
составе
% NaOH
в составе
Части
деионизи-
рованной
воды
Части
продукта
примера А в сос-таве
% про-
дукта
примера
А в составе
рН ко-
нечного
состава
Объ-емная
вяз-
кость
(сП)
7 24 6 2 1,8 0,6 169,2 105 35 11,9 1040
8 40 10 3,3 1,8 0,6 108,2 150 50 11,4 762
9 40 10 3,3 1,2 0,4 153,8 105 35 10,8 765
10 40 10 3,3 0,6 0,2 199,4 60 20 9,6 117
11 40 10 3,3 1,8 0,6 198,2 60 20 10,3 32
12 24 6 2 1,2 0,4 214,8 60 20 11,1 45
13 24 6 2 1,2 0,4 124,8 150 50 11,8 1145
14 24 6 2 1,2 0,4 169,8 105 35 11,5 835
15 40 10 3,3 0,6 0,2 109,4 150 50 11 840
Пример 16
Получение эмульсии типа "вода в масле в воде" гидроксаматного полимера
Стабильные эмульсии типа "вода в масле в воде" гидроксаматных полимеров получают при использовании следующей методики. Сто пятьдесят (150) ч. раствора сульфата алюминия добавляют с интенсивным перемешиванием и при постоянной скорости в течение 30-40 мин к 150 ч. продукта примера А. Раствор сульфата алюминия получают с использованием 18,6 ч. 48% гидрата сульфата алюминия (Al2(SO4)3·14H2O) и 131,4 ч. деионизированной воды. Концентрация продукта примера А в конечном продукте составляет 50%, а концентрация Al2(SO4)3·14H2O составляет 2,97%. Объемная вязкость конечного продукта составляет 780 сП, и рН составляет 10,1. Данный пример показывает, что водная фаза может быть добавлена к эмульсии типа "вода в масле" гидроксаматного полимера с получением стабильной эмульсии типа "вода в масле в воде" гидроксаматного полимера.
Пример 17
Получение эмульсии типа "вода в масле в воде" гидроксаматного полимера
Стабильные эмульсии типа "вода в масле в воде" гидроксаматных полимеров получают при использовании следующей методики. Сто пятьдесят (150) ч. 2,2% раствора хлорида кальция (CaCl2) в деионизированной воде добавляют с интенсивным перемешиванием и при постоянной скорости в течение 43 мин к 150 ч. продукта примера А. Концентрация продукта примера А в конечном продукте составляет 50%, а концентрация CaCl2 составляет 11%. Конечный продукт, стабильная эмульсия типа "вода в масле в воде" гидроксаматного полимера, имеет объемную вязкость 10750 сП и рН 10,1.
Пример 18
Продукт примера 15 термически циклируют в течение 4 циклов от комнатной температуры до температуры в интервале от -20°C до -30°C для имитации циклов замораживания, которому продукт может подвергаться при использовании в экстремальном климате. После оттаивания до комнатной температуры продукт повторно смешивают с образованием стабильной эмульсии типа "вода в масле в воде" гидроксаматного полимера.
Примеры 19-21
Растворимость эмульсий типа "вода в масле в воде" примеров 8 и 15 сравнивают с растворимостью продукта примера А в 150 г/л гидроксида натрия в деионизированной воде при 60°C. Указанные условия являются подобными условиям, находящимися в питании третьей тарелки в очистке оксида алюминия, когда осаждаемый тригидрат оксида алюминия флокулируется, осаждается и отделяется от щелока. Нарастание крутящего момента/вязкости раствора определяется при использовании двигателя смешения, способного увеличивать крутящий момент для поддержания скорости перемешивания, когда вязкость увеличивается. Таблица 3 показывает, что продукт сравнительного примера А (пример 20) не растворяется в имитированном щелоке третьей тарелки, тогда как эмульсии типа "вода в масле в воде" гидроксаматного полимера данного изобретения быстро растворяются (примеры 19, 21). Поэтому эмульсии типа "вода в масле в воде" гидроксаматного полимера могут быть быстро введены в поток способа Байера без использования дополнительной стадии разбавления.
Таблица 3
Пример Образцы Время максимального крутящего момента
19 Пример 15 Максимальный крутящий момент в 50 с
20 Пример А Крутящий момент не увеличивается в
течение 5 мин
21 Пример 8 Максимальный крутящий момент в 100 с
Примеры 22-29
Характеристику флокуляции продукта примера 1 сравнивают с характеристикой флокуляции оксид алюминия-гидратных флокулянтов-аналогов, декстрана и продукта примера А, в имитированном питании третьей тарелки, как показано в таблице 4. Суспензию получают при использовании истощенного щелока от очистки оксида алюминия. Истощенный щелок насыщают 74,8 г/л оксида алюминия в его точке кипения. Раствор затем охлаждают и выдерживают при 70°C, и затем 34 г/л оксида алюминия суспендируют в щелоке. Флокулянты разбавляют до концентрации полимера 0,01%, чтобы способствовать получению очень низких доз. 200 мл аликвоту суспензии затем обрабатывают флокулянтами. Время осаждения и прозрачность надосадочной жидкости определяют как функцию дозы. Таблица 4 показывает, что эмульсии типа "вода в масле в воде" гидроксаматного полимера являются эффективными тригидратными флокулянтами.
Таблица 4
Пример Полимер Доза полимера
(ч/млн)
Время
осаждения
(с)
Прозрачность
надосадочной
жидкости (NTU)
Пример 22 Пример А 0,75 58 286
Пример 23 Декстран 0,75 160 >1000
Пример 24 Пример 1 0,75 84 861
Пример 25 Пример А 1,5 37 236
Пример 26 Декстран 1,5 81 >1000
Пример 27 Пример 1 1,5 62 388
Пример 28 Декстран 2,25 52 >1000
Пример 29 Пример 1 2,25 55 271
Примеры 30-38
Характеристику флокуляции эмульсий типа "вода в масле в воде" гидроксаматного полимера примеров 11 и 15 сравнивают с характеристикой флокуляции двух коммерческих гидратных флокулянтов-аналогов, декстрана и продукта примера А, в питании третьей тарелки, полученном из очистки оксида алюминия. Питание тарелки имеет температуру 70°C и содержание каустика 228 г/л. Флокулянты вводят в питание третьей тарелки без предварительного разбавления. Флокулянты добавляют к 1 л суспензии третьей тарелки в 1 л градуированном цилиндре. Флокулянт и суспензия тщательно смешивают 10 перемещениями вверх и вниз плунжера (перфорированный диск слегка меньшего диаметра, чем диаметр цилиндра с 1/8 дюйм стержнем, присоединенным к центру одной стороны диска). Поверхность раздела осаждения гидрата рассчитывают по времени на деления от 900 до 700 мл. Прозрачность надосадочной жидкости также измеряют через 1 мин после прекращения смешения. В таблице 5 представлены результаты указанных экспериментов и показано, что эмульсии типа "вода в масле в воде" гидроксаматного полимера данного изобретения работают намного лучше, чем флокулянты-аналоги.
Таблица 5
Испытания на осаждение тригидрата оксида алюминия
Пример Полимер Доза
полимера
(мл)
Доза
полимера
(ч/млн)
Время
осаждения
(с)
Прозрач-
ность
надосадоч-
ной жид-кости (NTU)
Пример 30 Декстран 0,8 800 24 383
Пример 31 Пример 15 0,8 800 4 303
Пример 32 Пример 11 0,8 800 11 265
Пример 33(1) Пример 11 0,8 800 10 374
Пример 34 Декстран 0,4 400 20 300
Пример 35 Пример 15 0,4 400 3 323
Пример 36 Пример 11 0,4 400 13 287
Пример 37 Пример А 0,4 400 93 650
Сравнительный
Пример 38 не полимер 0 0 129 806
В таблице 6 показана флокуляция красного шлама, полученного из продувки автоклава очистки оксида алюминия эмульсиями типа "вода в масле в воде" гидроксаматного полимера (примеры 11 и 15). Твердые частицы в продувке составляют 39,3 г/л, температура продувки составляет >100°C, концентрация каустика составляет 204 г/л, и соотношение оксид алюминия/каустик (А/С) составляет 0,765. Продукты примеров 11 и 15 все вводят в обрабатываемый поток продувки без предварительного разбавления. Флокулянты добавляют к 1 л образцам продувки автоклава в 1 л градуированном цилиндре. Флокулянт и суспензию тщательно смешивают 5 или 10 перемещениями вверх и вниз плунжера (перфорированный диск слегка меньшего диаметра, чем диаметр цилиндра с 1/8 дюйм стержнем, присоединенным к центру одной стороны диска). Поверхность раздела осаждения гидрата рассчитывают по времени на деления от 900 до 700 мл. Таблица 6 показывает, что эмульсии типа "вода в масле в воде" гидроксаматного полимера могут быть введены непосредственно в поток способа Байера, содержащий твердые частицы красного шлама, без необходимости стадии предварительного разбавления.
Таблица 6
Осаждение красного шлама
Доза полимера Осаждение
Пример Полимер (мл) (ч/млн) Время (с) Скорость
(фунт/ч)
Пример 39 Пример 15 0,2 200 37,2 22,85
Пример 15 0,4 400 15,1 56,29
Пример 15 0,6 600 14,8 57,43
Пример 15 1 1000 5,8 146,55
Пример 40 Пример 11 0,2 200 22,4 37,95
Пример 11 0,4 400 15,9 53,46
Пример 11 0,6 600 11,1 76,58
Пример 11 1 1000 8,8 96,59
Пример 41
Получение эмульсии типа "вода в масле в воде" гидроксаматного полимера
Стабильную эмульсию типа "вода в масле в воде" гидроксаматного полимера получают при использовании следующей методики. 150 ч. гидрата сульфата алюминия (Al2(SO4)3·14H2O) растворяют в 177,5 ч. деионизированной воды. Полученное добавляют с интенсивным перемешиванием к 105 ч. примера А.
Пример 42
Получение эмульсии типа "вода в масле в воде" гидроксаматного полимера
В соответствии с методикой примера 42 стабильную эмульсию типа "вода в масле в воде" гидроксаматного полимера получают из эмульсии типа "вода в масле" коммерчески доступной эмульсии типа "вода в масле" гидроксаматного полиакриламида, подобного продукту примера А, за исключением того, что степень гидроксамации составляет около 25 мол.%. Это обозначается сравнительным примером В.
Примеры 43-54
Испытания на флокуляцию красного шлама
В таблице 7 показаны результаты испытаний на осаждение красного шлама, сравнивающие характеристику примеров 42 и 43 эмульсий типа "вода в масле в воде" гидроксаматного полимера настоящего изобретения с характеристикой продуктов-аналогов. Данные ясно показывают, что полимеры данного изобретения дают лучшие скорости осаждения и прозрачность (ниже NTU).
Таблица 7
Пример Полимер Доза
полимера
(г/т)
Скорость
осаждения
(фунт/ч)
Прозрачность
надосадочной
жидкости
(NTU)
43 Сравнительный Пример А 37,50 2,70 >1000
44 Изобретение Пример 41 37,50 4,10 343,00
45 Сравнительный Пример А 50,00 3,90 704,00
46 Изобретение Пример 41 50,00 6,50 222,00
47 Сравнительный Пример А 62,50 4,70 504,00
48 Изобретение Пример 41 62,50 7,30 150,00
49 Сравнительный Пример В 18,80 1,40 >1000
50 Изобретение Пример 42 18,80 3,10 >1000
51 Сравнительный Пример В 25,00 6,70 >1000
52 Изобретение Пример 42 25,00 8,10 878,00
53 Сравнительный Пример В 37,50 12,90 858,00
54 Изобретение Пример 42 37,50 16,90 674,00
Примеры 55-58
Испытания на осаждение красного шлама проводят аналогично примерам 43-54, за исключением того, что к щелоку добавляют 7,5 % по отношению к твердым частицам красного шлама синтетического продукта обескремнивания ((ПОК)(DSP)), находящегося как загрязнение в контурах красного шлама в способе Байера. Данные ясно показывают, что полимеры данного изобретения дают лучшие скорости осаждения и прозрачность (ниже NTU), даже когда присутствуют ПОК.
Таблица 8
Пример Полимер Доза
полимера
(г/т)
Скорость
осаждения
(фунт/ч)
Прозрачность
надосадочной
жидкости
(NTU)
55 Сравнительный Пример А 45,50 1,70 994,00
56 Изобретение Пример 41 45,50 3,90 260,00
57 Сравнительный Пример В 27,30 3,40 >1000
58 Изобретение Пример 42 27,30 4,60 >1000

Claims (17)

1. Способ флокуляции и отделения суспендированных твердых частиц от промышленного обрабатываемого потока, содержащего суспендированные твердые частицы, включающий следующие стадии:
введение в поток водорастворимого полимера в количестве, эффективном для флокуляции суспендированных твердых частиц; и отделение флокулированных твердых частиц от него, в котором водорастворимым полимером является гидроксаматный полимер эмульсии типа "вода в масле в воде", непрерывная фаза которой содержит водорастворимую соль.
2. Способ по п.1, в котором обрабатываемым потоком является поток способа Байера.
3. Способ по п.2, в котором обрабатываемым потоком является обрабатываемый поток тригидрата оксида алюминия.
4. Способ по п.2, в котором обрабатываемым потоком является обрабатываемый поток красного шлама.
5. Способ по п.1, в котором гидроксаматным полимером является полимер акриламида.
6. Способ по п.1, в котором непрерывная фаза эмульсии типа "вода в масле в воде" гидроксаматного полимера содержит водорастворимую соль, содержащую алюминий или кальций.
7. Способ по п.1, в котором обрабатываемым потоком является обрабатываемый поток тригидрата оксида алюминия.
8. Способ по п.1, в котором обрабатываемым потоком является обрабатываемый поток красного шлама.
9. Способ по п.2, в котором эмульсия типа "вода в масле в воде" гидроксаматного полимера получается смешением в любом порядке эмульсии типа "вода в масле" гидроксаматного полимера с раствором водорастворимой соли, содержащей алюминий или кальций.
10. Способ по п.1, в котором водорастворимый полимер вводят в обрабатываемый поток как полимер эмульсии типа "вода в масле в воде".
11. Способ по п.10, в котором полимером является гидроксаматный полимер эмульсии типа "вода в масле в воде".
12. Способ по п.11, в котором гидроксаматным полимером является полимер акриламида.
13. Способ по п.12, в котором обрабатываемым потоком является поток способа Байера.
14. Способ по п.13, в котором обрабатываемым потоком является обрабатываемый поток либо красного шлама, либо тригидрата оксида алюминия.
15. Композиция, содержащая эмульсию типа "вода в масле в воде" водорастворимого полимера, включающего гидроксаматный полимер, в которой непрерывной фазой является водный раствор водорастворимой соли алюминия или кальция.
16. Композиция по п.15, в которой гидроксаматный полимер является производным акриламида или сложного акрилатного эфира.
17. Композиция по п.15, в которой полимером является полимер акриламида или сложного акрилатного эфира.
RU2007135349/05A 2005-02-25 2006-01-25 Эмульсии типа "вода в масле в воде" гидроксаматных полимеров и способы их применения RU2415694C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US65647405P 2005-02-25 2005-02-25
US60/656,474 2005-02-25

Publications (2)

Publication Number Publication Date
RU2007135349A RU2007135349A (ru) 2009-03-27
RU2415694C2 true RU2415694C2 (ru) 2011-04-10

Family

ID=36603651

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007135349/05A RU2415694C2 (ru) 2005-02-25 2006-01-25 Эмульсии типа "вода в масле в воде" гидроксаматных полимеров и способы их применения

Country Status (11)

Country Link
US (2) US20060191853A1 (ru)
EP (1) EP1850938B1 (ru)
JP (1) JP5522897B2 (ru)
CN (2) CN101658736B (ru)
AU (1) AU2006219036B2 (ru)
BR (1) BRPI0609046A2 (ru)
CA (1) CA2598848C (ru)
ES (1) ES2646563T3 (ru)
RU (1) RU2415694C2 (ru)
UA (1) UA89663C2 (ru)
WO (1) WO2006093588A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2775737C2 (ru) * 2015-12-04 2022-07-07 ЭКОЛАБ ЮЭсЭй ИНК. Получение продукта горнорудной переработки с применением полимеров, содержащих бороновую кислоту

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009303763B8 (en) * 2008-10-17 2014-05-15 Cytec Technology Corp. Use of silicon-containing polymers for improved flocculation of solids in processes for the production of alumina from bauxite
WO2011100185A1 (en) * 2010-02-12 2011-08-18 Cytec Technology Corp. Flocculant compositions containing silicon-containing polymers
US20160185613A1 (en) * 2010-02-12 2016-06-30 Cytec Technology Corp. Water-in-Oil Emulsion Compositions and Methods for Making and Using the Same
US20120138542A1 (en) * 2010-12-02 2012-06-07 S.P.C.M. Sa Process for improving inline tailings treatment
JP5815733B2 (ja) * 2010-12-21 2015-11-17 サイテク・テクノロジー・コーポレーシヨン ヒドロキシルアミン溶液からのヒドラジンの除去方法
AU2011349525B2 (en) 2010-12-21 2015-05-21 Cytec Technology Corp. Microdispersions of hydroxamated polymers and methods of making and using them
US20140263080A1 (en) * 2013-03-13 2014-09-18 Ecolab Usa Inc. In-line tailings treatment process
CN103204963B (zh) * 2013-04-19 2015-04-22 重庆工商大学 异羟肟酸聚合物的合成方法
US10106443B2 (en) * 2013-04-25 2018-10-23 S.P.C.M. Sa Composition for treating suspensions of solid particles in water and method using said composition
US10427950B2 (en) 2015-12-04 2019-10-01 Ecolab Usa Inc. Recovery of mining processing product using boronic acid-containing polymers
CN110804110B (zh) * 2019-10-31 2022-05-24 广东省石油与精细化工研究院 一种高分子量氧肟酸化聚丙烯酰胺乳液及其制备方法
AU2022220705A1 (en) 2021-02-12 2023-08-17 Ecolab Usa Inc. Purification of bauxite ores using boronic acid-functional compounds

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3345344A (en) * 1961-09-08 1967-10-03 Nopco Chem Co Process for conversion of amidoxime polymers to polyhydroxamic acids using aqueous hydrochloric acid solutions
CA825234A (en) * 1966-06-06 1969-10-14 G. Flock Howard Flocculation and filtration of alumina trihydrate
US3827500A (en) * 1971-08-30 1974-08-06 Chevron Res Formation permeability maintenance with hydroxy-aluminum solutions
US4045357A (en) * 1975-05-05 1977-08-30 Chevron Research Company Hydroxy-aluminum based drilling fluid
GB2070108B (en) * 1980-02-14 1984-02-08 Elf Aquitaine Drilling and/or completion muds
FR2533572A1 (fr) * 1982-09-28 1984-03-30 Elf Aquitaine Perfectionnements a la preparation de polymeres a fonctions hydroxamiques, nouveaux polymeres obtenus et leurs applications
FR2536383A1 (fr) * 1982-11-24 1984-05-25 Elf Aquitaine Procede et produit pour l'empechement de l'entartrage par des eaux
FR2538717B1 (fr) * 1982-12-31 1987-09-11 Elf Aquitaine Procede et produit pour l'inhibition du depot d'argiles dans de l'eau
FR2577568B1 (fr) 1985-02-19 1987-12-18 Coatex Sa Agent fluidifiant non polluant pour fluides de forage a base d'eau douce ou saline
US4767540A (en) * 1987-02-11 1988-08-30 American Cyanamid Company Polymers containing hydroxamic acid groups for reduction of suspended solids in bayer process streams
GB8907995D0 (en) * 1989-04-10 1989-05-24 Allied Colloids Ltd Recovery of alumina trihydrate in the bayer process
US5332595A (en) * 1991-03-18 1994-07-26 Kraft General Foods, Inc. Stable multiple emulsions comprising interfacial gelatinous layer, flavor-encapsulating multiple emulsions and low/no-fat food products comprising the same
US5141730A (en) * 1991-05-23 1992-08-25 American Cyanamid Company Stabilization of hydroxylamine solutions
US6608137B1 (en) * 1991-05-23 2003-08-19 Cytec Technology Corp. Microdispersions of hydroxamated polymers
DE69225404T2 (de) * 1991-06-27 1998-12-17 Emory University, Atlanta, Ga. Mehrkomponentemulsionen und verfahren zur deren herstellung
CA2105333A1 (en) 1992-09-14 1994-03-15 Robert P. Mahoney Trihydrate clarification aid for the bayer process
CN1109076A (zh) * 1993-12-17 1995-09-27 Cytec技术有限公司 羟氨基化的聚合物的微滴分散体
WO1996005146A1 (en) * 1994-08-12 1996-02-22 Cytec Technology Corp. A method of stabilizing slurries
US5539046A (en) * 1994-11-04 1996-07-23 Cytec Technology Corp. Blends of hydroxamated polymer emulsions with polyacrylate emulsions
US5656280A (en) * 1994-12-06 1997-08-12 Helene Curtis, Inc. Water-in-oil-in-water compositions
EP0859744A1 (en) * 1995-11-07 1998-08-26 Cytec Technology Corp. Concentration of solids in the bayer process
US5853677A (en) * 1996-04-26 1998-12-29 Cytec Technology Corp. Concentration of solids by flocculating in the Bayer process
US5733460A (en) 1996-04-29 1998-03-31 Cytec Technology Corp. Use of hydroxamated polymers to alter Bayer Process scale
US5807757A (en) * 1996-07-02 1998-09-15 Virus Research Institute, Inc. Preparation of ionically cross-linked polyphosphazene microspheresy by coacervation
CN1075945C (zh) * 1998-02-26 2001-12-12 中国科学院化学研究所 一种高分子包囊胰岛素微粒体及其制备方法和用途
US6527959B1 (en) * 2001-01-29 2003-03-04 Ondeo Nalco Company Method of clarifying bayer process liquors using salicylic acid containing polymers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2775737C2 (ru) * 2015-12-04 2022-07-07 ЭКОЛАБ ЮЭсЭй ИНК. Получение продукта горнорудной переработки с применением полимеров, содержащих бороновую кислоту

Also Published As

Publication number Publication date
ES2646563T3 (es) 2017-12-14
CA2598848A1 (en) 2006-09-08
EP1850938B1 (en) 2017-08-16
CN101658736B (zh) 2013-05-29
US8216534B2 (en) 2012-07-10
AU2006219036A1 (en) 2006-09-08
CN101128244A (zh) 2008-02-20
CN101658736A (zh) 2010-03-03
US20110150754A1 (en) 2011-06-23
RU2007135349A (ru) 2009-03-27
US20060191853A1 (en) 2006-08-31
AU2006219036B2 (en) 2010-12-23
CN101128244B (zh) 2010-09-29
WO2006093588A1 (en) 2006-09-08
BRPI0609046A2 (pt) 2010-11-16
CA2598848C (en) 2013-03-19
EP1850938A1 (en) 2007-11-07
JP5522897B2 (ja) 2014-06-18
UA89663C2 (ru) 2010-02-25
JP2008531256A (ja) 2008-08-14

Similar Documents

Publication Publication Date Title
RU2415694C2 (ru) Эмульсии типа "вода в масле в воде" гидроксаматных полимеров и способы их применения
AU689350B2 (en) Blends of hydroxamated polymer emulsions with polyacrylate emulsions
US7264736B2 (en) Removal of non-water soluble substances from solutions of aqueous metal extracts
AU2002232607B2 (en) Method of clarifying bayer process liquors using salicylic acid containing polymers
AU767905B2 (en) Process for purifying bayer process streams
AU2002232607A1 (en) Method of clarifying bayer process liquors using salicylic acid containing polymers
EP0232302B1 (en) Clarification of bayer process liquors
US5286391A (en) Red mud flocculation
CA2105333A1 (en) Trihydrate clarification aid for the bayer process
US4717550A (en) Process for purifying alumina
BRPI0609046B1 (pt) Method for floculation and separation of suspended solids from an industrial process current containing suspended solids