[go: up one dir, main page]

RU2414255C1 - Способ введения жидкого вещества в микрокапсулы и устройство для его осуществления - Google Patents

Способ введения жидкого вещества в микрокапсулы и устройство для его осуществления Download PDF

Info

Publication number
RU2414255C1
RU2414255C1 RU2009125254/14A RU2009125254A RU2414255C1 RU 2414255 C1 RU2414255 C1 RU 2414255C1 RU 2009125254/14 A RU2009125254/14 A RU 2009125254/14A RU 2009125254 A RU2009125254 A RU 2009125254A RU 2414255 C1 RU2414255 C1 RU 2414255C1
Authority
RU
Russia
Prior art keywords
microchannel plate
microcapsules
liquid
liquid substance
lattice
Prior art date
Application number
RU2009125254/14A
Other languages
English (en)
Other versions
RU2009125254A (ru
Inventor
Сергей Григорьевич Миронов (RU)
Сергей Григорьевич Миронов
Сергей Иванович Романов (RU)
Сергей Иванович Романов
Original Assignee
Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН (ИТПМ СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН (ИТПМ СО РАН) filed Critical Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН (ИТПМ СО РАН)
Priority to RU2009125254/14A priority Critical patent/RU2414255C1/ru
Publication of RU2009125254A publication Critical patent/RU2009125254A/ru
Application granted granted Critical
Publication of RU2414255C1 publication Critical patent/RU2414255C1/ru

Links

Images

Landscapes

  • Media Introduction/Drainage Providing Device (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Medicinal Preparation (AREA)

Abstract

Группа изобретений относится к области биотехнологий. Способ включает подачу микрокапсул в потоке жидкости на вход в микроканальную пластину 2. Диаметр каналов ее меньше размера микрокапсул, которые задерживаются на входе в микроканальную пластину 2 после отвода через нее жидкости. Решетку микроигл 3 перемещают до прокалывания оболочки микрокапсул и вводят жидкое вещество. После чего удаляют заполненные микрокапсулы, изменяя направление течения потока жидкости сквозь микроканальную пластину 2 на обратное. Устройство содержит микроканальную пластину 2, канал 1 с включающей микрокапсулы жидкостью, решетку 3 с микроиглами и резервуар 4 жидкого вещества. Решетка 3 установлена соосно с микроканальной пластиной 2. Микроиглы сообщаются с резервуаром 4 жидкого вещества. В канале 1 установлены микроканальная пластина 2, решетка микроигл 3, поршневой узел 5 и клапаны 8, 9 для обеспечения движения жидкости с микрокапсулами через микроканальную пластину 2 в одном направлении. Решетка 3 имеет возможность перемещения навстречу микроканальной пластине 2 на расстояние прокалывания оболочки микрокапсул. Изобретения обеспечивают непрерывность процесса введения жидких веществ одновременно в большое число микрокапсул. 2 н.п. ф-лы, 4 ил.

Description

Изобретение относится к области биотехнологий и предназначено для введения порций жидких лекарственных составов и активных веществ одновременно большому числу живых микроорганизмов.
В последнее время возникла необходимость в целенаправленной доставке лекарственных препаратов к органам человека, пораженным, например, раком. Доставка может осуществляться разными способами, например через прокалывание иглой, которая достигает пораженного органа, путем перемещения ферромагнитных микрокапсул по кровеносным сосудам магнитным полем. В качестве носителей лекарственных препаратов можно использовать синтетические микрокапсулы с тонкими полимерными стенками или живые микроорганизмы, являющиеся природными микрокапсулами. Последний метод позволяет по кровеносным сосудам адресно доставить лекарственный препарат в нужное место живого организма, например человека, где микроорганизмы-капсулы со временем распадаются и выносятся вместе с продуктами метаболизма. Для осуществления этого метода необходимо произвести введение лекарств очень большому числу микроорганизмов. Здесь их число должно составлять миллионы и десятки миллионов штук, что требует организации поточного процесса введения инъекций большому числу микроорганизмов.
В патентной литературе имеются сведения о способах и устройствах введения микродоз активных веществ или генетического материала в клетки или микроорганизмы.
Известен способ и устройство введения активных веществ в микроорганизмы из раствора по патенту РФ №2224556 (опубл. 27.02. 2004), в котором они свободно плавают, через проколы в стенке микроорганизмов, создаваемые лазерным излучением. Этот метод не всегда приемлем, так как при этом трудно контролировать объем и качество вводимого в микроорганизмы вещества.
Известны способы и устройства, в которых активный материал вводится в макроскопические объемы клеток методом прокалывания.
В частности, известно устройство введения лекарств через прокалывание с использованием решетки микроигл по патенту РФ №2209640 (опубл. 15.07.1996), соединенных с резервуаром с лекарством. Изобретение описывает конкретные конструкции микроигл, способы создания импульса вспрыскивающего давления и регулировки величины порции лекарства. Основными проблемами здесь являются фиксация микроорганизмов в строго определенном положении и организация непрерывного процесса инъекций.
Наиболее близкими к предлагаемым изобретениям являются способ и устройство введения активного генетического материала (биологического вещества) в макроскопические конгломераты из клеток методом прокалывания по патенту США №5457041 (опубл. 10.10.1995).
В нем используется решетка микроигл, на концах которых помещается и удерживается вводимый материал. Решетка перемещается координатным устройством в направлении образца клеточного материала, закрепленного в специальной державке. Решетка микроигл надвигается на образец и иглы входят в клетки образца. Затем решетка выдвигается из образца, а вводимый материал остается в клетках, отрываясь от кончиков игл при обратном движении. Глубина проникновения в нужный слой клеток регулируется длиной микроигл. Наблюдение за процессом ведется в микроскоп.
Недостатком данного способа является необходимость использования макрообъемов биологического вещества для закрепления в державке. Основной проблемой введения инъекций в микроорганизмы через прокалывание является их фиксация в пространстве в месте расположения микроигл. Обычно микроорганизмы свободно плавают в физиологическом растворе или воде и операция прокалывания стенки и введения инъекции не возможна без их четкой фиксации на жестком основании. Другим недостатком этого изобретения является невозможность организации непрерывного процесса введения активного вещества сразу большому числу микроорганизмов.
Предлагаемыми изобретениями решается задача организации процесса непрерывного введения жидких веществ одновременно в большое число микрокапсул.
Данный технический результат достигается благодаря использованию способа введения жидких веществ одновременно большому числу микрокапсул посредством предлагаемого устройства для его осуществления.
Для получения такого технического результата в предлагаемом способе введения жидкого вещества в микрокапсулы с помощью решетки микроигл и микроканальной пластины новым является то, что микрокапсулы в потоке жидкости подают на вход в микроканальную пластину, при этом диаметр каналов ее меньше размера микрокапсул, которые задерживаются на входе в микроканальную пластину после отвода через нее жидкости. Затем перемещают решетку микроигл до прокалывания оболочки микрокапсул и вводят жидкое вещество. После чего удаляют заполненные микрокапсулы, изменяя направление течения потока жидкости сквозь микроканальную пластину на обратное.
Отличительными признаками предлагаемого способа являются фиксация микрокапсул на входе в каналы микроканальной пластины, диаметр каналов которой меньше размера микрокапсул, путем протока несущей их жидкости сквозь микроканальную пластину, перемещение решетки микроигл до прокалывания оболочки микрокапсул и ввод жидкого вещества, удаление заполненных микрокапсул путем изменения направления течения потока жидкости на обратное. Это позволяет осуществлять ввод жидких веществ одновременно в большое число микрокапсул путем прокалывания стенки.
Для достижения такого технического результата предлагается устройство для введения жидкого вещества в микрокапсулы, содержащее микроканальную пластину, решетку с микроиглами и резервуар вводимого в микрокапсулы жидкого вещества, в котором решетка с микроиглами установлена соосно с микроканальной пластиной, а микроиглы сообщаются с резервуаром вводимого в микрокапсулы жидкого вещества. Предлагаемое устройство содержит канал с включающей микрокапсулы жидкостью, в котором установлены микроканальная пластина, решетка микроигл, поршневой узел и клапаны для обеспечения движения жидкости с микрокапсулами через микроканальную пластину в упомянутом канале с жидкостью в одном направлении, решетка микроигл имеет возможность перемещения навстречу микроканальной пластине на расстояние прокалывания оболочки микрокапсул. При этом каналы в микроканальной пластине имеют меньший, чем размер микрокапсул, диаметр.
Использование микроканальной пластины, установленной вместе с решеткой микроигл в канале для подачи микрокапсул в потоке жидкости с поршневым узлом и клапанами, обеспечивающими необходимое направление течения жидкости через микроканальную пластину, позволяет фиксировать большое число микрокапсул и осуществлять непрерывный процесс введения в них жидких веществ.
Указанные признаки не выявлены в других технических решениях при изучении уровня данной области техники и, следовательно, решение является новым и имеет изобретательский уровень.
Предлагаемые изобретения иллюстрируются чертежами, на которых изображено: на фиг.1 - схема устройства для введения жидкого вещества в микрокапсулы в фазе фиксации микрокапсул на микроканальной пластине; на фиг.2 - схема устройства в фазе введения жидкого вещества в микрокапсулы; на фиг.3 - вид А фиг.2; на фиг.4 - схема устройства в фазе вывода микрокапсул из канала.
Предлагаемое устройство состоит из канала 1 (фиг.1), в котором установлена микроканальная пластина 2, решетка с микроиглами 3 и резервуар вводимого в микрокапсулы жидкого вещества 4, в котором решетка с микроиглами 3 установлена соосно с микроканальной пластиной 2, микроиглы сообщаются с резервуаром вводимого в микрокапсулы жидкого вещества 4, поршневой узел 5 с поршнем 6 обеспечивают необходимое движение жидкости с микрокапсулами 7 через микроканальную пластину 2 в одном направлении. Вход в поршневой узел 5 закрыт микроканальной пластиной 2, через которую протекает жидкость. В зависимости от направления движения поршня 6 жидкость может втекать или вытекать через каналы пластины 2. Клапаны 8 и 9 предназначены для организации движения жидкости с микрокапсулами по каналу 1 в одном направлении - слева направо.
Устройство, реализующее в непрерывном режиме способ введения жидкого вещества в микрокапсулы, осуществляется следующим образом.
В канал 1 подается поток жидкости, несущий микрокапсулы 7. На фиг.1 стрелками указано направление течения жидкости. Клапан 8 в этой фазе работы пропускает жидкость с микрокапсулами 7 к микроканальной пластине 2 из-за разницы в давлении над и под микроканальной пластиной 2, создаваемой движением вниз поршня 6. По этой же причине клапан 9 в этой фазе работы закрыт и не дает потоку жидкости течь направо. При этом поток жидкости, содержащий плавающие в ней микрокапсулы 7, течет сквозь каналы микроканальной пластины 2 вниз (см. фиг.1), засасывая и фиксируя микрокапсулы 7 на входе в каналы, поскольку каналы в микроканальной пластине имеют меньший, чем размер микрокапсул 7, диаметр. Движение поршня 6 вниз продолжается до тех пор, пока большинство каналов в микроканальной пластине 2 не заполнится микрокапсулами 7. Контроль о заполнении микроканальной пластины 2 микрокапсулами 7 можно осуществлять по величине сопротивления движению поршня 6.
После заполнения большинства каналов микроканальной пластины 2 микрокапсулами 7 на микроканальную пластину 2 надвигается регулярная решетка микроигл 3. Решетка микроигл 3 сообщена с резервуаром 4, содержащим вводимое жидкое вещество. Решетка с микроиглами 3 расположена соосно каналам микроканальной пластины 2. После достижения определенного расстояния между микроканальной пластиной 2 и решеткой микроигл 3, при котором имеет место наибольшая вероятность прокалывания стенок микрокапсул 7, решетка микроигл 3 останавливается, давление в резервуаре 4 на некоторое время поднимается и происходит введение жидкого вещества в микрокапсулы 7 (см. фиг.2, 3). Число микрокапсул 7, в которые введено жидкое вещество, будет составлять порядка числа каналов и микроигл на микроканальной пластине 2 и решетке микроигл 3. Диаметр каналов на микроканальной пластине 2 выбирался исходя из размера микрокапсул 7, чтобы не допустить проскока микрокапсул 7 через каналы. После введения жидкого вещества решетка микроигл 3 отодвигается от микроканальной пластины 2 в исходное положение. При этом клапан 8 открыт, а клапан 9 закрыт, так как поршень 6 продолжает движение вниз, поддерживая необходимый для фиксации микрокапсул 7 перепад давления.
Затем направление течения жидкости сквозь микроканальную пластину 2 меняется на обратное за счет смены направления движения поршня 6, который выталкивает жидкость через каналы микроканальной пластины 2, как показано на фиг.4. При этом микрокапсулы 7 отбрасываются от микроканальной пластины 2 и выносятся вместе с жидкостью через клапан 9 на выход из канала 1, а клапан 8 закрыт и не позволяет смешиваться микрокапсулам 7 до и после введения жидкого вещества. Таким образом, осуществляется единичный цикл процесса введения жидких веществ в большое число микрокапсул 7.
Далее трехфазный цикл процедуры введения жидкого вещества повторяется вновь. В процессе повторения циклов через капал 1 слева направо идет квазинепрерывный поток жидкости, содержащей микрокапсулы 7 до и после введения жидкого вещества.
Таким образом, использование предлагаемых изобретений позволяет организовать непрерывный процесс введения жидких веществ одновременно большому числу микрокапсул, вследствие чего повышается эффективность процесса.

Claims (2)

1. Способ введения жидкого вещества в микрокапсулы с помощью решетки микроигл и микроканальной пластины, отличающийся тем, что микрокапсулы в потоке жидкости подают на вход в микроканальную пластину, при этом диаметр каналов ее меньше размера микрокапсул, которые задерживаются на входе в микроканальную пластину после отвода через нее жидкости, а затем перемещают решетку микроигл до прокалывания оболочки микрокапсул и вводят жидкое вещество, после чего удаляют заполненные микрокапсулы, изменяя направление течения потока жидкости сквозь микроканальную пластину на обратное.
2. Устройство для ввода жидкого вещества в микрокапсулы, содержащее микроканальную пластину, решетку с микроиглами и резервуар вводимого в микрокапсулы жидкого вещества, в котором решетка с микроиглами установлена соосно с микроканальной пластиной, а микроиглы сообщаются с резервуаром вводимого в микрокапсулы жидкого вещества, отличающееся тем, что содержит канал с включающей микрокапсулы жидкостью, в котором установлены микроканальная пластина, решетка микроигл, поршневой узел и клапаны для обеспечения движения жидкости с микрокапсулами через микроканальную пластину в упомянутом канале с жидкостью в одном направлении, решетка микроигл имеет возможность перемещения навстречу микроканальной пластине на расстояние прокалывания оболочки микрокапсул, а каналы в микроканальной пластине имеют меньший чем размер микрокапсул диаметр.
RU2009125254/14A 2009-07-01 2009-07-01 Способ введения жидкого вещества в микрокапсулы и устройство для его осуществления RU2414255C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009125254/14A RU2414255C1 (ru) 2009-07-01 2009-07-01 Способ введения жидкого вещества в микрокапсулы и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009125254/14A RU2414255C1 (ru) 2009-07-01 2009-07-01 Способ введения жидкого вещества в микрокапсулы и устройство для его осуществления

Publications (2)

Publication Number Publication Date
RU2009125254A RU2009125254A (ru) 2011-01-10
RU2414255C1 true RU2414255C1 (ru) 2011-03-20

Family

ID=44053585

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009125254/14A RU2414255C1 (ru) 2009-07-01 2009-07-01 Способ введения жидкого вещества в микрокапсулы и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2414255C1 (ru)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2662432C2 (ru) * 2013-03-15 2018-07-26 Кориум Интернэшнл, Инк. Массив микроструктур для доставки действующих агентов
US10195409B2 (en) 2013-03-15 2019-02-05 Corium International, Inc. Multiple impact microprojection applicators and methods of use
US10238848B2 (en) 2007-04-16 2019-03-26 Corium International, Inc. Solvent-cast microprotrusion arrays containing active ingredient
US10384046B2 (en) 2013-03-15 2019-08-20 Corium, Inc. Microarray for delivery of therapeutic agent and methods of use
US10384045B2 (en) 2013-03-15 2019-08-20 Corium, Inc. Microarray with polymer-free microstructures, methods of making, and methods of use
US10624843B2 (en) 2014-09-04 2020-04-21 Corium, Inc. Microstructure array, methods of making, and methods of use
US10857093B2 (en) 2015-06-29 2020-12-08 Corium, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making
US11052231B2 (en) 2012-12-21 2021-07-06 Corium, Inc. Microarray for delivery of therapeutic agent and methods of use
US11110259B2 (en) 2013-03-12 2021-09-07 Corium, Inc. Microprojection applicators and methods of use
US11419816B2 (en) 2010-05-04 2022-08-23 Corium, Inc. Method and device for transdermal delivery of parathyroid hormone using a microprojection array

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAMAMOTO M. et al. One modification of microinjection involves pricking the cell nuclei with a solid glass needle to allow biological solutions to enter which surround the cell, Exp. Cell Res., 1982, 142:79-84. *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10238848B2 (en) 2007-04-16 2019-03-26 Corium International, Inc. Solvent-cast microprotrusion arrays containing active ingredient
US11419816B2 (en) 2010-05-04 2022-08-23 Corium, Inc. Method and device for transdermal delivery of parathyroid hormone using a microprojection array
US11052231B2 (en) 2012-12-21 2021-07-06 Corium, Inc. Microarray for delivery of therapeutic agent and methods of use
US11110259B2 (en) 2013-03-12 2021-09-07 Corium, Inc. Microprojection applicators and methods of use
RU2662432C2 (ru) * 2013-03-15 2018-07-26 Кориум Интернэшнл, Инк. Массив микроструктур для доставки действующих агентов
US10195409B2 (en) 2013-03-15 2019-02-05 Corium International, Inc. Multiple impact microprojection applicators and methods of use
US10384046B2 (en) 2013-03-15 2019-08-20 Corium, Inc. Microarray for delivery of therapeutic agent and methods of use
US10384045B2 (en) 2013-03-15 2019-08-20 Corium, Inc. Microarray with polymer-free microstructures, methods of making, and methods of use
US11565097B2 (en) 2013-03-15 2023-01-31 Corium Pharma Solutions, Inc. Microarray for delivery of therapeutic agent and methods of use
US10624843B2 (en) 2014-09-04 2020-04-21 Corium, Inc. Microstructure array, methods of making, and methods of use
US10857093B2 (en) 2015-06-29 2020-12-08 Corium, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making

Also Published As

Publication number Publication date
RU2009125254A (ru) 2011-01-10

Similar Documents

Publication Publication Date Title
RU2414255C1 (ru) Способ введения жидкого вещества в микрокапсулы и устройство для его осуществления
Wang et al. Precise microinjection into skin using hollow microneedles
JP6271602B2 (ja) 腫瘍に1つまたは複数の薬剤をデリバリーする装置
AU2009202335B2 (en) Pulsatile flux drug delivery
US20130041265A1 (en) Methods and apparatus for introducing cells at a tissue site
RU2012102688A (ru) Устройство для подкожных инъекций с матрицей полых игл
US20060134600A1 (en) Method and devices for non-traumatic movement of a probe through biological cell material
CN110325232A (zh) 用于流体产品的自动注射设备
KR101680562B1 (ko) 밀도-의존 가변형 니들을 구비하는 주사기
KR20150037745A (ko) 멀티 마이크로니들 디바이스 사용 유체 주입기 조작 기구
ES2424216T3 (es) Dispositivo de válvula para controlar un flujo de un fluido a través de un canal de fluido, disposición así como dispositivo de múltiples vías
CN103127586A (zh) 金属针管阵列元件及由其形成的一次性阵列式注射针头
Myers An intracranial chemical stimulation system for chronic or self-infusion
CN109481070A (zh) 一种植入性颈内动脉恒速注射装置及其操作方法
CN106535858A (zh) 用于液体或固体成分的经皮和透皮递送的柱塞状物质传送装置
CN109328082A (zh) 注射装置
CN102018999A (zh) 一种与血管并联的医用器械
EP4061222B1 (en) Interstitial fluid removal device
KR102429707B1 (ko) 삼투압펌프를 이용한 세포배양액 자동 공급 장치
CN102245229B (zh) 用于推注造影剂的装置
Yuan et al. Status and Prospect of Needle-Free Jet Injector
US20230007883A1 (en) Injection pump needle mechanics
Kumar et al. Microneedles & microfluidics employing in drug delivery
Mutschler Needle-free trans-endoscopic micro injection for flexible endoscopy
CN201295393Y (zh) 一种快速溶解多瓶粉剂药配药装置