RU2411284C2 - Device and method for catalyst regeneration - Google Patents
Device and method for catalyst regeneration Download PDFInfo
- Publication number
- RU2411284C2 RU2411284C2 RU2008136902/04A RU2008136902A RU2411284C2 RU 2411284 C2 RU2411284 C2 RU 2411284C2 RU 2008136902/04 A RU2008136902/04 A RU 2008136902/04A RU 2008136902 A RU2008136902 A RU 2008136902A RU 2411284 C2 RU2411284 C2 RU 2411284C2
- Authority
- RU
- Russia
- Prior art keywords
- catalyst
- combustion
- gas
- combustion gas
- chamber
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 228
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000008929 regeneration Effects 0.000 title abstract description 36
- 238000011069 regeneration method Methods 0.000 title abstract description 36
- 238000002485 combustion reaction Methods 0.000 claims abstract description 100
- 239000007789 gas Substances 0.000 claims abstract description 61
- 239000003546 flue gas Substances 0.000 claims abstract description 24
- 230000007704 transition Effects 0.000 claims abstract description 11
- 239000000567 combustion gas Substances 0.000 claims description 45
- 238000000926 separation method Methods 0.000 claims description 18
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 238000000605 extraction Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 2
- 230000003134 recirculating effect Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 32
- 238000005243 fluidization Methods 0.000 description 31
- 239000002245 particle Substances 0.000 description 27
- 230000032258 transport Effects 0.000 description 25
- 239000000571 coke Substances 0.000 description 20
- 229930195733 hydrocarbon Natural products 0.000 description 18
- 150000002430 hydrocarbons Chemical class 0.000 description 18
- 238000002156 mixing Methods 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000004215 Carbon black (E152) Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 238000005336 cracking Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000004523 catalytic cracking Methods 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000036284 oxygen consumption Effects 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000003079 shale oil Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000011275 tar sand Substances 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Incineration Of Waste (AREA)
- Catalysts (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
Область техники, к которой относится изобретениеFIELD OF THE INVENTION
Настоящее изобретение относится к способу регенерации отработанного катализатора превращения углеводородов путем сжигания кокса на катализаторе во флюидизированной зоне горения. Конкретно это изобретение относится к способу превращения тяжелых углеводородов в более легкие углеводороды с использованием флюидизированного потока частиц катализатора и регенерации частиц катализатора с целью удаления кокса, который оказывает деактивирующее действие на катализатор.The present invention relates to a method for regenerating a spent hydrocarbon conversion catalyst by burning coke on a catalyst in a fluidized combustion zone. Specifically, this invention relates to a method for converting heavy hydrocarbons into lighter hydrocarbons using a fluidized stream of catalyst particles and regenerating the catalyst particles to remove coke, which has a deactivating effect on the catalyst.
Флюидизированный каталитический крекинг (ФКК) представляет собой способ превращения углеводородов, осуществляемый путем контактирования углеводородов в флюидизированной реакционной зоне с катализатором, состоящим из тонко диспергированного гранулированного материала. В отличие от гидрокрекинга, процесс каталитического крекинга проводится без добавления водорода или без потребления водорода. При протекании процесса крекинга на катализаторе осаждаются значительные количества материала с высоким содержанием углерода, который называется коксом. При проведении операции высокотемпературной регенерации в зоне регенерации кокс выжигается из катализатора. Содержащий кокс катализатор, который называется в этом изобретении отработанным катализатором, непрерывно удаляется из реакционной зоны и заменяется катализатором из зоны регенерации, который практически не содержит кокса. Флюидизация частиц катализатора с помощью различных газообразных потоков обеспечивает транспорт катализатора между реакционной зоной и зоной регенерации. Способы крекинга углеводородов в флюидизированном потоке катализатора, транспорт катализатора между реакционной зоной и зоной регенерации и сжигание кокса в регенераторе хорошо известны специалистам в области техники процессов ФКК. С этой целью уровень техники насыщен описаниями конфигурации аппаратов для контактирования частиц катализатора с сырьем и соответствующим газом регенерации.Fluidized catalytic cracking (FCC) is a hydrocarbon conversion process carried out by contacting hydrocarbons in a fluidized reaction zone with a catalyst consisting of finely dispersed granular material. Unlike hydrocracking, the catalytic cracking process is carried out without adding hydrogen or without consuming hydrogen. During the cracking process, significant amounts of a high-carbon material called coke are deposited on the catalyst. During the operation of high-temperature regeneration in the regeneration zone, coke is burned from the catalyst. The coke-containing catalyst, which is called spent catalyst in this invention, is continuously removed from the reaction zone and replaced by the catalyst from the regeneration zone, which is substantially free of coke. Fluidization of the catalyst particles by means of various gaseous streams allows the transport of catalyst between the reaction zone and the regeneration zone. Methods for cracking hydrocarbons in a fluidized catalyst stream, transporting a catalyst between a reaction zone and a regeneration zone, and burning coke in a regenerator are well known to those skilled in the art of PCC processes. To this end, the prior art is saturated with descriptions of the configuration of apparatuses for contacting the catalyst particles with the feed and the corresponding regeneration gas.
Общей целью этих конфигураций является получение максимального выхода продукта в реакторе, при минимизации эксплуатационных затрат и стоимости оборудования. Обычно для оптимизации степени превращения сырья требуется почти полное удаление кокса из катализатора. Это практически полное удаление кокса из катализатора часто называется полной регенерацией. При полной регенерации получается катализатор, содержащий меньше, чем 0,1% и предпочтительно меньше, чем 0,05 масс.% кокса. Для того чтобы достичь полной регенерации, катализатор должен находиться в контакте с кислородом в течение достаточного времени, чтобы обеспечить исчерпывающее сгорание кокса.The common goal of these configurations is to obtain maximum product yield in the reactor, while minimizing operating costs and equipment costs. Usually, almost complete removal of coke from the catalyst is required to optimize the degree of conversion of the feed. This near-complete removal of coke from the catalyst is often called complete regeneration. With complete regeneration, a catalyst is obtained containing less than 0.1% and preferably less than 0.05 wt.% Coke. In order to achieve complete regeneration, the catalyst must be in contact with oxygen for a sufficient time to ensure exhaustive combustion of coke.
Уровень техникиState of the art
Обычно традиционные регенераторы представляют собой аппараты, которые включают в себя вход для отработанного катализатора, выход регенерированного катализатора и распределительное устройство для подачи воздуха в плотный слой катализатора, находящегося в аппарате. Циклонные сепараторы удаляют катализатор, увлеченный с отработанным дымовым газом, до выхода газа из аппарата регенератора. В патенте США №4610851 описан аппарат регенератора с двумя распределительными устройствами воздуха на различных уровнях, с целью обеспечения соответствующего распределения газа для горения по всему аппарату. В патенте США №5827793 рекомендуются, по меньшей мере, два распределительных устройства на различных уровнях, в нижней половине плотного слоя катализатора для поддержания условий восстановления в плотном слое. В патенте США №4843051 показаны две воздухораспределительные решетки на различных уровнях аппарата регенерации с целью обеспечения соответствующего горения. В патенте США №5773378 рекомендуется аппарат регенератора с нижним воздухораспределительным устройством, причем воздух поступает выше нижнего воздухораспределительного устройства с отработанным катализатором.Typically, traditional regenerators are apparatuses that include an inlet for spent catalyst, an outlet for regenerated catalyst, and a distribution device for supplying air to a dense catalyst bed located in the apparatus. Cyclone separators remove the catalyst entrained with the exhaust flue gas until the gas exits the regenerator apparatus. US Pat. No. 4,610,851 describes a regenerator apparatus with two air distribution devices at different levels, in order to provide an appropriate distribution of combustion gas throughout the apparatus. US Pat. No. 5,282,793 recommends at least two switchgears at various levels in the lower half of the dense catalyst bed to maintain reconditioning conditions in the dense layer. In US patent No. 4843051 shows two air distribution grilles at different levels of the regeneration apparatus in order to ensure appropriate combustion. US Pat. No. 5,773,378 recommends a regenerator apparatus with a lower air distribution device, with air flowing above the lower air distribution device with spent catalyst.
В плотном слое катализатора, который также известен как кипящий слой, дымовые газы образуют пузырьки, которые поднимаются сквозь различимую верхнюю поверхность плотного слоя катализатора. Относительно малая часть катализатора увлекается дымовыми газами, выходящими из плотного слоя. Скорость дымовых газов на поверхности обычно меньше, чем 0,3 м/с (1,0 фут/с), и плотность плотного слоя обычно больше, чем 640 кг/м3 (40 фунт/фут3), в зависимости от характеристик катализатора. Смесь катализатора и дымовых газов является гетерогенной с проникающим газом, обтекающим частицы катализатора.In a dense catalyst bed, which is also known as a fluidized bed, flue gases form bubbles that rise through the distinguishable upper surface of the dense catalyst bed. A relatively small portion of the catalyst is carried away by flue gases leaving the dense layer. The surface flue gas velocity is usually less than 0.3 m / s (1.0 ft / s), and the density of the dense layer is usually greater than 640 kg / m 3 (40 lb / ft 3 ), depending on the characteristics of the catalyst . The mixture of catalyst and flue gas is heterogeneous with penetrating gas flowing around the catalyst particles.
Одним из способов получения полностью регенерированного катализатора является поэтапное осуществление регенерации. В патенте США №3958953 описана поэтапная проточная система, содержащая концентрические слои катализатора, разделенные перегородками, которые открыты в совместное пространство для сбора отработанного газа регенерации и отделения частиц катализатора. В патенте США №4299687 рекомендуется использовать поэтапную регенерирующую систему, имеющую совмещенные слои катализатора, в которых частицы отработанного катализатора сначала входят в верхний плотный флюидизированный слой катализатора и контактируют с газом регенерации из нижнего слоя катализатора и со свежим газом регенерации. После частичной регенерации в первой зоне регенерации, поток частиц катализатора переносится под действием гравитации в нижний слой катализатора, в который поступает поток свежего газа регенерации. В патентах США №№4695370 и 4664778 описаны два поэтапных регенератора, в которых каждая стадия осуществляется в отдельном аппарате.One way to obtain a fully regenerated catalyst is the phased implementation of regeneration. US Pat. No. 3,958,953 describes a phased flow system comprising concentric catalyst layers separated by baffles that open into a joint space for collecting exhaust gas from regeneration and separating catalyst particles. US Pat. No. 4,299,687 recommends the use of a stepwise regeneration system having combined catalyst beds in which spent catalyst particles first enter the upper dense fluidized catalyst bed and are contacted with a regeneration gas from the lower catalyst layer and with fresh regeneration gas. After partial regeneration in the first regeneration zone, the stream of catalyst particles is transferred under the action of gravity to the lower catalyst layer, into which the stream of fresh regeneration gas enters. US Pat. Nos. 4,695,370 and 4,664,778 describe two phased regenerators in which each stage is carried out in a separate apparatus.
Применение относительно разбавленных фаз в зоне регенерации для осуществления полной регенерации катализатора показано в патентах США №№4430201, 3844973 и 3923686. В этих патентах рекомендуется нижний плотный слой, в котором распределяется газ для горения, и верхняя транспортная зона. Дополнительный воздух распределяется в стояке, обеспечивая транспортную зону. В патентах США №№5158919 и 4272402 показана двухэтапная система, в которой объединена транспортная зона относительно разбавленной фазы, без нижней зоны плотного слоя для регенерации катализатора. Во всех этих патентах предложен верхний плотный слой, в котором собирается, по меньшей мере, частично регенерированный катализатор, выходящий из транспортной зоны.The use of relatively dilute phases in the regeneration zone for complete catalyst regeneration is shown in US Pat. Nos. 4,430,201, 3,844,973 and 3,923,686. These patents recommend a lower dense layer in which combustion gas is distributed and an upper transport zone. Additional air is distributed in the riser, providing a transport zone. US Pat. Nos. 5,158,919 and 4,272,402 show a two-stage system in which a transport zone with respect to a dilute phase is combined without a lower zone of a dense layer for catalyst regeneration. In all these patents, an upper dense layer is proposed in which at least partially regenerated catalyst exiting the transport zone is collected.
Режимы разбавленного или транспортного течения обычно используются в реакторах ФКК с восходящим слоем катализатора. В транспортном потоке различие скоростей газа и катализатора относительно мало, причем небольшое количество катализатора возвращается обратно или удерживается в аппарате. Для катализатора в реакционной зоне сохраняются условия потока с низкой плотностью и весьма разбавленной фазой. При транспортном течении скорость газов на поверхности обычно составляет больше, чем 2,1 м/с (7,0 футов/с), и плотность катализатора обычно не больше, чем 48 кг/м3 (3 фунт/фут3). Плотность в транспортной зоне регенератора может доходить до 80 кг/м3 (5 фунт/фут3). В транспортном режиме смесь катализатора с дымовыми газами является однородной, без газовых пустот или пузырьков, образующихся в фазе катализатора.Diluted or transport flow regimes are typically used in FCC reactors with an ascending catalyst bed. In the transport stream, the difference in gas and catalyst velocities is relatively small, with a small amount of catalyst being returned or retained in the apparatus. For the catalyst, flow conditions with a low density and a very dilute phase are maintained in the reaction zone. In traffic, the surface gas velocity is usually greater than 2.1 m / s (7.0 ft / s), and the density of the catalyst is usually not greater than 48 kg / m 3 (3 lb / ft 3 ). The density in the transport zone of the regenerator can reach up to 80 kg / m 3 (5 lb / ft 3 ). In the transport mode, the mixture of the catalyst with flue gases is homogeneous, without gas voids or bubbles formed in the catalyst phase.
Промежуточными между плотным, кипящим слоем и режимом разбавленного, транспортного потока являются турбулентные слои и режим быстрой флюидизации. В турбулентном слое смесь катализатора и дымовых газов не является однородной. Турбулентный слой представляет собой плотный слой катализатора с удлиненными пустотами с дымовым газом, образовавшимися внутри фазы катализатора, с менее различимой поверхностью. Унесенные частицы катализатора покидают слой вместе с дымовыми газами, причем плотность катализатора не совсем пропорциональна высоте подъема внутри реактора. В турбулентном слое скорость дымовых газов на поверхности составляет между 0,3 и 1,1 м/с (1,0 и 3,5 футов/с), и типичная плотность катализатора находится между 320 и 640 кг/м3 (20 и 40 фунт/фут3).The intermediate between the dense, fluidized bed and the regime of the diluted transport stream are the turbulent layers and the fast fluidization mode. In the turbulent layer, the mixture of catalyst and flue gas is not uniform. The turbulent layer is a dense catalyst layer with elongated flue gas voids formed inside the catalyst phase, with a less distinguishable surface. The entrained particles of the catalyst leave the bed with the flue gases, and the density of the catalyst is not entirely proportional to the lift height inside the reactor. In a turbulent layer, the surface flue gas velocity is between 0.3 and 1.1 m / s (1.0 and 3.5 ft / s), and a typical catalyst density is between 320 and 640 kg / m 3 (20 and 40 lb / ft 3 ).
Быстрая флюидизация означает состояние флюидизированных твердых частиц, находящееся между турбулентным слоем частиц и режимом полного транспорта частиц. Режим быстрой флюидизации характеризуется повышенной скоростью флюидизирующего газа по сравнению со скоростью турбулентного слоя плотной фазы, что приводит к пониженной плотности катализатора и интенсивному контакту твердых частиц с газом. В зоне быстрой флюидизации существует суммарный транспорт катализатора, вызванный восходящим потоком флюидизирующего газа. В условиях быстрой флюидизации плотность катализатора гораздо более чувствительна к загрузке частиц, чем в режиме полного транспорта частиц. Поэтому можно отрегулировать время пребывания частиц катализатора таким образом, чтобы достичь желательной степени сгорания (кокса) в условиях высокоэффективного перемешивания газа и твердых частиц. В режиме быстрой флюидизации дополнительное повышение скорости флюидизирующего газа будет увеличивать скорость транспорта восходящих частиц, причем средняя плотность катализатора будет резко снижаться, пока, при соответствующей скорости газа, частицы движутся, главным образом, в режиме полного транспорта катализатора. Таким образом, существует непрерывный переход из состояния слоя флюидизированных частиц, через быструю флюидизацию, в чисто транспортный режим. Скорость дымовых газов на поверхности в режиме быстро флюидизированного потока обычно находится между 1,1 и 2,1 м/с (3,5 и 7 футов/с), и плотность обычно составляет между 48 и 320 кг/м3 (3 и 20 фунт/фут3).Rapid fluidization means the state of fluidized solid particles between the turbulent layer of particles and the regime of complete particle transport. The fast fluidization mode is characterized by an increased velocity of the fluidizing gas in comparison with the velocity of the turbulent layer of the dense phase, which leads to a reduced density of the catalyst and intensive contact of solid particles with the gas. In the fast fluidization zone, there is a total catalyst transport caused by an upward flow of fluidizing gas. Under conditions of rapid fluidization, the density of the catalyst is much more sensitive to particle loading than in the full particle transport mode. Therefore, it is possible to adjust the residence time of the catalyst particles in such a way as to achieve the desired degree of combustion (coke) under conditions of highly efficient mixing of gas and solid particles. In the fast fluidization mode, an additional increase in the velocity of the fluidizing gas will increase the transport velocity of the ascending particles, and the average density of the catalyst will decrease sharply, while, at the corresponding gas velocity, the particles move mainly in the mode of complete transport of the catalyst. Thus, there is a continuous transition from the state of a layer of fluidized particles, through rapid fluidization, to a purely transport mode. The surface flue gas velocity in the fast fluidized flow mode is usually between 1.1 and 2.1 m / s (3.5 and 7 ft / s), and the density is usually between 48 and 320 kg / m 3 (3 and 20 lb / ft 3 ).
В патентах США №№4849091, 4197189 и 4336160 предложена зона горения в восходящем потоке, в которой поддерживаются условия быстрой флюидизации потока. В последнем из этих патентов описан аппарат регенерации с топкой, в котором полное сгорание происходит в зоне быстрой флюидизации стояка, без необходимости добавления газа для горения в слой, собранный сверху стояка.U.S. Patent Nos. 4,849,091, 4,197,189, and 4,336,160 propose an upstream combustion zone in which rapid fluidization conditions are maintained. The last of these patents describes a regeneration apparatus with a furnace, in which complete combustion occurs in the zone of rapid fluidization of the riser, without the need to add combustion gas to the layer collected on top of the riser.
Топочная камера представляет собой тип регенератора, в котором катализатор полностью регенерируется в нижней камере сгорания в условиях быстрой флюидизации потока с относительно малым количеством избыточного кислорода. Регенерированный катализатор и отработанные дымовые газы переносятся в стояке в камеру разделения, в которой происходит значительное сгорание. Регенерированный катализатор из камеры разделения рециркулирует в нижнюю фазу сгорания, чтобы нагреть отработанный катализатор до начала процесса горения. Рециркуляция регенерированного катализатора обеспечивает теплоту для ускоренного сгорания нижней фазы катализатора. Топочные камеры являются выгодными по причине их высокой эффективности потребления кислорода.The combustion chamber is a type of regenerator in which the catalyst is completely regenerated in the lower combustion chamber under conditions of rapid fluidization of the flow with a relatively small amount of excess oxygen. The regenerated catalyst and exhaust flue gases are transferred in a riser to the separation chamber, in which significant combustion takes place. The regenerated catalyst from the separation chamber is recycled to the lower phase of combustion in order to heat the spent catalyst before starting the combustion process. Recirculation of the regenerated catalyst provides heat for accelerated combustion of the lower phase of the catalyst. The combustion chambers are advantageous due to their high oxygen consumption efficiency.
Поскольку установки ФКК пользуются повышенным спросом, требуются аппараты для сгорания, способные обрабатывать катализатор с большей пропускной способностью. В аппараты для сгорания добавляются большие количества газа для горения, чтобы сжечь большие количества катализатора. Когда возрастает скорость потока газа для горения, также возрастает скорость потока катализатора между топочной камерой и камерой разделения. Поэтому, если не увеличить топочную камеру аппарата для сгорания, время пребывания катализатора в нижней зоне будет уменьшаться, и таким образом, будет снижаться степень сгорания, которая должна быть достигнута до поступления катализатора в камеру разделения.Since the FCC installations are in high demand, combustion devices are required that can process the catalyst with a higher throughput. Large amounts of combustion gas are added to the combustion apparatuses to burn large amounts of catalyst. When the flow rate of the combustion gas increases, the flow rate of the catalyst between the combustion chamber and the separation chamber also increases. Therefore, if the combustion chamber of the apparatus for combustion is not increased, the residence time of the catalyst in the lower zone will decrease, and thus, the degree of combustion, which must be achieved before the catalyst enters the separation chamber, will decrease.
Краткое изложение изобретенияSUMMARY OF THE INVENTION
Настоящее изобретение относится к устройству для удаления отложений углерода, называемых коксом, с поверхности и пор катализатора, используемого в процессах превращения углеводородов. Сочетание условий турбулентного слоя и быстрой флюидизации в аппарате регенерации обеспечивает соответствующее время пребывания для регенерации отработанного катализатора крекинга углеводородов. В топочной камере используются гибридные условия с целью полной регенерации катализатора. Плотный слой полностью регенерированного катализатора собирается в камере разделения. Настоящее изобретение может быть использовано для повышения производительности газа для горения с целью обеспечения соответственно повышенной производительности катализатора, при одновременном сохранении контакта газа для горения с катализатором в течение достаточного времени пребывания.The present invention relates to a device for removing carbon deposits, called coke, from the surface and pores of a catalyst used in hydrocarbon conversion processes. The combination of turbulent bed conditions and rapid fluidization in the regeneration apparatus provides an appropriate residence time for the regeneration of the spent hydrocarbon cracking catalyst. Hybrid conditions are used in the combustion chamber to completely regenerate the catalyst. A dense layer of fully regenerated catalyst is collected in a separation chamber. The present invention can be used to increase the productivity of the combustion gas in order to provide a correspondingly increased productivity of the catalyst, while maintaining contact of the combustion gas with the catalyst for a sufficient residence time.
Краткое описание чертежейBrief Description of the Drawings
На фигуре 1 приведен схематический вид в вертикальном разрезе установки ФКК, включающей в себя настоящее изобретение.The figure 1 shows a schematic view in vertical section of the installation of the FCC, including the present invention.
На фигуре 2 приведен схематический вид в вертикальном разрезе альтернативного варианта осуществления настоящего изобретения.2 is a schematic vertical sectional view of an alternative embodiment of the present invention.
Подробное описание изобретенияDETAILED DESCRIPTION OF THE INVENTION
Способ и устройство настоящего изобретения могут быть осуществлены в установке ФКК. На фигуре 1 приведена установка ФКК, которая включает в себя аппарат реактора 10 и аппарат для сгорания 50. Напорная труба 12 переносит катализатор из аппарата для сгорания 50 со скоростью, которая регулируется с помощью задвижки 14, в аппарат реактора 10. Флюидизирующая среда, такая как водяной пар из форсунки 16, транспортирует катализатор вверх по стояку 18 при относительно высокой плотности, пока множество сырьевых форсунок 20 (показана только одна) впрыскивают сырье поперек потока частиц катализатора. Образовавшаяся смесь продолжает двигаться вверх по стояку 18, пока пара разъединяющих кронштейнов 22 тангенциально выпускает смесь газа и катализатора сверху стояка 18 через проходы 24 в зону отделения 26, в которой осуществляется отделение газов от катализатора. Транспортный трубопровод 28 переносит пары углеводородов, в том числе отпаренные углеводороды, отпаривающую среду и увлеченный катализатор, в один или несколько циклонов 30 в резервуаре сепаратора 32, в котором отработанный катализатор выделяется из потока углеводородных паров. Сборная камера 34 в резервуаре сепаратора 32 собирает поток отделенных углеводородных паров из циклонов 30 для прохода в выпускную форсунку 36 и окончательно в зону извлечения путем фракционирования (не показана). В погружных стойках 38 катализатор из циклонов 30 выгружается в нижнюю часть сепараторного резервуара 32, из которого катализатор и адсорбированные или увлеченные углеводороды окончательно проходят в отпарную секцию 40 сквозь проходы 42, выполненные в стенке разделяющего резервуара 26, Катализатор, выделенный в разделяющем резервуаре 26, проходит непосредственно в отпарную секцию 40. Эта отпарная секция 40 содержит перегородки 43, 44 для облегчения перемешивания отпаривающего газа и катализатора. Отпаривающий газ входит в нижнюю часть отпарной секции 40, по меньшей мере, через один вход 46 в одно или несколько распределительных устройств (не показаны). Отработанный катализатор покидает отпарную секцию 40 через трубопровод 48 реактора и проходит в аппарат для сгорания 50 со скоростью, регулируемой задвижкой 52.The method and device of the present invention can be implemented in the installation of the FCC. The figure 1 shows the installation of the FCC, which includes the apparatus of the reactor 10 and the apparatus for combustion 50. The
В аппарате для сгорания 50 используется гибридный режим турбулентного слоя и быстрой флюидизации в высокоэффективной камере сгорания 54 для полной регенерации отработанного катализатора. Камера сгорания 54 аппарата для сгорания 50 включает в себя три зоны горения: турбулентную зону 56, зону быстрой флюидизации 58 и транспортную зону 60. Трубопровод 48 реактора подает отработанный катализатор в камеру сгорания 54 через впускной лоток 62 для отработанного катализатора в точке входа "А". Эллиптическое основание 63 камеры сгорания 54 определяет площадь поперечного сечения в линии пересечения "В" с боковой стенкой 55 камеры сгорания 54 ниже впускного лотка 62 отработанного катализатора. Обычно отработанный катализатор из реакторного резервуара 10 содержит углерод в количестве от 0,2 до 2 масс.%, который присутствует в виде кокса. Хотя кокс, главным образом, состоит из углерода, он может содержать от 3 до 12 масс.% водорода, а также серы и других материалов. Кислородсодержащий газ для горения, обычно воздух, поступает в камеру сгорания 54 аппарата для сгорания 50 на двух уровнях. Первый поток газа для горения поступает в камеру сгорания 54 на низком уровне через нижний трубопровод 64 и распределяется поперек турбулентной зоны 56 с помощью нижнего распределительного устройства 66. Отверстия 68 в нижнем распределительном устройстве 66 выпускают газ для горения в вертикальной проекции, которая находится ниже, чем точка ввода "А" отработанного катализатора в камеру сгорания 54. Когда газ для горения поступает в зону горения, он контактирует с отработанным катализатором, который накапливается в турбулентном слое 70 катализатора в турбулентной зоне 56. Газ для горения распределяется из нижнего распределительного устройства 66, обеспечивая скорость газов на поверхности меньше, чем 1,1 м/с (3,5 футов/с), которая недостаточна для разрушения турбулентного слоя 70 катализатора в турбулентной зоне 56. Другими словами, скорость газа из нижнего распределительного устройства 66 будет недостаточной для увлечения катализатора и удаления катализатора из слоя, таким образом, сохраняется катализаторный слой 70. В турбулентной зоне 56 плотность катализатора составляет от 320 до 640 кг/м3 (20-40 фунт/фут3).The combustion apparatus 50 utilizes a hybrid mode of turbulent bed and rapid fluidization in a highly
Второй поток газа для горения поступает в зону быстрой флюидизации 58 камеры сгорания 54 через верхний трубопровод 72 и распределяется по всей камере сгорания 54 с помощью верхнего распределительного устройства 74. Отверстия 76 в верхнем распределительном устройстве 74 выпускают газ для горения в вертикальной проекции, которая выше, чем точка "А" ввода отработанного катализатора в аппарат для сгорания 50, через входной лоток 62 для отработанного катализатора, и выше, чем точка ввода первого потока газа для горения, через нижнее распределительное устройство 66. Поэтому в этом варианте осуществления точка "А" ввода расположена вертикально между верхним распределительным устройством 74 и нижним распределительным устройством 66. В другом варианте осуществления в зоне быстрой флюидизации 58 камеры сгорания 54 распределяется меньше газа для горения через верхнее распределительное устройство 74, чем через нижнее распределительное устройство 66. Однако, когда скорость потока газа для горения из нижнего распределительного устройства 66 суммируется со скоростью потока газа для горения из верхнего распределительного устройства 74, общая поверхностная скорость газа для горения в камере сгорания 54 достигает, по меньшей мере, 1,1 м/с (3,5 футов/с), поступая в зону быстрой флюидизации 58 в режиме потока быстрой флюидизации. В одном варианте осуществления в зоне быстрой флюидизации 58 плотность катализатора может составлять от 48 до 320 кг/м3 (от 3 до 20 фунт/фут3), а скорость газов на поверхности от 1,1 до 2,2 м/с (от 3,5 до 7 футов/с). Выше отверстий 76 обеспечивается постепенный переход из зоны турбулентности 56 в зону быстрой флюидизации 58. В зоне быстрой флюидизации 58 плотность катализатора будет снижаться пропорционально высоте.The second flow of combustion gas enters the
Переход от турбулентного слоя в флюидизированный проточный режим не отображается различимым поверхностным слоем. Поэтому совокупность снижающихся значений плотности катализатора может простираться от турбулентного слоя 70 вверх камеры сгорания 54. Скорость снижения плотности катализатора по высоте камеры сгорания 54 будет снижаться пропорционально скорости, с которой катализатор поступает в камеру сгорания 54.The transition from the turbulent layer to the fluidized flow mode is not displayed by a distinguishable surface layer. Therefore, the set of decreasing values of the density of the catalyst can extend from the
В варианте осуществления для ускорения сгорания кокса в камере сгорания 54, горячий регенерированный катализатор из плотного катализаторного слоя 78 в верхней камере 80 может рециркулировать в камеру сгорания 54 через напорную трубу 82 расширенного рецикла, регулируемого распределительным клапаном 84. Горячий регенерированный катализатор поступает в камеру сгорания 54 через входной лоток 86. Рециркуляция регенерированного катализатора, путем смешивания катализатора из плотного катализаторного слоя 78 с относительно холодным отработанным катализатором из реакторного трубопровода 48, поступающим в камеру сгорания 54, повышает общую температуру катализатора и газовой смеси в турбулентной зоне 56. За исключением использования напорной трубы 82 расширенного рецикла, могут быть использованы некоторые другие способы осуществления рециркуляции катализатора. Например, катализатор может быть перемещен внутри аппарата, с использованием внутренней напорной трубы (не показано). Высота загрузки частиц катализатора в камере сгорания 54 может регулироваться путем увеличения скорости рециркулирующего потока катализатора через распределительный клапан 84, без воздействия на скорость потока отработанного катализатора через задвижку 52. Регенерированный катализатор может поступать через входной лоток 86 на том же уровне, что и точка ввода "А" отработанного катализатора через входной лоток 62 отработанного катализатора. Однако в варианте осуществления регенерированный катализатор поступает в камеру сгорания 54 между нижним распределительным устройством 66 и верхним распределительным устройством 74 для того, чтобы иметь возможность более интенсивного теплообмена в турбулентном слое 70.In an embodiment, in order to accelerate coke combustion in the
Путем распределения газа для горения на двух уровнях, выше и ниже точки ввода "А" катализатора, в камеру сгорания 54 может быть добавлено больше газа для горения на катализатор, без немедленной реализации условий быстрой флюидизации потока в камере сгорания 54 и нарушения турбулентного слоя 70. Поэтому переход между турбулентной зоной 56 и зоной быстрой флюидизации 58 может распространяться почти до верхнего распределительного устройства 74 или выше этого устройства 74. Отработанный катализатор находится в контакте с газом для горения в течение более длительного времени пребывания в камере сгорания 54. Более того, если весь газ для горения вводится выше точки поступления "А" отработанного катализатора, большая часть отработанного катализатора в турбулентном слое 70 будет подвергаться флюидизации только после длительной задержки и застоя.By distributing the combustion gas at two levels, above and below the catalyst entry point “A”, more combustion gas can be added to the catalyst in the
Смесь катализатора и газа в зоне быстрой флюидизации 58 поднимается через переходную секцию 90 в форме усеченного конуса в транспортную зону 60 в секции стояка 94 камеры сгорания 54, которая эксплуатируется при более высокой скорости газов на поверхности, чем в зоне быстрой флюидизации 58 или в турбулентной зоне 56, ниже переходной секции 90. Повышенная скорость газа обусловлена уменьшением площади поперечного сечения секции стояка 94 по сравнению с площадью поперечного сечения камеры сгорания 54, ниже переходной секции 90. Площадь поперечного сечения секции стояка 94 меньше, чем площадь поперечного сечения камеры сгорания 54 ниже входного лотка 62 для отработанного катализатора в точке пересечения "В" для того, чтобы обеспечить повышенную поверхностную скорость. Поэтому скорость газа на поверхности обычно будет превышать 2,2 м/с (7 футов/с). В транспортной зоне 60 катализатор будет иметь плотность меньше, чем 80 кг/м3 (5 фунт/фут3).The mixture of catalyst and gas in the
Кроме того, аппарат для сгорания 50 включает в себя расположенную выше камеру разделения 100. Смесь частиц катализатора и газа для горения, который является отработанным из-за потребления кислорода, выбрасывается из верхней части секции стояка 94 в камере разделения 100. Практически полностью регенерированный катализатор выходит вверху транспортной зоны 60. Выброс осуществляется через разъединяющее устройство 96, в котором отделяется большая часть регенерированного катализатора от отработанного газа регенерации. Начальное отделение катализатора на выходе из секции стояка 94 минимизирует нагрузку катализатора на циклонные сепараторы 98, 99 или другие последующие устройства, применяемые для практически полного удаления частиц катализатора из отработанного газа регенерации, и таким образом, снижаются суммарные затраты на оборудование. Различные проточные устройства, известные специалистам в этой области техники, могут осуществлять предварительное разделение катализатора и газа, что может быть удобно для применения в качестве отсоединяющего устройства 96. В варианте осуществления катализатор и газ, поступающий наверх секции стояка 94, воздействует на верхнюю эллиптическую крышку 61 секции стояка 94, и поток обращается. Затем катализатор и газ выходят через направленные наклонно отверстия в боковых кронштейнах 97 отсоединяющего устройства 96. Внезапная потеря количества движения и возврат потока вниз вызывают падение, по меньшей мере, 70% и предпочтительно 80 масс.% более тяжелого катализатора в более плотный катализаторный слой 78, а более легкий газ для горения и меньшая часть катализатора, еще увлеченная с потоком, поднимается вверх в освобожденное пространство 102 камеры разделения 100.In addition, the combustion apparatus 50 includes an
Падающие вниз частицы освобожденного катализатора собираются в плотном слое катализатора 78. Плотность катализатора в плотном катализаторном слое 78 обычно поддерживается в диапазоне от 640 до 960 кг/м3 (40-60 фунт/фут3). Флюидизирующий трубопровод 106 подает флюидизирующий газ, типично воздух, в плотный катализаторный слой 78 через флюидизирующее распределительное устройство 108. Приблизительно не больше, чем 2% от всего необходимого для процесса количества газа поступают в плотный катализаторный слой 78 через флюидизирующее распределительное устройство 108. Здесь газ добавляется не с целью сгорания, а только с целью флюидизации для того, чтобы катализатор мог плавно выходить через напорные трубы 82 и 12. Флюидизирующий газ, добавляемый через флюидизирующее распределительное устройство 108, может быть дымовым газом.Particles of the released catalyst falling downward are collected in the
Совокупность газа для сжигания, флюидизирующего газа и увлеченных частиц катализатора поступает в одно или несколько устройств разделения, таких как циклонные сепараторы 98, 99, в которых катализаторная пыль отделяется от газа. Отработанные дымовые газы, относительно свободные от катализатора, выбрасываются из аппарата для сгорания 50 через выпускной трубопровод 110, в то время как извлеченный катализатор возвращается в плотный катализаторный слой 78 через соответствующие погружные стойки 112, 113 или другие аналогичные средства. В газах выше выхода из транспортной зоны 60 присутствует от 10 до 30 масс.% катализатора, вышедшего из камеры сгорания 54, и газ поступает в циклонные сепараторы 98, 99. Катализатор из плотного катализаторного слоя 78 переносится в напорную трубу 12 аппарата для сгорания обратно в резервуар реактора 10, где он снова контактирует с сырьем, когда продолжается процесс ФКК.The combination of combustion gas, fluidizing gas and entrained catalyst particles enters one or more separation devices, such as
В камере сгорания 54 обеспечиваются области пониженной плотности катализатора и продолжительные периоды интенсивного перемешивания, которые считаются наиболее эффективными для сгорания кокса и характеризуют высокую эффективность регенерации. Поэтому добавление газа для сжигания в условиях, способствующих высокой эффективности регенерации, является достаточным для удаления всего кокса из отработанного катализатора, поступающего в камеру сгорания 54. Газ для горения может подаваться в трубопроводы 64, 72 и 106 по одной и той же линии, однако в варианте осуществления скорость подачи сырья в нижний трубопровод 64 должна быть выше, чем в верхний трубопровод 72.In the
Таким образом, реакционная зона ФКК, в связи с настоящим изобретением может быть использована в способе с традиционным сырьем ФКК или с боле высоко кипящим углеводородным сырьем. Таким наиболее общим традиционным сырьем является "вакуумный газойль" (VGO), который обычно представляет собой углеводородный материал, имеющий диапазон кипения от 343° до 552°С (650°-1025°F) и полученный путем вакуумного фракционирования остатка атмосферной перегонки. Обычно такая фракция содержит мало предшественников кокса и примесей тяжелых металлов, которые могут загрязнять катализатор. Тяжелое углеводородное сырье, которое может быть использовано в настоящем изобретении, включает в себя тяжелые остатки сырой нефти, тяжелую битумную сырую нефть, сланцевое масло, экстракт битуминозного песка, деасфальтизированный остаток, продукты сжижения угля, отбензиненную нефть атмосферной и вакуумной перегонки. Кроме того, виды тяжелого сырья для настоящего изобретения включают смеси указанных выше углеводородов. Однако приведенный выше перечень не предназначается для исключения других подходящих видов сырья для применения в этом способе. Кроме того, фракции тяжелых углеводородов характеризуются наличием значительного количества загрязняющих металлов. Эти металлы накапливаются на катализаторе и отравляют катализатор путем блокирования активных центров и способствуют чрезмерно глубокому крекингу, и таким образом, препятствуют процессу реакции. Поэтому при переработке тяжелого сырья с помощью настоящего изобретения допускается использование пассивации или другие приемы пассивации металлов в самой реакционной зоне или до нее.Thus, the FCC reaction zone, in connection with the present invention, can be used in a process with a conventional FCC feedstock or with a high boiling hydrocarbon feedstock. This most common traditional feed is vacuum gas oil (VGO), which is usually a hydrocarbon material having a boiling range of 343 ° to 552 ° C (650 ° -1025 ° F) and obtained by vacuum fractionation of the residue of atmospheric distillation. Typically, such a fraction contains few coke precursors and heavy metal impurities that can contaminate the catalyst. Heavy hydrocarbon feeds that can be used in the present invention include heavy crude oil residues, heavy bituminous crude oil, shale oil, tar sand extract, deasphalted residue, coal liquefied products, stripped atmospheric and vacuum distillation oils. In addition, the types of heavy feedstocks for the present invention include mixtures of the above hydrocarbons. However, the above list is not intended to exclude other suitable types of raw materials for use in this method. In addition, fractions of heavy hydrocarbons are characterized by the presence of a significant amount of polluting metals. These metals accumulate on the catalyst and poison the catalyst by blocking the active sites and contribute to excessively deep cracking, and thus interfere with the reaction process. Therefore, when processing heavy raw materials using the present invention, the use of passivation or other methods of passivation of metals in the reaction zone itself or before it is allowed.
Следовательно, одно преимущество настоящего изобретения заключается в том, что оно обеспечивает регенерацию увеличенных количеств отработанного катализатора путем обработки его пропорционально большим количеством газа для горения без выдувания катализатора из зоны регенерации до завершения регенерации. Что касается потребности в кислороде или воздухе, обычно в аппарате для сгорания настоящего изобретения требуются 14 кг воздуха на 1 кг удаляемого кокса для того, чтобы получить полную регенерацию. Когда регенерируется большее количество катализатора, в традиционном аппарате процесса можно переработать большее количество сырья.Therefore, one advantage of the present invention is that it provides for the regeneration of increased amounts of spent catalyst by treating it with a proportionally large amount of combustion gas without blowing the catalyst out of the regeneration zone until regeneration is completed. Regarding the need for oxygen or air, typically the combustion apparatus of the present invention requires 14 kg of air per 1 kg of coke to be removed in order to obtain complete regeneration. When a larger amount of catalyst is regenerated, a larger amount of raw material can be processed in a conventional process apparatus.
Другой вариант осуществления изобретения показан на фиг.2, где изображен несколько видоизмененный аппарат для сгорания 50'. Номера позиций аналогичных элементов на фиг.2 обозначаются так же, как на фиг.1, но отличаются символом штриха ('). Аналогичные элементы на обеих фигурах 1 и 2 будут обозначены такими же позициями. Аппарат для сгорания 50' имеет нижний смешивающий стояк 120 для объединения отработанного катализатора, регенерированного катализатора и газа регенерации. Горячий регенерированный катализатор, транспортируемый вниз по удлиненной напорной трубе 82', встречается с отработанным катализатором, входящим в нижний смешивающий стояк 120 через реакторный трубопровод 48'. Отработанный и регенерированный катализаторы контактируют, по меньшей мере, с частью первого потока кислородсодержащего газа для горения из нижнего трубопровода 64' в нижней части нижнего смешивающего стояка 120. Основание 63' камеры сгорания 54', имеющее форму усеченного конуса, определяет площадь поперечного сечения в точке пересечения "В"' с боковой стенкой 55' камеры сгорания 54', ниже отверстий 68', где катализатор поступает в камеру сгорания 54' в точке ввода "А"'. Площадь поперечного сечения секции стояка 94' меньше, чем площадь поперечного сечения камеры сгорания 54', ниже отверстий 68', чтобы обеспечить повышенное значение поверхностной скорости через секцию стояка 94'. Кроме того, нижний смешивающий стояк 120 имеет площадь поперечного сечения меньше, чем площадь поперечного сечения камеры сгорания 54' ниже отверстий 68', чтобы облегчить хорошее смешивание частиц катализатора и газового потока. Кроме того, нижний смешивающий стояк 120 имеет площадь поперечного сечения, которая меньше площади поперечного сечения секции стояка 94'. После смешивания катализатор и газовая смесь поступают в зону турбулентности 56' камеры сгорания 54' через отверстия 68' в нижнем распределительном устройстве 66'. Скорость потока газа для горения из нижнего трубопровода 64' является недостаточной для создания поверхностной скорости в камере сгорания 54', которая могла бы обеспечить режим быстрой флюидизации. Поэтому в турбулентной зоне 56' камеры сгорания 54' обеспечивается турбулентный слой 70'. Дополнительный газ для горения из верхнего трубопровода 72' добавляется с помощью верхнего распределительного устройства 74', который в сочетании с газом для горения из нижнего распределительного устройства 66' создает условия быстрой флюидизации потока в зоне быстрой флюидизации 58'. Катализатор и газ для горения, поднимающиеся в транспортную зону 60', выходят через разъединяющее устройство 96' в камеру разделения 100' для того, чтобы отделить катализатор, падающий в плотный катализаторный слой 78' из восходящего потока отработанных дымовых газов. Отработанные дымовые газы поднимаются в циклонные сепараторы 98', 99', которые отделяют дополнительно увлеченный катализатор, и выходят через трубопровод 110'. Флюидизирующий трубопровод 106' подает газ, который может быть дымовым газом, в плотный катализаторный слой 78' через флюидизирующее распределительное устройство 108', чтобы флюидизировать катализатор в плотном катализаторном слое 78'. Часть регенерированного катализатора может возвращаться в камеру сгорания 54' через удлиненную напорную трубу 82' для рециркуляции и нижний смешивающий стояк 120, чтобы нагреть отработанный катализатор в турбулентном слое 70', и оставшаяся часть регенерированного катализатора возвращается в аппарат реактора 10 на фигуре 1 через напорную трубу 12' аппарата сжигания, чтобы контактировать со свежим сырьем. Все другие аспекты аппарата для сгорания 50' с нижним смешивающим стояком 120 аналогичны аппарату для сгорания 50 на фиг.1. Эксплуатация смешивающего стояка более подробно описана в патенте США №4340566, который введен в это изобретение как ссылка.Another embodiment of the invention is shown in figure 2, which shows a slightly modified apparatus for combustion 50 '. The position numbers of similar elements in FIG. 2 are denoted in the same manner as in FIG. 1, but differ by a dash symbol ('). Similar elements in both figures 1 and 2 will be indicated by the same positions. The combustion apparatus 50 'has a
На фигурах 1 и 2 показаны зоны регенерации симметричной конфигурации с камерами разделения 100, 100', расположенными выше в камерах сгорания 54, 54'. Однако зоны турбулентности 56, 56', зоны быстрой флюидизации 58, 58' и транспортные зоны 60, 60' могут находиться в отдельном аппарате для сгорания или располагаться вблизи резервуара, содержащего камеры разделения 100, 100'. В этом варианте осуществления катализатор перемещается из аппарата для сгорания в резервуар сепаратора с помощью трубопровода. Таким образом, применение настоящего изобретения не ограничивается симметричной конфигурацией регенератора, но может быть модифицированным аппаратом регенератора с плотным слоем.In figures 1 and 2 shows the regeneration zone of a symmetrical configuration with
Claims (9)
нижнюю камеру (54), имеющую основание (63) и боковые стенки (55), причем нижняя камера включает первое распределительное устройство газа для горения (66) в нижней камере и второе распределительное устройство газа для горения (74), выступающее сбоку поперек нижней камеры выше первого распределительного устройства для горения, ввод катализатора (62) в указанную нижнюю камеру между первым распределительным устройством газа для горения и вторым распределительным устройством газа для горения, причем точка пересечения (В) основания и боковых стенок определяет первую площадь поперечного сечения;
верхнюю камеру (100), соединенную с указанной нижней камерой, причем указанная верхняя камера включает в себя сепараторы (98, 99) для отделения катализатора от дымовых газов, выход (12) регенерированного катализатора и выход дымовых газов (110), газораспределительное устройство (108) и трубопровод (82) для рециркуляции, соединяющий верхнюю камеру с нижней камерой, входной лоток (86) катализатора указанного трубопровода для рециркуляции между первым распределительным устройством для горения (66) и вторым распределительным устройством для горения (74);
переходную секцию (90) в форме усеченного конуса, причем второе распределительное устройство газа для горения (74) расположено ближе к входному лотку (62) катализатора нижней камеры, чем к указанной переходной секции, и
секцию стояка (94), удлиненную вверх от нижней камеры, причем стояк имеет вторую площадь поперечного сечения, которая меньше первой площади поперечного сечения.1. The device (50) for implementing the method of burning carbon deposits on the catalyst, which includes:
a lower chamber (54) having a base (63) and side walls (55), the lower chamber including a first combustion gas distribution device (66) in the lower chamber and a second combustion gas distribution device (74) protruding laterally across the lower chamber above the first combustion switchgear, introducing a catalyst (62) into said lower chamber between the first combustion gas distributor and the second combustion gas distributor, wherein the intersection point (B) of the base and side walls of the edelyaet first cross-sectional area;
an upper chamber (100) connected to said lower chamber, said upper chamber including separators (98, 99) for separating the catalyst from the flue gases, a regenerated catalyst outlet (12) and a flue gas outlet (110), a gas distribution device (108) ) and a recirculation pipe (82) connecting the upper chamber to the lower chamber, an inlet tray (86) of the catalyst of said recirculation pipe between the first combustion switchgear (66) and the second combustion switchgear (74);
transition section (90) in the form of a truncated cone, and the second gas distribution device for combustion (74) is located closer to the input tray (62) of the catalyst of the lower chamber than to the specified transition section, and
a section of the riser (94), elongated upward from the lower chamber, and the riser has a second cross-sectional area that is less than the first cross-sectional area.
введение отработанного катализатора в нижнюю камеру (54) через ввод (62) отработанного катализатора;
распределение газа для горения в нижней камере ниже ввода отработанного катализатора со скоростью, при которой сохраняется слой катализатора;
распределение газа для горения в нижней камере выше ввода отработанного катализатора со скоростью в такой степени, что когда газ для горения распределяется ниже ввода отработанного катализатора, то он будет увлекать за собой катализатор с газом для горения, причем большее количество газа для горения распределяется ниже ввода отработанного катализатора, чем выше ввода отработанного катализатора;
подъем катализатора, увлеченного с газом для горения, до выхода (96) из указанной нижней камеры в верхнюю камеру (100);
выделение катализатора из указанных дымовых газов;
сбор катализатора в слое (78) в верхней камере (100);
удаление катализатора из верхней камеры и извлечение дымовых газов из верхней камеры.5. The method of burning carbon deposits on the catalyst, carried out in the device according to claim 1, which includes:
introducing spent catalyst into the lower chamber (54) through the input (62) of spent catalyst;
distribution of the combustion gas in the lower chamber below the input of the spent catalyst at a rate at which the catalyst bed is maintained;
the distribution of the combustion gas in the lower chamber is higher than the input of the spent catalyst with a speed to such an extent that when the combustion gas is distributed below the input of the spent catalyst, it will entrain the catalyst with the combustion gas, more gas being distributed below the input of the spent catalyst catalyst, the higher the input of spent catalyst;
raising the catalyst entrained with the combustion gas to the exit (96) from said lower chamber to the upper chamber (100);
the allocation of the catalyst from these flue gases;
collecting the catalyst in the layer (78) in the upper chamber (100);
removal of catalyst from the upper chamber and extraction of flue gases from the upper chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2008136902/04A RU2411284C2 (en) | 2006-02-13 | 2006-02-13 | Device and method for catalyst regeneration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2008136902/04A RU2411284C2 (en) | 2006-02-13 | 2006-02-13 | Device and method for catalyst regeneration |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2008136902A RU2008136902A (en) | 2010-03-20 |
RU2411284C2 true RU2411284C2 (en) | 2011-02-10 |
Family
ID=42136996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2008136902/04A RU2411284C2 (en) | 2006-02-13 | 2006-02-13 | Device and method for catalyst regeneration |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2411284C2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2652198C1 (en) * | 2017-07-04 | 2018-04-25 | Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" | Distributor of the catalyst for the reactor-reclaimer system of c3-c5 paraffin hydrocarbon dehydration of with fluidized bed |
RU2652195C1 (en) * | 2017-07-04 | 2018-04-25 | Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" | Distributor catalyst and transport gas for the reactor - reclaimer system of the c3-c5 paraffin hydrocarbon dehydrogenation plants with the fluidized bed |
-
2006
- 2006-02-13 RU RU2008136902/04A patent/RU2411284C2/en active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2652198C1 (en) * | 2017-07-04 | 2018-04-25 | Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" | Distributor of the catalyst for the reactor-reclaimer system of c3-c5 paraffin hydrocarbon dehydration of with fluidized bed |
RU2652195C1 (en) * | 2017-07-04 | 2018-04-25 | Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" | Distributor catalyst and transport gas for the reactor - reclaimer system of the c3-c5 paraffin hydrocarbon dehydrogenation plants with the fluidized bed |
WO2019009763A1 (en) * | 2017-07-04 | 2019-01-10 | Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" | Catalyst distributor for a dehydrogenation reactor with a fluidized bed |
WO2019009764A1 (en) * | 2017-07-04 | 2019-01-10 | Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" | Catalyst and transport gas distributor for a dehydrogenation reactor with a fluidized bed |
Also Published As
Publication number | Publication date |
---|---|
RU2008136902A (en) | 2010-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4887379B2 (en) | Apparatus and method for regenerating catalyst | |
US8226818B2 (en) | FCC process with spent catalyst recycle | |
US7799287B2 (en) | Apparatus and process for regenerating catalyst | |
JP5388583B2 (en) | Peeling apparatus and method | |
RU2510966C2 (en) | Device and method for mixing the recovered catalyst with carbonised catalyst | |
US8173567B2 (en) | Process for regenerating catalyst | |
JP6084271B2 (en) | Method for regenerating catalyst | |
US20130172173A1 (en) | Upflow regeneration of fcc catalyst for multi stage cracking | |
US7947230B2 (en) | Apparatus for regenerating catalyst | |
JP2013212507A5 (en) | ||
US8062507B2 (en) | Stripping process with multi-sloped baffles | |
CN107828442B (en) | Method and apparatus for enhanced contaminant removal in a fluid catalytic cracking process | |
WO2010074891A2 (en) | Apparatus for regenerating catalyst | |
RU2411284C2 (en) | Device and method for catalyst regeneration | |
CN106714931B (en) | FCC unit, separation device and method for separating regenerated catalyst | |
US7972565B2 (en) | Stripping apparatus with multi-sloped baffles | |
US7902101B2 (en) | Process for regenerating catalyst | |
AU649889B1 (en) | Disengager stripper containing dissipation plates for use in an FCC process | |
US20130260984A1 (en) | Process for regenerating catalyst | |
RU2778882C1 (en) | Catalyst regeneration using inverted cooler | |
TWI414359B (en) | Apparatus and process for regenerating catalyst | |
US9981261B1 (en) | Process for using a compact two-stage regenerator | |
US10071357B1 (en) | Compact two-stage regenerator and process for using | |
JP5624043B2 (en) | Separation method and separation device comprising a plurality of inclined baffles | |
JPH05295370A (en) | Fluidized catalytic cracking process and apparatus having low-quantity dilution phase separation zone in reactor |