RU2392592C1 - Датчик давления - Google Patents
Датчик давления Download PDFInfo
- Publication number
- RU2392592C1 RU2392592C1 RU2009116703/28A RU2009116703A RU2392592C1 RU 2392592 C1 RU2392592 C1 RU 2392592C1 RU 2009116703/28 A RU2009116703/28 A RU 2009116703/28A RU 2009116703 A RU2009116703 A RU 2009116703A RU 2392592 C1 RU2392592 C1 RU 2392592C1
- Authority
- RU
- Russia
- Prior art keywords
- contact pads
- elastic
- housing
- sensing element
- membrane
- Prior art date
Links
Images
Landscapes
- Measuring Fluid Pressure (AREA)
- Pressure Sensors (AREA)
Abstract
Изобретение относится к датчикам давления, включающим полупроводниковый чувствительный элемент на основе структуры «кремний на сапфире», выполненный по планарной микроэлектронной технологии. Техническим результатом изобретения является увеличение надежности конструкции датчика давления при механических воздействиях, уменьшение дополнительной погрешности от монтажных и термомеханических напряжений и снижение трудоемкости при изготовлении датчика давления. Датчик давления содержит корпус, герметично закрепленную между корпусом и крышкой эластичную подвеску, выполненную в виде гофрированной мембраны, на поверхности которой сформированы металлизированные токоведущие дорожки, контактные площадки и выходные контакты, крышку, герметично соединенную с корпусом, полупроводниковый упругий чувствительный элемент с тензорезисторами и контактными площадками. Полупроводниковый упругий чувствительный элемент выполнен на основе структуры «кремний на сапфире». Упругий чувствительный элемент жестко соединен высокотемпературным стеклоприпоем с керамической чашкой с образованием полости между ними. Полупроводниковый чувствительный элемент жестко закреплен по контуру на мембране, его контактные площадки соединены пайкой с контактными площадками мембраны. 2 ил.
Description
Предлагаемое изобретение относится к конструированию и изготовлению датчиков давления, включающих полупроводниковый чувствительный элемент на основе структуры «кремний на сапфире», выполненный по планарной микроэлектронной технологии и технике анизотропного травления.
Известна конструкция датчика давления, содержащая основание корпуса, полупроводниковый чувствительный элемент, установленный на основание корпуса через стеклянный пьедестал, токопроводы, герметично проходящие через корпус и электрически контактирующие с чувствительным элементом посредством тонких проволочек, присоединенных микросваркой, крышку, защищающую полупроводниковый чувствительный элемент от внешних механических воздействий [Патент ГДР №225501, кл. G01L 9/06, 1985].
Существенные признаки аналога, общие с заявленным устройством, следующие: основание корпуса, полупроводниковый чувствительный элемент, установленный на основание, которое герметично закреплено между корпусом и крышкой, крышка, защищающая полупроводниковый чувствительный элемент от внешних механических воздействий.
Недостатками известной конструкции датчика давления являются: большая длина тонких коммутационных проволочек между полупроводниковым чувствительным элементом и токопроводами, что снижает надежность сварного соединения при механических воздействиях, относительно большая сложность конструкции и трудоемкость сборки датчика в целом, жесткая связь полупроводникового чувствительного элемента с корпусом датчика, что несмотря на наличие стеклянного пьедестала в определенных случаях может привести к дополнительной погрешности от монтажных и термомеханических напряжений, передаваемых от корпуса датчика на полупроводниковый чувствительный элемент.
Известна конструкция датчика давления, содержащая упругую жесткозащемленную мембрану с опорным основанием, на которой расположен диэлектрический слой с тензочувствительными элементами и контактными площадками (полупроводниковый чувствительный элемент), цилиндрическую контактную колодку с размещенными на периферии контактами и частично расположенные на поверхности контактных площадок и диэлектрика плоские выводные проводники, соединяющие контактные площадки и контакты колодки [Патент РФ №2032156, кл. 6 G01L 9/04, 1995].
Существенные признаки аналога, общие с заявленным устройством, следующие: основание корпуса, полупроводниковый чувствительный элемент, расположенный на жесткозащемленной мембране, которая герметично закреплена между корпусом и крышкой, крышка, защищающая полупроводниковый чувствительный элемент от внешних механических воздействий.
Недостатками известной конструкции датчика давления являются: большая сложность конструкции, большая сложность и трудоемкость сборки датчика в целом, жесткая связь полупроводникового чувствительного элемента с корпусом датчика.
Наиболее близким техническим решением, выбранным в качестве прототипа, является конструкция датчика давления, содержащая полупроводниковый чувствительный элемент с тензорезисторами и контактными площадками, который соединен со стеклянной или кремниевой пластиной с образованием полости между ними, крышку, герметично закрепленную между корпусом и крышкой эластичную мембрану, на которой смонтированы металлизированные токоведущие дорожки, контактные площадки и выходные контакты, при этом полупроводниковый чувствительный элемент жестко закреплен по контуру на мембране, его контактные площадки соединены пайкой с контактными площадками мембраны, а в крышке и пластине выполнены отверстия [Патент РФ №2082127, кл. G01L 9/04, 1997].
Недостатками известной конструкции датчика являются соединение полупроводникового чувствительного элемента со стеклянной или кремниевой пластиной, что приводит к дополнительной погрешности от монтажных и термомеханических напряжений, относительная сложность конструкции.
Существенные признаки прототипа, общие с заявленным устройством, следующие: корпус, герметично закрепленная между корпусом и крышкой эластичная подвеска, выполненная в виде гофрированной мембраны, на поверхности которой сформированы металлизированные токоведущие дорожки, контактные площадки и выходные контакты, крышка, герметично соединенная с корпусом, полупроводниковый упругий чувствительный элемент с тензорезисторами и контактными площадками, жестко соединенный с керамической чашкой с образованием полости между ними.
Задачей предлагаемого изобретения является увеличение надежности конструкции датчика давления при механических воздействиях, уменьшение дополнительной погрешности от монтажных и термомеханических напряжений и снижение трудоемкости при изготовлении датчика в целом.
Технический результат достигается тем, что полупроводниковый упругий чувствительный элемент выполнен на основе структуры «кремний на сапфире», при этом упругий чувствительный элемент жестко соединен высокотемпературным стеклоприпоем с керамической чашкой, коэффициент термического расширения которой согласован с коэффициентом термического расширения сапфира, полупроводниковый чувствительный элемент жестко закреплен по контуру на мембране, его контактные площадки соединены пайкой с контактными площадками мембраны.
Для достижения технического результата в датчике давления, содержащем корпус, герметично закрепленную между корпусом и крышкой эластичную подвеску, выполненную в виде гофрированной мембраны, на поверхности которой сформированы металлизированные токоведущие дорожки, контактные площадки и выходные контакты, крышку, герметично соединенную с корпусом, полупроводниковый упругий чувствительный элемент с тензорезисторами и контактными площадками, жестко соединенный с керамической чашкой с образованием полости между ними, полупроводниковый упругий чувствительный элемент выполнен на основе структуры «кремний на сапфире», при этом упругий чувствительный элемент жестко соединен высокотемпературным стеклоприпоем с керамической чашкой, коэффициент термического расширения которой согласован с коэффициентом термического расширения сапфира, полупроводниковый чувствительный элемент жестко закреплен по контуру на мембране, его контактные площадки соединены пайкой с контактными площадками мембраны.
На фиг.1 представлен разрез конструкции датчика абсолютного, избыточного или разности давлений. На фиг.2 представлен вид сверху со снятой крышкой.
На фиг.1: 1 - полупроводниковый чувствительный элемент на основе структуры «кремний на сапфире» с тензорезисторами, 2 - керамическая чашка, 3 - полость, 4 - корпус, 5 - крышка, 6 - эластичная гофрированная мембрана, 9 - паяное соединение, 11 - отверстия для измерения избыточного и разности давлений, 12 - надмембранная полость, 13 - подмембранная полость, 14 - эластичный компаунд.
На фиг.2: 7 - токоведущие дорожки, 8 - контактные площадки, 10 - выходные контакты для внешней электрической коммутации.
Полупроводниковый чувствительный элемент на основе структуры «кремний на сапфире» 1, выполненный по планарной технологии и технике анизотропного травления, жестко соединен высокотемпературным стеклоприпоем с керамической чашкой 2 с образованием полости 3. Полупроводниковый чувствительный элемент установлен методом поверхностного монтажа на герметично закрепленную между корпусом 4 и крышкой 5 эластичную гофрированную мембрану 6, содержащую токоведущие дорожки 7. На металлизированной поверхности эластичной мембраны 6 химическим методом сформированы контактные площади 8, электрически контактирующие с контактными площадками полупроводникового чувствительного элемента через паяное соединение 9, токоведущие дорожки 7, выходные контакты 10 для внешней электрической коммутации. Для измерения избыточного и разности давлений в чашке 2 и крышке 5 выполнены отверстия 11 диаметром D для передачи опорного или атмосферного давления на другую сторону полупроводникового чувствительного элемента на основе структуры «кремний на сапфире» 1, при этом надмембранная 12 и подмембранная 13 полости загерметизированы друг от друга по периметру полупроводникового чувствительного элемента на основе структуры «кремний на сапфире» 1 эластичным компаундом 14, например СИЭЛ.
Работа датчика основана на использовании тензорезистивного эффекта. Измеряемое давление изгибает упругий чувствительный элемент на основе структуры «кремний на сапфире» 1, который жестко соединен высокотемпературным стеклоприпоем с керамической чашкой 2 с образованием полости 3 и установлен методом поверхностного монтажа на герметично закрепленную между корпусом 4 и крышкой 5 эластичную гофрированную мембрану 6, содержащую токоведущие дорожки 7, что приводит к деформации расположенных на нем тензорезисторов, включенных в мостовую схему, на выходе которой формируется электрический сигнал, прямо пропорциональный приложенному измеряемому давлению. Этот электрический сигнал передается через паяные соединения 9, контактные площадки 8 и токоведущие дорожки 7 на выходные контакты 10 для внешней электрической коммутации. Для измерения избыточного и разности давлений в чашке 2 и крышке 5 выполнены отверстия 11 диаметром D для передачи опорного или атмосферного давления на другую сторону полупроводникового чувствительного элемента на основе структуры «кремний на сапфире» 1, при этом надмембранная 12 и подмембранная 13 полости загерметизированы друг от друга по периметру полупроводникового чувствительного элемента на основе структуры «кремний на сапфире» 1 эластичным компаундом 14, например СИЭЛ.
Применение полупроводникового чувствительного элемента на основе структуры «кремний на сапфире» позволяет избежать явления гистерезиса и усталостных явлений, так как в интегральных схемах на основе структуры «кремний на сапфире» отсутствует p-n-переход, в качестве упругого элемента используется сапфир, который прочнее и жестче кремния, это позволяет работать с большим уровнем деформаций, чем в других интегральных полупроводниковых чувствительных элементах; сапфир химически и радиационно стоек, поэтому интегральные схемы на основе структуры «кремний на сапфире» могут работать в условиях высокой радиации. Использование алюмосиликатной керамики в качестве керамической чашки позволяет исключить влияние монтажных и термомеханических напряжений на полупроводниковый чувствительный элемент, а также уменьшить температурную зависимость начального выходного сигнала благодаря близости температурных коэффициентов расширения алюмосиликатной керамики и лейкосапфира в кристаллографической плоскости (0112).
Claims (1)
- Датчик давления, содержащий корпус, герметично закрепленную между корпусом и крышкой эластичную подвеску, выполненную в виде гофрированной мембраны, на поверхности которой сформированы металлизированные токоведущие дорожки, контактные площадки и выходные контакты, крышку, герметично соединенную с корпусом, полупроводниковый упругий чувствительный элемент с тензорезисторами и контактными площадками, жестко соединенный с керамической чашкой с образованием полости между ними, и отличающийся тем, что полупроводниковый упругий чувствительный элемент выполнен на основе структуры «кремний на сапфире», при этом упругий чувствительный элемент жестко соединен высокотемпературным стеклоприпоем с керамической чашкой, коэффициент термического расширения которой согласован с коэффициентом термического расширения сапфира, полупроводниковый чувствительный элемент жестко закреплен по контуру на мембране, его контактные площадки соединены пайкой с контактными площадками мембраны.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2009116703/28A RU2392592C1 (ru) | 2009-04-30 | 2009-04-30 | Датчик давления |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2009116703/28A RU2392592C1 (ru) | 2009-04-30 | 2009-04-30 | Датчик давления |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2392592C1 true RU2392592C1 (ru) | 2010-06-20 |
Family
ID=42682853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2009116703/28A RU2392592C1 (ru) | 2009-04-30 | 2009-04-30 | Датчик давления |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2392592C1 (ru) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2634089C2 (ru) * | 2012-12-21 | 2017-10-23 | Металлюкс Са | Датчик давления |
RU183909U1 (ru) * | 2018-08-24 | 2018-10-08 | Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") | Малогабаритный радиационно стойкий высокотемпературный тензочувствительный элемент преобразователя давления |
CN110017936A (zh) * | 2019-03-21 | 2019-07-16 | 成都凯天电子股份有限公司 | 实现波纹管真空膜盒压力p-位移特性的方法 |
RU2702820C1 (ru) * | 2019-01-25 | 2019-10-11 | федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" (Южный федеральный университет) | Способ изготовления полупроводниковых датчиков давления |
CN115014627A (zh) * | 2022-05-31 | 2022-09-06 | 武汉新烽光电股份有限公司 | 一种高精度大气压力传感器 |
-
2009
- 2009-04-30 RU RU2009116703/28A patent/RU2392592C1/ru not_active IP Right Cessation
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2634089C2 (ru) * | 2012-12-21 | 2017-10-23 | Металлюкс Са | Датчик давления |
RU183909U1 (ru) * | 2018-08-24 | 2018-10-08 | Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") | Малогабаритный радиационно стойкий высокотемпературный тензочувствительный элемент преобразователя давления |
RU2702820C1 (ru) * | 2019-01-25 | 2019-10-11 | федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" (Южный федеральный университет) | Способ изготовления полупроводниковых датчиков давления |
CN110017936A (zh) * | 2019-03-21 | 2019-07-16 | 成都凯天电子股份有限公司 | 实现波纹管真空膜盒压力p-位移特性的方法 |
CN110017936B (zh) * | 2019-03-21 | 2023-12-15 | 成都凯天电子股份有限公司 | 实现波纹管真空膜盒压力p-位移特性的方法 |
CN115014627A (zh) * | 2022-05-31 | 2022-09-06 | 武汉新烽光电股份有限公司 | 一种高精度大气压力传感器 |
CN115014627B (zh) * | 2022-05-31 | 2023-07-21 | 武汉新烽光电股份有限公司 | 一种高精度大气压力传感器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111638002B (zh) | 一种mems压力传感器充油芯体及其封装方法 | |
RU2392592C1 (ru) | Датчик давления | |
US8516892B2 (en) | Pressure sensor module and electronic component | |
KR101953454B1 (ko) | 압력 센서 칩 | |
JP5739039B2 (ja) | 圧力センサ | |
US10969287B2 (en) | Filling body for reducing a volume of a pressure measurement chamber | |
CN111928771A (zh) | 一种应变检测装置及应变检测方法 | |
JP2014048072A (ja) | 圧力センサモジュール | |
JP2006275660A (ja) | 半導体センサおよびその製造方法 | |
US8866241B2 (en) | Pressure sensing device having contacts opposite a membrane | |
KR20040097929A (ko) | 가속도 센서 장치 | |
CN213985403U (zh) | 一种mems热电堆芯片温度传感器的封装结构 | |
JP2021518546A (ja) | 熱絶縁を備えた温度検出プローブ | |
RU133607U1 (ru) | Микроэлектронный датчик давления | |
WO2017043384A1 (ja) | 圧脈波センサの検査方法及び圧脈波センサの製造方法 | |
JP5804445B2 (ja) | 半導体圧力センサ | |
JPH09145512A (ja) | 圧力センサ,容量型センサ,電気的装置およびその製造方法 | |
EP3320835B1 (en) | Pressure pulse wave sensor and biological information measurement device | |
JP4207847B2 (ja) | 圧力センサ | |
US5821595A (en) | Carrier structure for transducers | |
RU2082127C1 (ru) | Датчик давления | |
JP2005114734A (ja) | 圧力センサ | |
JP4304482B2 (ja) | 圧力センサ | |
JP4207848B2 (ja) | 圧力センサ | |
JP4706634B2 (ja) | 半導体センサおよびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20110501 |