RU2383654C1 - Наноструктурный технически чистый титан для биомедицины и способ получения прутка из него - Google Patents
Наноструктурный технически чистый титан для биомедицины и способ получения прутка из него Download PDFInfo
- Publication number
- RU2383654C1 RU2383654C1 RU2008141956/02A RU2008141956A RU2383654C1 RU 2383654 C1 RU2383654 C1 RU 2383654C1 RU 2008141956/02 A RU2008141956/02 A RU 2008141956/02A RU 2008141956 A RU2008141956 A RU 2008141956A RU 2383654 C1 RU2383654 C1 RU 2383654C1
- Authority
- RU
- Russia
- Prior art keywords
- grains
- deformation
- pure titanium
- technically pure
- titanium
- Prior art date
Links
- 239000010936 titanium Substances 0.000 title claims abstract description 42
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 40
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000003814 drug Substances 0.000 title abstract description 4
- 230000000930 thermomechanical effect Effects 0.000 claims abstract description 11
- 238000012545 processing Methods 0.000 claims description 10
- 238000003825 pressing Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 14
- 238000005272 metallurgy Methods 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 2
- 239000002159 nanocrystal Substances 0.000 abstract 2
- 206010013395 disorientation Diseases 0.000 abstract 1
- 238000000465 moulding Methods 0.000 abstract 1
- 239000007943 implant Substances 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 229910001069 Ti alloy Inorganic materials 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000002086 nanomaterial Substances 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 229910000883 Ti6Al4V Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000010883 osseointegration Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000004053 dental implant Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 230000001582 osteoblastic effect Effects 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 102220253765 rs141230910 Human genes 0.000 description 1
- 102220042337 rs199607550 Human genes 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 231100000701 toxic element Toxicity 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/04—Metals or alloys
- A61L27/06—Titanium or titanium alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
- C22F1/183—High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/12—Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S623/00—Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
- Y10S623/924—Material characteristic
- Y10S623/925—Natural
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S72/00—Metal deforming
- Y10S72/70—Deforming specified alloys or uncommon metal or bimetallic work
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Inorganic Chemistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dermatology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
- Forging (AREA)
Abstract
Изобретение относится к области наноструктурных материалов с ультрамелкозернистой структурой и повышенными механическими свойствами, которые могут быть использованы для изготовления медицинских имплантатов. Технически чистый титан для биомедицины имеет структуру из нанокристаллических зерен альфа-фазы с гексагональной плотноупакованной решеткой, в которой объемная доля зерен с размером 0.1…0.5 мкм и с коэффициентом формы зерен не более 2 во взаимно перпендикулярных плоскостях составляет не менее 90%, причем более чем 60% зерен имеют большеугловые границы, разориентированные относительно соседних зерен на углы от 15 до 90°. Способ получения прутка из технически чистого титана с нанокристаллической структурой для биомедицины включает интенсивную пластическую деформацию заготовки равноканальным угловым прессованием при температуре не выше 450°С с суммарной истинной накопленной деформацией е≥4 и последующую термомеханическую обработку со степенью деформации от 40 до 80%. В процессе термомеханической обработки осуществляют пластическую деформацию при постепенном снижении температуры в интервале Т=450…350°С и скорости деформации 10-2…10-4 с-1. Полученный материал имеет повышенную прочность, усталостную долговечность и биосовместимость. 2 н.п. ф-лы, 4 ил., 1 табл.
Description
Изобретение относится к области наноструктурных материалов с ультрамелкозернистой (УМЗ) структурой и повышенными механическими и биомедицинскими свойствами, в частности титана и его сплавов, которые могут быть использованы для изготовления медицинских имплантатов, применяемых в хирургии, ортопедии, травматологии и стоматологии, а также к технологии обработки указанных материалов для формирования структур, обеспечивающих определенные механические и биомедицинские свойства.
Известно, что прочность, надежность и долговечность изделия-имплантата зависит от химического состава, механических и биомедицинских свойств материала, из которого он изготовлен. Вместе с тем, в установлении свойств конкретного материала, таких как прочность, пластичность, усталость, стойкость к коррозии, биосовместимость, ключевую роль играет микроструктура, которая в зависимости от способа обработки может иметь различные фазовый состав, размер и форму зерен, разориентацию их границ, плотность дислокаций и других дефектов кристаллической решетки и др. [Штремель М.А. Прочность сплавов. М.: Металлургия, 1982. Ч.1: Дефекты решетки. 280 с; Штремель М.А. Прочность сплавов. 4.2. Деформация. М., МИСиС, 1997, 527 с.].
Технически чистый титан имеет широкое применение для изготовления имплантатов в стоматологии и травматологии благодаря его высокой биосовместимости. [D.M.Brunette, P.Tengvall, M.Textor, P.Thomsen, "Titanium in medicine", Springer, (2001) р.1019]. Например, в патенте (РФ №2146535, А61С 8/00 A61L 27/00 от 20.03.2000 г.) описан способ изготовления внутрикостного стоматологического имплантата из титана. Поскольку технически чистый титан обладает невысокими прочностными свойствами, в данном случае для повышения его механической прочности используется многослойное биоактивное покрытие, состоящее из пяти разных слоев, наносимых последовательно методом плазменного напыления.
Повышенная механическая прочность имплантата достигается также использованием высоколегированных сплавов на основе титана. Например, в патенте (KR 20020074843, A61L 27/06; A61L 27/00; дата публикации 04.10.2002) описан способ изготовления костного съемного протеза из титановых сплавов Ti6A14V, Ti5Al12.5Sn, Ti3Al13V11Cr, Ti15Mo5Zr3Ti или Ti6Al12MbTa. Однако высоколегированные титановые сплавы по показателям биосовместимости значительно ниже технически чистого титана. Длительное присутствие в организме человека имплантатов из данных сплавов может привести к накоплению токсичных элементов, например ванадия и хрома [D.M.Brunette, P.Tengvall, М.Textor, P.Thomsen, "Titanium in medicine", Springer (2001), p.1019]. Поэтому для повышения биосовместимости и оптимизации процесса остеоинтеграции на поверхность имплантатов из титановых сплавов наносят биоинертное покрытие порошком гидроксиапатита кальция в вакуумной печи при нагреве до температур 800…1000°С.
Таким образом, в описанных патентах технически чистый титан используется для изготовления имплантатов, которые могут в течение длительного времени находиться в организме человека, однако его основным недостатком является невысокая механическая прочность. В этой связи для повышения прочностных характеристик имплантата обычно используются специальные биосовместимые покрытия поверхности изделия или высоколегированные титановые сплавы, обладающие высокой твердостью, прочностью, усталостной долговечностью. При этом биосовместимость имплантатов из титановых сплавов достигается за счет применения биосовместимых покрытий. В целом, применение дорогостоящих титановых сплавов, а также процессов нанесения на поверхность изделий биопокрытий приводит к повышению себестоимости изготовления имплантата.
Известно, что формирование ультрамелкозернистых (УМЗ) структур, содержащих преимущественно большеугловые границы, позволяет достичь уникального сочетания прочности, пластичности, усталостной долговечности в металлах и сплавах [Р.З.Валиев, И.В.Александров. Объемные наноструктурные металлические материалы. - М.: ИКЦ «Академкнига», 2007. - 398 с.].
Известен технически чистый титан с УМЗ-структурой, полученной комбинированными методами интенсивной пластической деформации [Садикова Г.Х., Латыш В.В., Семенова И.П., Валиев Р.З. «Влияние интенсивной пластической деформации и термомеханической обработки на структуру и свойства титана». Металловедение и термическая обработка металлов. №11 (605), 2005, стр.31-34]. Микроструктура в поперечном сечении заготовки характеризуется наличием равноосных зерен и субзерен альфа-фазы с гексагонально плотноупакованной (ГПУ) решеткой со средним размером около 200 нм и высокой плотностью дислокаций. Указанное техническое решение принято в качестве прототипа.
Однако структура в продольном сечении заготовки, исследованная по длине прутка в нескольких областях, имеет вытянутые вдоль направления деформации зерна α-фазы с соотношением длины и ширины (коэффициентом формы зерна) 6:1. Внутренняя область удлиненных зерен фрагментирована преимущественно малоугловыми дислокационными границами. Материал с такой структурой характеризуется анизотропией свойств в продольном и поперечном сечениях заготовки, что отрицательно сказывается на долговечности медицинских имплантатов.
Наиболее близким техническим решением по способу получения наноструктуры является способ обработки заготовки из технического титана (патент РФ №2175685, C22F 1/18, опубликованный 27.07.2000 г.), в котором формирование высокопрочного состояния достигается путем измельчения микроструктуры методом равноканального углового прессования (РКУП) с последующей термомеханической обработкой, включающей чередование холодной деформации со степенью 30-90% с промежуточным и окончательным отжигом в интервале температур 250…500°С в течение 0.2-2 часов. В результате в заготовке формируется ультрамелкозернистая структура с размером зерен около 0.1 мкм.
Недостатками данного способа является высокая степень анизотропии структуры и свойств материала из-за неоднородной морфологии зерен в продольном и поперечном сечении заготовки, большая доля малоугловых границ. Такой материал обладает повышенной прочностью, но ограниченной пластичностью, не обеспечивающей высокой стойкости к усталостному разрушению.
Задачей изобретения является разработка технически чистого титана, обеспечивающего повышенные свойства в отношении механической прочности, стойкости к усталостному разрушению, биомедицинских свойств за счет нанокристаллической структуры, а также эффективного способа его получения.
Поставленная задача решается тем, что технически чистый титан для биомедицинских целей, имеющий ультрамелкозернистую структуру альфа-фазы с гексагонально плотноупакованной решеткой, отличается от прототипа наличием наноструктуры, в которой объемная доля зерен с размером 0.1…0.5 мкм и с коэффициентом формы зерен не более 2 во взаимно перпендикулярных плоскостях составляет не менее 90%; причем более чем 60% зерен имеют большеугловые границы, разориентированные относительно соседних зерен на углы от 15 до 90°.
Поставленная задача решается способом получения нанокристаллической структуры в объеме прутка из технически чистого титана, включающим интенсивную пластическую деформацию равноканальным угловым прессованием при температуре не выше 450°С с суммарной истинной накопленной деформацией е≥4 и последующую термомеханическую обработку со степенью деформации от 40 до 80%, в котором в отличие от прототипа в процессе термомеханической обработки осуществляют пластическую деформацию при постепенном снижении температуры в интервале Т=450…350°С и скорости деформации 10-2…10-4 с-1.
Предложенный способ позволяет получить более высокий уровень механических и усталостных свойств, который обусловлен основными особенностями наноструктуры, сформированной в технически чистом титане, в соответствии с предложенным способом.
Во-первых, повышение прочности титана обусловлено очень маленьким размером зерна (0.1…0.5 мкм) в структуре, что обеспечивает увеличение напряжения течения при пластической деформации согласно известному соотношению Холла-Петча [Большие пластические деформации и разрушение металлов. Рыбин В.В. М.: Металлургия, 1986, 224 с.]. Значительное повышение прочности достигается также тем, что именно болыпеугловые границы зерен, общая доля которых не менее 60%, в сравнении с малоугловыми и специальными границами обеспечивают наибольший вклад в упрочнение [Р.З.Валиев, И.В.Александров. Объемные наноструктурные металлические материалы. - М.: ИКЦ «Академкнига», 2007. - 398 с.]. Вместе с тем в процессе пластической деформации (например, при растяжении образцов) зерна в данном размерном диапазоне с большеугловыми разориентировками границ способны проявлять зернограничное проскальзывание (ЗГП). ЗГП, как дополнительный механизм деформации, способствует обеспечению пластических свойств материала [Р.З.Валиев, И.В.Александров. Объемные наноструктурные металлические материалы. - М.: ИКЦ «Академкнига», 2007. - 398 с.]. При этом формирование зерен с коэффициентом формы не более 2 (соотношение ширины и длины зерна 1:2) снижает неоднородность пластического течения металла, уровень микронапряжений, тем самым предотвращает раннюю локализацию деформации, приводящую к разрушению материала. Описанные выше структурные изменения материала реализуются предложенным способом обработки при указанных температурно-скоростных режимах.
Известно, что УМЗ-структура технически чистого титана обеспечивает его повышенную биосовместимость [D.M.Brunette, P.Tengvall, М.Textor, Р.Thomsen, "Titanium in medicine", Springer (2001), p.1019].
В целом, формирование описанной выше нанокристаллической структуры в технически чистом титане в предложенной совокупности признаков изобретения приводит к одновременному повышению прочности и пластичности и, следовательно, к повышению сопротивления усталостному разрушению, а также повышению биосовместимости.
Изобретение реализуют следующим образом.
В качестве заготовки используют пруток из технически чистого титана. На первом этапе обработки проводится РКУП заготовки при температуре не выше 450°С за 4 прохода для достижения истинной накопленной деформации е≥4 в штамповой оснастке с углом пересекающихся каналов ψ=90°С. При этом заготовку после каждого прохода поворачивают вокруг своей продольной оси по часовой стрелке на угол 90° для обеспечения равномерности проработки структуры. На данном этапе происходит основное измельчение микроструктуры в объеме заготовки без изменения ее размеров. На начальных стадиях пластической деформации (е=1 после первого прохода РКУП) исходные зерна фрагментируются за счет образования деформационных двойников и ячеек с преимущественно малоугловыми дислокационными границами. С увеличением истинной накопленной деформации до е=4 (после 4 прохода РКУП) в структуре образуются новые двойники, в процессе чего происходит дальнейшая фрагментация зерен. Одновременно дислокационные стенки ячеек становятся более узкими и упорядоченными, увеличивается угол их разориентации, что способствует трансформации ячеистой структуры в зеренную. В результате эволюции структуры в процессе РКУП в титане формируется зеренно/субзеренная структура, характеризующаяся сильно неравновесными границами и высокой плотностью зернограничных и решеточных дислокаций с размером зерен в диапазоне 0.5…0.7 мкм.
После РКУП заготовки подвергают термомеханической обработке, в процессе которой осуществляют пластическую деформацию при постепенном снижении температуры в интервале Т=450…350°С с общей накопленной деформацией от 40 до 80%, скорость деформации варьируется в интервале 10-2…10-4 с-1, т.е. в температурно-скоростных условиях, близких к условиям сверхпластичности материала. Пластическая деформация в описанных температурно-скоростных условиях может быть реализована такими методами, как теплая прокатка, одноосная экструзия, объемная штамповка. Сочетание пластической деформации и нагрева способствует дальнейшей эволюции полученной после РКУП структуры: трансформации субзеренных границ в зеренные, тем самым увеличению доли большеугловых границ; формированию новых зерен, снижению плотности решеточных дислокаций за счет одновременно протекающих процессов возврата и динамической рекристаллизации.
Таким образом, в результате комбинированной обработки в технически чистом титане формируется нанокристаллическая структура, в которой до 90% составляют зерна со средним размером 100…500 нм и с коэффициентом формы зерен не более 2 во взаимно-перпендикулярных плоскостях, из них более 60% зерен имеют большеугловые границы.
Пример конкретной реализации изобретения
В качестве исходной заготовки использовали пруток из технически чистого титана марки CP Grade 4 диаметром 40 мм и длиной 150 мм. Данную заготовку подвергали РКУП при температуре 400°С за 4 прохода в штамповой оснастке с углом пересекающихся каналов ψ=90°C, при этом заготовку после каждого прохода поворачивали вокруг своей продольной оси по часовой стрелке на угол 90°. Затем заготовку вынули из оснастки, охладили до комнатной температуры, после чего подвергли токарной обработке для снятия дефектного слоя.
После РКУП заготовку подвергали термомеханической обработке, в процессе которой осуществляли пластическую деформацию теплой прокаткой при постепенном снижении температуры в интервале Т=450…350°С с общей накопленной деформацией 80%, скорость деформации составляла примерно 10-3 с-1. В результате такой обработки получили пруток диаметром ~7 мм и длиной ~3000 мм.
Из данного прутка были изготовлены образцы для исследования микроструктуры, которое проводилось на микроскопе JEM-100 В методом просвечивающей электронной микроскопии. Образцы для исследований были вырезаны электроэрозионным методом в виде пластин в поперечном и продольном сечениях прутка. Для приготовления тонких фольг пластины подвергались механическому утонению до толщины 100 мкм и последующему электролитическому полированию на установке Tenupol-5 (Struers) при комнатной температуре в электролите, состоящем из хлорной кислоты (HClO4), бутанола (С4Н9ОН) и метанола (СН3ОН).
На фиг.1 показана схема разрезки прутка: плоскость XY - поперечное сечение заготовки, плоскость ZX - продольное сечение. Микроструктура прутка иллюстрирована фотографиями на фиг.2 и 3 - в поперечном сечении, на фиг.4 - в продольном сечении. На фиг.2 видно, что размер зерна (1) в поперечном сечении прутка составляет в среднем 150 нм. На фиг.3 показан тройной стык (2) зерен, имеющих большеугловые границы (3). На фиг.4 видно, что в продольном сечении прутка обнаружены отдельные зерна (4), имеющие удлиненную форму, однако соотношение их ширины и длины не более чем 2:1.
В таблице представлены результаты испытаний на растяжение при комнатной температуре образцов, вырезанных из прутка технически чистого титана Grade 4, полученного предложенным способом. В качестве сравнения приведены результаты механических испытаний образцов из технически чистого титана, полученного в соответствии с прототипом [Садикова Г.Х., Латыш В.В., Семенова И.П., Валиев Р.З. «Влияние интенсивной пластической деформации и термомеханической обработки на структуру и свойства титана». Металловедение и термическая обработка металлов, №11 (605), 2005, стр.31-34].
Механические свойства технически чистого титана. | ||||||
№ п/п | Состояние полуфабриката | σB, МПа | σ0,2, МПа | Относительное удлинение, % | Относительное сужение, % | σ-1 (предел выносливости), МПа N=107 циклов |
1 | Пруток Ti с ультрамелкозернистой структурой в соответствии с прототипом | 1150 | 1100 | 11 | 56 | 500 |
2 | Пруток Ti Grade 4 ⌀ 7 мм с наноструктурой в соответствии с настоящим изобретением | 1330±10 | 1280±20 | 12±2 | 50±2 | 640 |
Из таблицы видно, что механические свойства наноструктурного титана, полученного предложенным способом, значительно выше, чем свойства ультрамелкозернстого титана, полученного в соответствии с прототипом.
Были проведены также эксперименты по подсаживанию человеческих остеобластовых клеток CRL - 11372 на поверхности обычных крупнозернистых и наноструктурных образцов из коммерчески чистого титана и сплава Ti-6Al-4V. Было показано, что адгезия остеобластовых клеток для наноструктурного состояния значительно выше по сравнению с крупнозернистым состоянием для обоих материалов (76% и 15% соответственно).
Исследования поведения клеток показывают, что колонизация фибробластовых клеток на поверхности титана существенно возрастает после наноструктурирования. Процент оккупированной клетками поверхности обычного титана составил 53% после 72 часов в отличие от 87% - для наноструктурного титана [www.timplant.cz]. Эти исследования указывают на более высокую скорость остеоинтеграции на наноструктурном титане по сравнению с материалом в обычном крупнозернистом состоянии.
Таким образом, предложенное изобретение позволяет сформировать в технически чистом титане нанокристаллическую структуру, обеспечивающую материалу повышенную прочность, усталостную долговечность и биосовместимость.
Claims (2)
1. Технически чистый титан для биомедицины, имеющий структуру из нанокристаллических зерен альфа-фазы с гексагональной плотноупакованной решеткой, характеризующийся тем, что в структуре объемная доля зерен с размером 0,1…0,5 мкм и с коэффициентом формы зерен не более 2 во взаимно перпендикулярных плоскостях составляет не менее 90%, причем более чем 60% зерен имеют болыпеугловые границы, разориентированные относительно соседних зерен на углы от 15 до 90°.
2. Способ получения прутка из технически чистого титана с нанокристаллической структурой для биомедицины, включающий интенсивную пластическую деформацию заготовки равноканальным угловым прессованием при температуре не выше 450°С с суммарной истинной накопленной деформацией е≥4 и последующую термомеханическую обработку со степенью деформации от 40 до 80%, отличающийся тем, что в процессе термомеханической обработки осуществляют пластическую деформацию при постепенном снижении температуры в интервале Т=450…350°С и скорости деформации 10-2…10-4 с-1.
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2008141956/02A RU2383654C1 (ru) | 2008-10-22 | 2008-10-22 | Наноструктурный технически чистый титан для биомедицины и способ получения прутка из него |
JP2011533134A JP5536789B2 (ja) | 2008-10-22 | 2009-10-20 | 生体臨床医学用のナノ組織化純チタンとそれを利用したロッド制作方法 |
CA2741524A CA2741524C (en) | 2008-10-22 | 2009-10-20 | Nanostructured commercially pure titanium for biomedicine and a method for producing a rod therefrom |
AU2009307113A AU2009307113B2 (en) | 2008-10-22 | 2009-10-20 | Commercially pure nanostructured titanium for biomedicine and a method for making a bar thereof |
CN2009801481665A CN102232124B (zh) | 2008-10-22 | 2009-10-20 | 生物医学用纳米结构工业纯钛及使用其制造钛棒的一种方法 |
PCT/RU2009/000556 WO2010047620A2 (ru) | 2008-10-22 | 2009-10-20 | Наноструктурный технически чистый титан для биомедицины и способ получения прутка из него |
US13/122,063 US8919168B2 (en) | 2008-10-22 | 2009-10-20 | Nanostructured commercially pure titanium for biomedicine and a method for producing a rod therefrom |
EP09822257.3A EP2366808B1 (en) | 2008-10-22 | 2009-10-20 | Commercially pure nanostructural titanium for biomedicine and a method for making a bar thereof |
KR1020117011609A KR101351143B1 (ko) | 2008-10-22 | 2009-10-20 | 생물의약용 상업적 순수 나노구조 티타늄 및 이의 막대를 제조하는 방법 |
BRPI0920298A BRPI0920298A2 (pt) | 2008-10-22 | 2009-10-20 | titanio nanoestruturado comercialmente puro para biomedicina e metodo de fabricacao de hastes de titanio comercialmente puro |
ES09822257.3T ES2497508T3 (es) | 2008-10-22 | 2009-10-20 | Titanio nanoestructural comercialmente puro para biomedicina y método para elaborar una varilla del mismo material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2008141956/02A RU2383654C1 (ru) | 2008-10-22 | 2008-10-22 | Наноструктурный технически чистый титан для биомедицины и способ получения прутка из него |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2383654C1 true RU2383654C1 (ru) | 2010-03-10 |
Family
ID=42119869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2008141956/02A RU2383654C1 (ru) | 2008-10-22 | 2008-10-22 | Наноструктурный технически чистый титан для биомедицины и способ получения прутка из него |
Country Status (11)
Country | Link |
---|---|
US (1) | US8919168B2 (ru) |
EP (1) | EP2366808B1 (ru) |
JP (1) | JP5536789B2 (ru) |
KR (1) | KR101351143B1 (ru) |
CN (1) | CN102232124B (ru) |
AU (1) | AU2009307113B2 (ru) |
BR (1) | BRPI0920298A2 (ru) |
CA (1) | CA2741524C (ru) |
ES (1) | ES2497508T3 (ru) |
RU (1) | RU2383654C1 (ru) |
WO (1) | WO2010047620A2 (ru) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2464116C1 (ru) * | 2011-03-15 | 2012-10-20 | Государственное образовательное учреждение высшего профессионального образования "Томский государственный университет" (ГОУ ВПО ТГУ) | Способ получения высокопрочных титановых прутков круглого сечения с ультрамелкозернистой структурой |
RU2503733C1 (ru) * | 2012-11-14 | 2014-01-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" | Наноструктурный сплав титан-никель с эффектом памяти формы и способ получения прутка из него |
RU2544218C2 (ru) * | 2010-12-22 | 2015-03-10 | Сандвик Интеллекчуал Проперти Аб | Способ получения нанодвойникованного титанового материала с помощью литья |
RU2562591C1 (ru) * | 2014-04-25 | 2015-09-10 | федеральное государственное автономное образовательное учреждение высшего образования "Нижегородский государственный университет им. Н.И. Лобачевского" | Способ изготовления длинномерных металлических прутков с нанокристаллической структурой для медицинских изделий (варианты) |
RU2823221C1 (ru) * | 2023-05-11 | 2024-07-22 | Федеральное государственное бюджетное научное учреждение Уфимский федеральный исследовательский центр Российской академии наук | Способ комбинированной обработки титана для биомедицинского применения |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040221929A1 (en) | 2003-05-09 | 2004-11-11 | Hebda John J. | Processing of titanium-aluminum-vanadium alloys and products made thereby |
US7837812B2 (en) | 2004-05-21 | 2010-11-23 | Ati Properties, Inc. | Metastable beta-titanium alloys and methods of processing the same by direct aging |
US10053758B2 (en) | 2010-01-22 | 2018-08-21 | Ati Properties Llc | Production of high strength titanium |
US9255316B2 (en) | 2010-07-19 | 2016-02-09 | Ati Properties, Inc. | Processing of α+β titanium alloys |
US8613818B2 (en) * | 2010-09-15 | 2013-12-24 | Ati Properties, Inc. | Processing routes for titanium and titanium alloys |
US10513755B2 (en) | 2010-09-23 | 2019-12-24 | Ati Properties Llc | High strength alpha/beta titanium alloy fasteners and fastener stock |
AT510770B1 (de) * | 2010-11-29 | 2015-01-15 | Ait Austrian Inst Technology | Verfahren zur herstellung eines gegenstandes aus einem metall oder einer legierung, daraus hergestellter gegenstand sowie presswerkzeug hierfür |
US8652400B2 (en) | 2011-06-01 | 2014-02-18 | Ati Properties, Inc. | Thermo-mechanical processing of nickel-base alloys |
KR101414505B1 (ko) * | 2012-01-11 | 2014-07-07 | 한국기계연구원 | 고강도 및 고성형성을 가지는 티타늄 합금의 제조방법 및 이에 의한 티타늄 합금 |
CN103484805B (zh) * | 2012-06-07 | 2015-09-09 | 株式会社神户制钢所 | 钛板及其制造方法 |
CN103574273A (zh) * | 2012-08-07 | 2014-02-12 | 江苏天工钛业科技有限公司 | 一种钛棒 |
JP5955969B2 (ja) * | 2012-09-04 | 2016-07-20 | 博己 三浦 | 部材の製造方法および生体材料 |
PL222390B1 (pl) * | 2012-12-11 | 2016-07-29 | Inst Wysokich Ciśnień Polskiej Akademii Nauk | Sposób wytwarzania nanokrystalicznego tytanu, zwłaszcza na implanty medyczne, oraz tytanowy implant medyczny |
US9869003B2 (en) | 2013-02-26 | 2018-01-16 | Ati Properties Llc | Methods for processing alloys |
US9192981B2 (en) | 2013-03-11 | 2015-11-24 | Ati Properties, Inc. | Thermomechanical processing of high strength non-magnetic corrosion resistant material |
US9777361B2 (en) | 2013-03-15 | 2017-10-03 | Ati Properties Llc | Thermomechanical processing of alpha-beta titanium alloys |
US20160108499A1 (en) * | 2013-03-15 | 2016-04-21 | Crs Holding Inc. | Nanostructured Titanium Alloy and Method For Thermomechanically Processing The Same |
US20140271336A1 (en) | 2013-03-15 | 2014-09-18 | Crs Holdings Inc. | Nanostructured Titanium Alloy And Method For Thermomechanically Processing The Same |
US10822670B2 (en) * | 2013-06-14 | 2020-11-03 | The Texas A&M University System | Controlled thermal coefficient product system and method |
US11111552B2 (en) | 2013-11-12 | 2021-09-07 | Ati Properties Llc | Methods for processing metal alloys |
CN103572088B (zh) * | 2013-11-27 | 2015-09-09 | 山东建筑大学 | 具有纳米晶组织的钛基多孔烧结复合材料及其制备方法 |
CN104846363B (zh) * | 2014-02-14 | 2018-08-10 | 宝山钢铁股份有限公司 | 一种纳米结构纯钛板的制备方法 |
FR3024160B1 (fr) * | 2014-07-23 | 2016-08-19 | Messier Bugatti Dowty | Procede d'elaboration d`une piece en alliage metallique |
US10094003B2 (en) | 2015-01-12 | 2018-10-09 | Ati Properties Llc | Titanium alloy |
US10385435B2 (en) | 2015-11-03 | 2019-08-20 | The Hong Kong Polytechnic University | Preparation of nanostructured titanium at cryogenic temperatures for medical implant applications |
US10502252B2 (en) | 2015-11-23 | 2019-12-10 | Ati Properties Llc | Processing of alpha-beta titanium alloys |
DE102016122575B4 (de) | 2016-11-23 | 2018-09-06 | Meotec GmbH & Co. KG | Verfahren zur Bearbeitung eines Werkstücks aus einem metallischen Werkstoff |
CN107142434B (zh) * | 2017-05-05 | 2018-09-07 | 东南大学 | 一种高强度钛合金棒线材的制备方法 |
CN106947929B (zh) * | 2017-05-10 | 2018-09-14 | 东南大学 | 一种高强度细晶纯钛棒线材的制备方法 |
DE102017005618A1 (de) * | 2017-06-14 | 2018-12-20 | Johannes Scherer | Dentalimplantatsystem umfassend wenigstens ein Zahnimplantat und ein separates Abutment |
CN107881447B (zh) * | 2017-11-22 | 2019-04-23 | 四川大学 | 一种高强韧性丝状晶粒纯钛及其制备方法 |
JP7368798B2 (ja) * | 2019-12-25 | 2023-10-25 | 国立大学法人豊橋技術科学大学 | 純チタン金属材料の加工方法 |
WO2022259731A1 (ja) | 2021-06-07 | 2022-12-15 | 株式会社丸ヱム製作所 | スクリュー用母材、スクリューとその製造方法 |
CN113957368B (zh) * | 2021-09-29 | 2022-04-15 | 四川大学 | 一种纳米晶钛膜的制备方法 |
CN114411074B (zh) * | 2021-12-13 | 2022-08-02 | 四川大学 | 一种多层双相跨尺度结构纯钛的制备方法 |
CN115522151B (zh) * | 2022-10-09 | 2023-10-27 | 攀枝花学院 | 高纯ta1钛材获得超细晶粒的方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD282180A5 (de) | 1989-03-03 | 1990-09-05 | Univ Schiller Jena | Verfahren zur herstellung bioaktiver und mechanisch hoch belastbarer implantate |
EP0909339B1 (en) * | 1996-06-21 | 2001-11-21 | General Electric Company | Method for processing billets from multiphase alloys |
RU2146535C1 (ru) | 1998-07-20 | 2000-03-20 | Консультативная стоматологическая поликлиника при СГМУ | Способ изготовления внутрикостного стоматологического имплантата с плазмонапыленным многослойным биоактивным покрытием |
US6878250B1 (en) * | 1999-12-16 | 2005-04-12 | Honeywell International Inc. | Sputtering targets formed from cast materials |
US6399215B1 (en) * | 2000-03-28 | 2002-06-04 | The Regents Of The University Of California | Ultrafine-grained titanium for medical implants |
RU2175685C1 (ru) | 2000-07-27 | 2001-11-10 | Уфимский государственный авиационный технический университет | Способ получения ультрамелкозернистых титановых заготовок |
US6946039B1 (en) * | 2000-11-02 | 2005-09-20 | Honeywell International Inc. | Physical vapor deposition targets, and methods of fabricating metallic materials |
RU2259413C2 (ru) * | 2001-02-28 | 2005-08-27 | ДжФЕ СТИЛ КОРПОРЕЙШН | Брусок из сплава титана и способ его изготовления |
KR100431159B1 (ko) | 2001-03-22 | 2004-05-12 | 김철생 | 생체활성 표면을 갖는 Ti-소재 경조직 대체재료의제조방법 |
RU2251588C2 (ru) | 2003-06-03 | 2005-05-10 | Научно-исследовательское учреждение Институт физики прочности и материаловедения (НИУ ИФПМ СО РАН) | Способ получения ультрамелкозернистых титановых заготовок |
JP4686700B2 (ja) * | 2003-10-01 | 2011-05-25 | 独立行政法人産業技術総合研究所 | 微細組織チタン及びその製造方法 |
US20060213592A1 (en) * | 2004-06-29 | 2006-09-28 | Postech Foundation | Nanocrystalline titanium alloy, and method and apparatus for manufacturing the same |
RU2277992C2 (ru) | 2004-09-06 | 2006-06-20 | Риф Гайзуллович Баймурзин | Способ получения заготовок с мелкозернистой структурой |
US7617750B2 (en) * | 2006-12-06 | 2009-11-17 | Purdue Research Foundation | Process of producing nanocrystalline bodies |
KR101225122B1 (ko) * | 2009-09-07 | 2013-01-22 | 포항공과대학교 산학협력단 | 저 변형량에서의 나노 결정립 티타늄 합금의 제조 방법 |
US8613818B2 (en) * | 2010-09-15 | 2013-12-24 | Ati Properties, Inc. | Processing routes for titanium and titanium alloys |
-
2008
- 2008-10-22 RU RU2008141956/02A patent/RU2383654C1/ru active
-
2009
- 2009-10-20 CN CN2009801481665A patent/CN102232124B/zh not_active Expired - Fee Related
- 2009-10-20 AU AU2009307113A patent/AU2009307113B2/en not_active Ceased
- 2009-10-20 WO PCT/RU2009/000556 patent/WO2010047620A2/ru active Application Filing
- 2009-10-20 BR BRPI0920298A patent/BRPI0920298A2/pt not_active IP Right Cessation
- 2009-10-20 EP EP09822257.3A patent/EP2366808B1/en not_active Not-in-force
- 2009-10-20 US US13/122,063 patent/US8919168B2/en active Active - Reinstated
- 2009-10-20 KR KR1020117011609A patent/KR101351143B1/ko not_active Expired - Fee Related
- 2009-10-20 JP JP2011533134A patent/JP5536789B2/ja not_active Expired - Fee Related
- 2009-10-20 CA CA2741524A patent/CA2741524C/en not_active Expired - Fee Related
- 2009-10-20 ES ES09822257.3T patent/ES2497508T3/es active Active
Non-Patent Citations (1)
Title |
---|
САДИКОВА Г.Х. и др. Влияние интенсивной пластической деформации и термомеханической обработки на структуру и свойства титана. - «Металловедение и термическая обработка металлов», 2005, №11, с.31-34. * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2544218C2 (ru) * | 2010-12-22 | 2015-03-10 | Сандвик Интеллекчуал Проперти Аб | Способ получения нанодвойникованного титанового материала с помощью литья |
RU2464116C1 (ru) * | 2011-03-15 | 2012-10-20 | Государственное образовательное учреждение высшего профессионального образования "Томский государственный университет" (ГОУ ВПО ТГУ) | Способ получения высокопрочных титановых прутков круглого сечения с ультрамелкозернистой структурой |
RU2503733C1 (ru) * | 2012-11-14 | 2014-01-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" | Наноструктурный сплав титан-никель с эффектом памяти формы и способ получения прутка из него |
RU2562591C1 (ru) * | 2014-04-25 | 2015-09-10 | федеральное государственное автономное образовательное учреждение высшего образования "Нижегородский государственный университет им. Н.И. Лобачевского" | Способ изготовления длинномерных металлических прутков с нанокристаллической структурой для медицинских изделий (варианты) |
RU2823221C1 (ru) * | 2023-05-11 | 2024-07-22 | Федеральное государственное бюджетное научное учреждение Уфимский федеральный исследовательский центр Российской академии наук | Способ комбинированной обработки титана для биомедицинского применения |
RU2836718C1 (ru) * | 2024-06-05 | 2025-03-19 | Георгий Иосифович Рааб | Пруток из технически чистого титана для биомедицины и способ его получения |
Also Published As
Publication number | Publication date |
---|---|
EP2366808A2 (en) | 2011-09-21 |
JP5536789B2 (ja) | 2014-07-02 |
EP2366808B1 (en) | 2014-08-13 |
EP2366808A4 (en) | 2013-04-10 |
CN102232124B (zh) | 2013-09-11 |
US20110179848A1 (en) | 2011-07-28 |
JP2012506290A (ja) | 2012-03-15 |
KR101351143B1 (ko) | 2014-01-14 |
BRPI0920298A2 (pt) | 2017-10-17 |
CN102232124A (zh) | 2011-11-02 |
KR20110102309A (ko) | 2011-09-16 |
CA2741524C (en) | 2013-09-24 |
CA2741524A1 (en) | 2010-04-29 |
ES2497508T3 (es) | 2014-09-23 |
AU2009307113B2 (en) | 2015-07-30 |
WO2010047620A2 (ru) | 2010-04-29 |
US8919168B2 (en) | 2014-12-30 |
WO2010047620A3 (ru) | 2010-06-17 |
AU2009307113A1 (en) | 2010-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2383654C1 (ru) | Наноструктурный технически чистый титан для биомедицины и способ получения прутка из него | |
Bryła et al. | Microstructure, mechanical properties, and degradation of Mg-Ag alloy after equal-channel angular pressing | |
JP2019148012A (ja) | マグネシウム合金、その製造方法およびその使用 | |
Vanmeensel et al. | Additively manufactured metals for medical applications | |
US6399215B1 (en) | Ultrafine-grained titanium for medical implants | |
JP2018197396A (ja) | マグネシウム合金、その製造方法およびその使用 | |
JP2019019412A (ja) | マグネシウム合金、その製造方法およびその使用 | |
CN112251639B (zh) | 一种高强度抗菌钛合金棒材、丝材及其制备方法 | |
Polyakov et al. | Recent advances in processing and application of nanostructured titanium for dental implants | |
RU2656626C1 (ru) | Способ получения проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы | |
Kolobov et al. | Regularities of formation and degradation of the microstructure and properties of new ultrafine-grained low-modulus Ti–Nb–Mo–Zr alloys | |
RU2503733C1 (ru) | Наноструктурный сплав титан-никель с эффектом памяти формы и способ получения прутка из него | |
Valiev et al. | Study and development of nanostructured metals for production of medical implants and equipment | |
Polyakov et al. | Development and study of medical implants made from nanostructured titanium | |
CN112251634B (zh) | 一种抗菌等轴纳米晶Ti-Cu板材及其制备方法 | |
RU2836718C1 (ru) | Пруток из технически чистого титана для биомедицины и способ его получения | |
Zhang et al. | Microstructure and properties of TC4/TNTZO multi-layered composite by direct laser deposition | |
EP2788519B1 (en) | Method for increasing mechanical strength of titanium alloys having " phase by cold working | |
US20240225700A1 (en) | Extruded lean magnesium-calcium alloys | |
CN112226646B (zh) | 一种抗菌等轴纳米晶Ti-Cu棒、丝材及其制备方法 | |
Yoshida et al. | Development of bioactivity and pull-out torque control technology on Ti implant surface and its application for cold thread rolled bone screw | |
EP4324489A1 (en) | A biocompatible and bioabsorbable composite material for full absorption in vivo in contact with a human or animal tissue and method of manufacture of said composite material |