[go: up one dir, main page]

RU2381630C2 - Способ и устройство для определения качества соответствия блока - Google Patents

Способ и устройство для определения качества соответствия блока Download PDF

Info

Publication number
RU2381630C2
RU2381630C2 RU2005106280/09A RU2005106280A RU2381630C2 RU 2381630 C2 RU2381630 C2 RU 2381630C2 RU 2005106280/09 A RU2005106280/09 A RU 2005106280/09A RU 2005106280 A RU2005106280 A RU 2005106280A RU 2381630 C2 RU2381630 C2 RU 2381630C2
Authority
RU
Russia
Prior art keywords
motion vector
difference
candidate
motion
predictor
Prior art date
Application number
RU2005106280/09A
Other languages
English (en)
Other versions
RU2005106280A (ru
Inventor
Рагхаван СУБРАМАНИЯН (US)
Рагхаван СУБРАМАНИЯН
Бхаван ГАНДХИ (US)
Бхаван ГАНДХИ
Original Assignee
Моторола, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Моторола, Инк. filed Critical Моторола, Инк.
Publication of RU2005106280A publication Critical patent/RU2005106280A/ru
Application granted granted Critical
Publication of RU2381630C2 publication Critical patent/RU2381630C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/567Motion estimation based on rate distortion criteria
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/223Analysis of motion using block-matching
    • G06T7/238Analysis of motion using block-matching using non-full search, e.g. three-step search
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

Изобретение относится к области оценки движения, и в частности к оценке движения на основе блока в применении к сжатию видеоизображения. Техническим результатом является повышение качества оценки движения при относительно низкой сложности. Указанный результат достигается тем, что предложены способ и устройство для определения качества соответствия блока для вектора движения - кандидата в системе видеокодера с использованием векторов движения, представляющих разность в координатах макроблока данных в текущем кадре данных изображения и координатах соответствующего макроблока данных в эталонном кадре данных изображения. Способ включает в себя определение схемы поиска, поиска по области на основе схемы поиска для вектора движения - кандидата для оценки, вычисление показателя разности, вычисление смещения на основе разности между вектором движения предсказателя и вектором движения - кандидатом, определение показателя измененной разности посредством суммирования показателя разности со смещением и определение итогового вектора движения на основе показателя измененной разности. 3 н. и 25 з.п. ф-лы, 7 ил.

Description

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Область техники, к которой относится изобретения
Это изобретение относится к области оценки движения, и в частности к оценке движения на основе блока в применении к сжатию видеоизображения.
Уровень техники
В настоящее время оценка движения является ключевой составляющей многих способов сжатия видеоизображения. Задачей оценки движения является уменьшение временной избыточности между кадрами видеосерии. Алгоритм оценки движения предсказывает данные изображения для кадра изображения с использованием одного или большего количества ранее кодированных кадров изображения или будущих кадров. Вычисляется разностное изображение посредством определения арифметической разности между исходными данными пикселя (элемента изображения) и соответствующими предсказанными данными пикселя. Разностное изображение с большими вариациями указывает на малую временную избыточность между кадрами изображения или на ее отсутствие. В то время как разностное изображение с малыми вариациями указывает на высокую степень временной избыточности между кадрами изображения. Разностное изображение представляет представление с уменьшенной временной избыточностью для кадров изображения, которое дает более высокую эффективность кодирования.
Одним видом алгоритма оценки движения является алгоритм оценки движения на основе блока. Алгоритм оценки движения на основе блока работает на блоках данных изображения. Блок данных изображения в текущем кадре предсказывается посредством блока данных из предыдущего кадра изображения. Алгоритм оценки движения выводит вектор движения для блока данных изображения, который определяет местоположение наилучшего соответствия блока из предыдущего кадра изображения. В способах сжатия видеоизображения информация указанного вектора движения сжимается и передается или сохраняется совместно с сжатыми данными разности.
Международные стандарты сжатия видеоизображения, такие как H.263, MPEG-2 и MPEG-4, обеспечивают возможность оценки движения на основе блока, обеспечивая синтаксис для описания векторов движения. Указанные стандарты не требуют конкретных алгоритмов оценки движения. В указанных стандартах сжатия оценка движения вычисляется на размере основного блока 16×16 пикселей, обозначенного как макроблок. Для оценки более малых областей изображения разрешается работать на размерах блока 8×8 пикселей.
В системе кодирования видеоизображения оценка движения является одним из наиболее нагруженных модулей процессора. Существует некоторое количество способов оценки движения на основе блока, в которых делается попытка найти компромисс между вычислительной сложностью и эффективностью вектора движения.
Оценка движения с полным поиском (ОДПП, FSME) осуществляет полное сравнение блока в текущем кадре изображения с каждой позицией пикселя, размещенной внутри окна поиска ранее обработанного кадра. Добротность соответствия блока в каждой позиции пикселя определяется посредством измерения соответствующего ему расхождения. Обычной мерой расхождения, используемой показателями соответствия блока, является показатель суммы абсолютной разности (САР, SAD)
Figure 00000001
где Bc является блоком в текущем кадре изображения, а Bp является блоком в предыдущем кадре изображения. Индексы m и n индексируют пиксели внутри блока из N строк и М столбцов. Малое значение SAD соответствует хорошему соответствию блока, а большое значение SAD соответствует плохому соответствию блока. К сожалению, с увеличением окна поиска FSME становится недопустимым. Существует другая проблема для FSME, состоящая в том, что использование показателя SAD требует чрезмерного количества битов, требуемых для кодирования векторов движения, что приводит к не эффективности сжатия.
В настоящее время существует несколько алгоритмов движения невысокой сложности. Все эти алгоритмы страдают от низкого обеспечиваемого качества или от обеспечения недостаточного снижения вычислительной сложности. Существует также небольшое количество предложенных алгоритмов оценки движения, которые обеспечивают несколько лучшее качество при относительно низкой сложности.
Одним возможным подходом является подход на основе зон. Сначала вычисляется предсказатель вектора движения (ПВД, PMV), как вектор движения с наилучшим соответствием. Затем выполняется поиск вектора движения, следующий схеме по зонам, вокруг PMV. За ним следует подобный поиск по зонам вокруг нулевого вектора движения. На каждом шаге существует критерий для завершения поиска при получении достаточно хорошего критерия. К сожалению этот подход не дает последовательно хорошие результаты по широкому диапазону видеосерий.
Алгоритм оценки движения, называемый PMVFAST, очень близок к описанному выше зональному подходу. Однако вместо схемы поиска по зонам используется схема итеративного поиска по ромбу. В зависимости от определенного критерия могут использоваться большая или малая схемы. К сожалению такой подход дает результат, очень сходный с зональным подходом.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Заявлены способ и устройство для определения качества соответствия блока для вектора движения - кандидата в системе видеокодера, с использованием векторов движения, представляющих разность в координатах макроблока данных в текущем кадре данных изображения и координатах соответствующего макроблока данных в эталонном кадре данных изображения. Способ может включать определение схемы поиска, поиска по области на основе схемы поиска для вектора движения - кандидата для оценки, вычисления показателя разности, вычисления смещения на основе разности между вектором движения предсказателя и вектором движения - кандидатом, определения показателя измененной разности посредством суммирования показателя разности со смещением и определения итогового вектора движения на основе показателя измененной разности.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг.1 - возможная блок-схема системы сжатия видеоизображения согласно одному варианту осуществления.
Фиг.2 - возможное изображение окрестности текущего макроблока согласно одному варианту осуществления.
Фиг.3 - возможная схема поиска, используемая в продолжение первой стадии предпочтительного варианта осуществления.
Фиг.4 - возможная схема поиска, используемая в режиме захвата в продолжение первой стадии предпочтительного варианта осуществления.
Фиг.5 - возможная иллюстрация схемы поиска, используемой в продолжение второй стадии предпочтительного варианта осуществления.
Фиг.6 - возможная блок-схема, иллюстрирующая действие представленного изобретения согласно предпочтительному варианту осуществления.
Фиг.7 - возможная блок-схема схемы оценки движения согласно одному варианту осуществления.
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
Настоящее изобретение дает повышенную эффективность по широкому диапазону видеосерий. Имеют место отдельные усовершенствования и алгоритмические нововведения, что приводит к лучшему качеству. Фактически усредняя по отдельным видеосериям, настоящее изобретение может способствовать в усовершенствовании выполнения стандартного алгоритма полного поиска с точки зрения полученной эффективности сжатия видеоизображения.
Все способы, используемые в предшествующем уровне техники, сосредоточены на оптимизации соответствия блока, тогда как, среди других преимуществ, настоящее изобретение может явно учитывать количество битов, необходимых для кодирования видеосерии. Настоящее изобретение также может использовать преимущество характера движения, с которым сталкиваются при захвате видеоизображения в реальной жизни.
В настоящее время, при взлете радиорынка, будет больше требований на обеспечение технологии кодирования видеоизображения на переносных устройствах. Большинство указанных устройств не имеет вычислительной возможности для выполнения интенсивных вычислений оценки движения. Соответственно в таких устройствах может быть очень полезен алгоритм оценки движения низкой сложности и с высоким качеством, обеспечиваемый настоящим изобретением.
Согласно одному варианту осуществления настоящее изобретение может быть выполнено в две стадии. На первой стадии может быть рассмотрено несколько векторов движения предсказателя и может быть выполнен поиск вокруг каждого из кандидатов с использованием фиксированной схемы поиска. В продолжение первой стадии, если обнаруживается, что получение хорошего соответствия маловероятно, то может быть выбран новый набор векторов движения - кандидатов, и может быть выполнен новый поиск. Это может быть сделано для захвата движения любого нового объекта, который появляется в сцене. На второй стадии может быть рассмотрен наилучший результат первой стадии и может быть выполнен новый поиск с использованием движущейся, взвешенной, спиралеобразной схемы поиска для получения наилучшего соответствия блока.
Фиг.1 - возможная блок-схема системы 100 сжатия видеоизображения для видеокодера согласно одному варианту осуществления. Система 100 сжатия видеоизображения может включать в себя схему 110 оценки движения по измененной сумме абсолютных разностей (ИСАР, MSAD), схему 115 компенсации движения, сумматор 120, схему 125 дискретного косинусного преобразования (ДКП, DCT), квантователь 130, кодер 135 кодирования с переменной длиной (поля записи) (КПЛ, VLC), обратный квантователь 140, схему обратного дискретного косинусного преобразования (ОДКП, IDCT) 145, другой сумматор 150 и схему 155 предыдущего кадра.
При действии вычисляется оценка движения для блоков данных изображения из текущего кадра изображения с использованием одного или большего количества обработанных ранее кадров изображения. Схема 110 оценки движения выводит вектор движения, соответствующий обрабатываемому блоку. Схема 115 компенсации движения, с использованием вычисленных векторов движения, формирует из предыдущего кадра блок предсказания. Сумматором 120 вычисляется разностное изображение посредством вычитания предсказанных данных изображения из текущего кадра изображения. Это разностное изображение преобразуется с использованием схемы 125 DCT. Тогда как схема 110 оценки движения и схема 115 компенсации движения служат для уменьшения временной избыточности между кадрами изображения, схема 125 DCT служит для уменьшения пространственной избыточности внутри кадра. Впоследствии квантователь 140 подвергает коэффициенты DCT уменьшению точности. Внося числовые потери, квантователь 140 усиливает сжатие. Затем квантованные коэффициенты DCT кодируются кодером 135 VLC и передаются в потоке битов сжатого видеоизображения вместе с векторами движения. Локальный контур восстановления состоит из обратного квантователя 140, IDCT 145 и сумматора 150. Обратный квантователь 140 восстанавливает коэффициенты DCT. IDCT 145 преобразовывает коэффициенты DCT обратно в пространственную область для формирования квантованного разностного изображения. Сумматор 150 вычисляет восстановленный кадр посредством суммирования данных, скомпенсированных по движению, с квантованным разностным изображением. Затем эти восстановленные данные сохраняются в схеме 155 предыдущего кадра для использования при обработке последующих кадров изображения.
Действие схемы 110 оценки движения с быстрым поиском, предсказывающим движение, может состоять из двух стадий. На первой стадии может быть выполнен малый поиск вокруг нескольких предсказателей вектора движения. Эти предсказатели вектора движения (ПВД, MVP) могут быть получены из других векторов движения (ВД, MV). Для исходных определений MV является разностью в координатах блока данных в текущем кадре данных изображения и блока данных в эталонном кадре, которому он соответствует. MV имеет две составляющих: X и Y. Значение MV описывается, как упорядоченная пара (X, Y). Предсказателями MVP являются вектора MV, которые, при выполнении нахождения соответствия, используются в качестве хорошего "приближения" наилучшего MV. Макроблоком (МБ, MB) является блок данных 16×16 внутри кадра видеоизображения. Без потери общности MB может также относиться к блокам данных различных размеров (например, 8×8, 4×8, 4×4,16×8 и т.д.).
Один предсказатель вектора движения может основываться на нулевом векторе движения. Предсказатель вектора движения, основанный на определенном векторе движения, может определять предсказатель вектора движения, как равный определенному вектору движения. Нулевой вектор движения является вектором движения с координатами (0,0). Второй предсказатель вектора движения может основываться на векторе движения в равноразмещенном макроблоке в предыдущем кадре.
Фиг.2 - возможная иллюстрация местоположения текущего макроблока и соседних макроблоков, используемых для определения дополнительных векторов движения. Соответственно третий предсказатель вектора движения может основываться на векторе движения макроблока слева от текущего макроблока. Четвертый предсказатель вектора движения может основываться на векторе движения макроблока сверху или над текущим макроблоком. Пятый предсказатель вектора движения может основываться на векторе движения макроблока справа и сверху от текущего макроблока. Шестой предсказатель вектора движения может основываться на векторе медианы движения третьего, четвертого и пятого предсказателей вектора движения. Этот предсказатель медианы вектора движения может вычисляться независимо для составляющих X и Y вектора движения.
Седьмой предсказатель вектора движения может основываться на оцененном общем векторе движения. Этот общий вектор движения оценивается схемой 110 оценки движения как среднее всех итоговых векторов движения предыдущего кадра, для которых показатель разности был ниже некоторого порогового значения THRESH1. Показателем разности может быть показатель суммы абсолютной разности, показатель суммы разности квадратов, показатель измененной суммы абсолютной разности или любой другой используемый показатель. В предпочтительном варианте осуществления выбранным значением THRESH1 является
THRESH1 = SAD1 + OFFSET,
где OFFSET может быть установлено номинально в 500,
где SAD1 задается уравнением
Figure 00000002
Здесь m и n являются индексами пикселя. М и N являются размерами блока. Для возможного макроблока М = N = 16. Общий вектор движения может быть определен также другими средствами, такими как датчики движения на видеокамерах, другими алгоритмами или любыми другими средствами для определения общего вектора движения.
Дополнительные предсказатели вектора движения могут быть определены на основе результата оценки движения, выполненной для того же макроблока, но на другом кодированном ранее кадре.
Соответственно схема 110 оценки движения может определить общий вектор движения с использованием среднего всех итоговых векторов движения в предыдущем кадре, для которых показатель разности ниже определенного порогового значения. В частности, схема 110 оценки движения может определить общий вектор движения посредством вычисления показателя разности для каждого из итоговых векторов движения в предыдущем кадре, сравнения показателя разности для каждого из итоговых векторов движения в предыдущем кадре с предварительно определенным пороговым значением и определения общего вектора движения на основе каждого из итоговых векторов движения в предыдущем кадре с показателем разности, который ниже порогового значения.
Внутри малой области вокруг каждого MVP могут быть найдены все MV. Затем MV с самым низким показателем MSAD может быть выбран в качестве MV - кандидата для второй стадии. Показатель MSAD определен ниже.
Соответственно схема 110 оценки движения может выполнять поиск, предсказывающий движение, посредством получения нескольких предсказателей вектора движения, причем предсказатели вектора движения представляют аппроксимации возможных векторов движения для текущего макроблока, определения схемы поиска, осуществления поиска вокруг каждого предсказателя вектора движения из нескольких предсказателей вектора движения с использованием схемы поиска, и определения итогового вектора движения. Схема оценки движения дополнительно может вычислять показатель разности, представляющий качество соответствия макроблока, причем показателем разности может быть показатель суммы абсолютных разностей, показатель суммы квадратов разностей или любой другой показатель, используемый в оценке движения.
Возможная схема поиска вокруг каждого MVP изображена на фиг.3. Как изображено, схема поиска может распространяться больше в горизонтальном направлении, чем в вертикальном. Это может использовать преимущество, заключающееся в том, что в большинстве данных изображения реальной жизни больше движения и вариаций в движении имеет место в горизонтальном направлении.
Если после оценки первых 6 векторов движения наилучший MV имеет показатель MSAD выше порогового значения THRESH2, то первая стадия может войти в режим захвата. В предпочтительном варианте осуществления THRESH2 задается следующим образом
THRESH2 = 4 · MMSADAVG,
MMSADAVG = Среднее всех MMSAD (т.е. показателей MSAD наилучших MV) предыдущего кадра.
В режиме захвата могут быть рассмотрены дополнительные MVP, как изображено на фиг.4. Например, может существовать 8 точек
(-12,0) (12,0) (0, -8) (0, 8) (-6, 4) (6, 4) (6, -4) (-6, -4)
Поиск вокруг каждого из MVP выполняется с использованием той же схемы поиска, изображенной на фиг.3. В предпочтительном варианте осуществления для макроблока могут рассматриваться только 4 из 8 MVP. Для первого макроблока рассматриваются первые 4. Для следующего макроблока рассматриваются другие 4 MVP и так далее. Это может быть сделано для уменьшения количества вычислений.
Задача режима захвата состоит в обнаружении любого нового объекта, который быстро движется в изображении на экране. В таком сценарии MVP, основанные на соседних векторах движения будут неадекватны. Возможность получения хорошего соответствия вектора движения повышается посредством использования 8 новых точек. Предпочтительна возможность выбора 8 точек в горизонтальном направлении, так как часто большее движение имеет место в этом направлении.
Соответственно схема 110 оценки движения может осуществить поиск вокруг каждого предсказателя вектора движения из нескольких предсказателей вектора движения с использованием схемы поиска, определить наилучший вектор движения, имеющий показатель разности выше предварительно определенного порогового значения, и выполнить схему поиска вокруг нового набора предсказателей вектора движения.
На первой стадии, когда оценивается схема поиска вокруг MVP, для завершения поиска этого MVP может применяться критерий выхода, существующий ранее. Поиск может быть завершен, если MSAD, полученный для MV, превышает текущий минимум MSAD (MMSAD) на пороговое значение THRESH3, т.е. если (MSADi > (MMSAD + THRESH3)). Где MSADi является MSAD, полученной для MVPi, MMSAD является минимумом всех значений MSAD, полученных до этой точки для текущего МB. В частности, это MSAD наилучшего MV. В предпочтительном варианте осуществления значение THRESH3 может быть выбрано около 768.
Соответственно схема 110 оценки движения может выполнить схему поиска на предсказателях вектора движения, определить текущий показатель разности для текущего вектора движения, сравнить текущий показатель разности с предыдущим минимальным показателем разности, установить новый минимальный показатель разности, если текущий показатель разности ниже предыдущего минимального показателя разности, и завершить схему поиска, если показатель разности превышает предыдущий минимальный показатель на предварительно определенную величину.
Затем среди всех MV, найденных на первой стадии, выбирается MV, который дает низший показатель MSAD, и он становится начальной точкой для второй стадии.
На второй стадии выбирается наилучший MV из первой стадии (т.е. тот, который дает низшую MSAD) и выполняется поиск вокруг этого MV. Например, поиск может выполняться по схеме, которая изображена на фиг.5. Схема поиска может начинаться из центра и может развертываться по спирали в последовательности, изображенной на фиг. 5 в виде последовательности чисел. Как только обнаруживается более хороший MV (т. е. MV, который дает более низкую MSAD), схема поиска центрируется заново вокруг нового MV, и спиралеобразная схема поиска начинается заново. Этот процесс продолжается, пока не удовлетворяется одно из 3 условий:
УСЛОВИЕ 1: MSAD ниже порогового значения THRESH4, заданного следующим образом
THRESH4 = A · Q + B,
где Q является размером шага квантования, используемым кодером для текущего MB, A и B являются константами. В предпочтительном варианте осуществления A = 8 и B = 0.
УСЛОВИЕ 2: на стадии 2 уже было рассмотрено максимальное количество кандидатов, N. В предпочтительном варианте осуществления N = 30.
УСЛОВИЕ 3: при M последних MV - кандидатах не происходит улучшения минимума MSAD (MMSAD). Здесь M является функцией от индекса позиции последнего MV - кандидата в спиралеобразной схеме поиска. Например, поиск начинается с индекса 0. Затем он развертывается по спирали вокруг точек 1, 2, 3, …. Всякий раз, при обнаружении лучшего MV, спиралеобразная схема поиска центрируется заново вокруг этого нового MV, и индекс еще раз начинается с 0. Этот индекс используется для определения значения M. В предпочтительном варианте осуществления М выбирается из набора значений {4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9} на основе индекса.
В конце второй стадии наилучший MV выбирается в качестве наилучшего MV для макроблока. С использованием хорошо известных способов этот MV может быть дополнительно уточнен до половины пикселя, четверти пикселя или более высокой точности на последующей стадии.
Как упомянуто выше, схема поиска может быть выбрана, чтобы давать более широкий охват в горизонтальном направлении, чем в вертикальном.
Показатель MSAD может быть существенной частью изобретения. Хотя показатель измененной суммы разностей дает предпочтительные результаты, любой показатель разности может взаимозаменяемо использоваться в каждом варианте осуществления настоящего изобретения, в котором требуется показатель суммы абсолютных разностей, показатель измененной суммы разностей или любой другой показатель разности. Кроме того, показатель MSAD особенно существенен для повышения эффективности всех систем видеокодера. В частности, для повышения эффективности показатель MSAD может заменять показатель SAD, показатель суммы квадратов или любой другой показатель в системе видеокодера. Например, показатель MSAD может использоваться в системе FSME, системе PMVFAST или любой другой системе видеокодера.
Показатель MSAD является функцией суммы абсолютных разностей (SAD), описанной выше, оцениваемого MV - кандидата и вектора движения предсказателя (PMV). PMV, в основном, используется видеокодером в продолжение кодирования итогового вектора движения. Итоговый вектор движения кодируется как разность относительно PMV, который отличен от MVP. Например, это может быть уникальный MV, определенный в стандартах H.261, H.263, MPEG-1, MPEG-2 и MPEG-4 для кодирования векторов движения. Как описано выше, SAD является показателем, используемым в классических алгоритмах оценки движения.
Для макроблока с заданным PMV и для вектора движения - кандидата MV, MSAD задается следующим образом
MSAD = SAD + Смещение,
где смещением является любое значение, основанное на показателе разности векторов движения между MV и PMV. Например,
MSAD = SAD + C · (|MVX - PMVX| + |MVY - PMVY|)
Согласно другому возможному варианту смещение может основываться на
C · ((MVX-PMVX)2 + (MVY-PMVY)2),
где SAD является определенным ранее классическим показателем, используемым для соответствия блоков, MVX и MVY являются составляющими X и Y вектора движения - кандидата, PMVX и PMVY являются составляющими X и Y для PMV, а C является константой. В предпочтительном варианте осуществления C около 5. PMV, в основном, остается фиксированным для всех кандидатов в МB, в то время как MV изменяется.
Показатель MSAD является независимым от алгоритма оценки движения и может с выгодой использоваться практически во всех алгоритмах. Преимущество нового показателя состоит в уменьшении количества битов, необходимых для кодирования векторов движения, посредством смещения алгоритма к PMV, соответственно общая эффективность сжатия повышается.
MSAD для нулевого вектора движения, MV=(0,0), обрабатывается, как частный случай. Нулевой MV потенциально может привести к повышенной эффективности сжатия. Но это может произойти только, если результирующий макроблок кодируется в режиме "не кодированный" в стандартах H.261, H.263, MPEG-1, MPEG-2 и MPEG-4. Это можно учесть, смещая SAD в случае, где она ниже определенного порогового значения
If (SAD < THRESH5)
MSAD = SAD-THRESH6
Else
MSAD = SAD + C · (|PMVX| + |PMVY|)
Endif
Обозначения C, PMVX и PMVY описаны ранее.
THRESH5 = D·Q + E
THRESH6 = F,
где Q является размером шага квантователя. D, E и F являются константами. В предпочтительном варианте осуществления D около 128, E=0 и F около 100.
Соответственно схема 110 оценки движения может вычислить показатель разности, вычислить смещение на основе вектора движения предсказателя и вектора движения - кандидата и определить показатель измененной разности на основе показателя разности и смещения.
Дополнительно схема 110 оценки движения может вычислить показатель разности, вычислить смещение на основе вектора движения предсказателя и вектора движения - кандидата и определить показатель измененной разности на основе показателя разности и смещения. Схема 110 оценки движения может определять показатель измененной разности на основе показателя разности и смещения посредством суммирования показателя разности со смещением. Схема 110 оценки движения также может вычислять смещение на основе вектора движения предсказателя и вектора движения - кандидата дополнительно посредством определения показателя разности векторов движения между вектором движения предсказателя и вектором движения - кандидатом, и вычислять смещения на основе показателя разности векторов движения между вектором движения предсказателя и вектором движения - кандидатом. Схема 110 оценки движения дополнительно может вычислять смещение на основе вектора движения предсказателя и вектора движения - кандидата посредством умножения абсолютного значения разности между вектором движения предсказателя и вектором движения - кандидатом на константу. Например, константа может быть равна приблизительно пяти. Кроме того, схема 110 оценки движения может вычислять смещение на основе вектора движения предсказателя и вектора движения - кандидата дополнительно посредством суммирования абсолютного значения разности между горизонтальными координатами вектора движения предсказателя и вектора движения - кандидата с абсолютным значением разности между вертикальными координатами вектора движения предсказателя и вектора движения - кандидата. Вектором движения - кандидатом может быть один из нескольких векторов движения - кандидатов, оцениваемых для макроблока, а вектор движения предсказателя может оставаться фиксированным для каждого вектора движения - кандидата в макроблоке. Показателем разности может быть показатель суммы абсолютных разностей. Показателем разности может быть также показатель суммы квадратов разностей. Схема 110 оценки движения может также определять итоговый вектор движения на основе вектора движения - кандидата и выводить итоговый вектор движения.
Согласно другому связанному варианту осуществления настоящее изобретение обеспечивает способ определения качества соответствия блока для вектора движения - кандидата в системе видеокодера с использованием векторов движения, представляющих разность в координатах макроблока данных в текущем кадре данных изображения и координатах соответствующего макроблока данных в эталонном кадре данных изображения. В этом варианте осуществления схема 110 оценки движения может определить схему поиска, осуществить поиск по области на основе схемы поиска для вектора движения - кандидата для оценки, вычислить показатель разности, вычислить смещение на основе показателя разности векторов движения между вектором движения предсказателя и вектором движения - кандидатом, определить показатель измененной разности посредством суммирования показателя разности со смещением и определить итоговый вектор движения на основе показателя измененной разности. Итоговый вектор движения может быть определен для использования на второй стадии системы видеокодера. Показателем разности может быть по меньшей мере один из показателей показатель суммы абсолютных разностей и показатель суммы квадратов разностей. Показателем разности векторов движения может быть по меньшей мере один из показателей показатель суммы абсолютных разностей и показатель суммы квадратов разностей. Схема 110 оценки движения может осуществлять поиск по области посредством поиска вокруг нескольких предсказателей вектора движения с использованием схемы поиска. Схема 110 оценки движения может определять итоговый вектор движения посредством определения итогового вектора движения, имеющего показатель измененной разности выше предварительно определенного порогового значения, выполнения второй схемы поиска вокруг нескольких новых предсказателей вектора движения на основе итогового вектора движения и определения нового итогового вектора движения на основе результатов этапа выполнения второй схемы поиска. Схема 110 оценки движения может определять схему поиска посредством определения схемы поиска, которая больше распространена в горизонтальном направлении, чем в вертикальном. Затем схема 110 оценки движения может выводить вектор движения на основании итогового вектора движения.
В продолжение процесса поиска вероятно, что области поиска для различных MVP могут перекрываться, что приводит к повторяемым векторам движения - кандидатам. Может поддерживаться регистрация всех уже оцененных кандидатов, и они игнорируются, если уже были рассмотрены.
Описанные последовательности поиска являются последовательностями, используемыми в предпочтительном варианте осуществления. Они были оптимизированы, чтобы получить хорошее соответствие в возможно быстрое время по широкому диапазону видеосерий. Также возможно использование альтернативных схем поиска.
Раскрытое изобретение не делает никаких допущений относительно диапазона вектора движения. К кандидатам может применяться любое ограничение на значения вектора движения, и если они находятся вне допустимого диапазона, то могут быть отброшены.
На второй стадии предпочтительного варианта осуществления при получении нового наилучшим образом соответствующего MV - кандидата, спиралеобразная схема поиска может быть центрирована заново. Соответственно следующая точка, которую требуется оценить может быть не известна заранее. Следующий кандидат, который должен быть оценен, потенциально зависит от результата оценки текущего кандидата. Следовательно, может стать затруднительным параллельное выполнение вычислений по нескольким кандидатам MSAD (что может потребоваться для некоторых архитектур аппаратных средств). Чтобы упростить это, после оценки набора кандидатов может быть выполнено центрирование схемы поиска заново, для обеспечения возможности параллельной обработки этого набора.
Фиг.6 - возможная блок-схема 600, иллюстрирующая действие схемы 110 оценки движения, согласно одному варианту осуществления. На этапе 610 блок-схема начинает действие. На этапе 620 схема 110 оценки движения определяет вектор движения предсказателя PMV. На этапе 630 схема 110 оценки движения определяет вектор движения MV - кандидат. На этапе 640 схема оценки движения вычисляет абсолютное значение разности между горизонтальными составляющими PMV и MV - кандидата. На этапе 650 схема 110 оценки движения вычисляет абсолютное значение разности между вертикальными составляющими PMV и MV - кандидата. На этапе 660 схема 110 оценки движения вычисляет смещение посредством умножения разности между составляющими PMV и MV - кандидата на константу. На этапе 670 схема 110 оценки движения вычисляет MSAD посредством суммирования смещения с показателем разности. На этапе 680 действие блок-схемы завершается.
Фиг.7 - возможная блок-схема схемы 100 оценки движения для быстрого поиска, предсказывающего движение, согласно одному варианту осуществления. В схему 110 оценки движения может входить вычислитель 710 показателя разности, вычислитель 720 смещения, вычислитель 730 MSAD и схема 740 определения вектора движения. Схемы действуют в соответствии с подобными им функциями, описанными в отношении блок-схемы 600.
Согласно другому связанному варианту осуществления способ быстрого поиска, предсказывающего движение, может быть выполнен в двух стадиях. На первой стадии может быть вычислено, как описано выше, 7 кандидатов MVP. Затем для каждого MVP все MV - кандидаты могут быть оценены в соответствии со схемой поиска фиг.3, и могут быть использованы критерии выхода для «вырывания» MVP или для входа в режим захвата. Затем (при действии) в режиме захвата может быть выполнен поиск вокруг MVP, изображенный на фиг.4 с использованием той же схемы поиска фиг. 3 и того же критерия выхода. Затем на второй стадии может быть выбран наилучший MV первой стадии и выполнен спиралеобразный поиск, изображенный на фиг.5. Каждый раз при обнаружении наилучшего соответствия спираль может центрироваться заново и возвращаться в исходное состояние, индекс может сбрасываться в ноль. В заключение процесс может продолжаться до обнаружения одного из трех критериев выхода.
Раскрытое изобретение может достигать высокой степени эффективности сжатия при невысокой сложности. Его сложность может быть аналогична сложности APDZS и PMVFAST. Однако достигаемое качество выше. По сравнению со стандартом алгоритма полного поиска, который является эталоном, принятым в промышленности, настоящее изобретение достигает эффективности сжатия, дающей приблизительно 0,6% улучшение для качества фиксированного видеоизображения. Это число было получено после усреднения по 24 различным видеосериям QCIF.
Одним применением для этого изобретения являются видеокодеры в реальном масштабе времени на переносных устройствах. Обычная ширина полосы частот такого кодированного видеоизображения находится в диапазоне от 32 кбит/с до 512 кбит/с, и обычным размером кадра изображения является применяемый в QCIF и CIF.
Способ этого изобретения предпочтительно реализуется на программируемом процессоре. Однако система 100 сжатия видеоизображения, схемы 110 оценки движения и других элементов могут быть реализованы также на универсальном или специализированном компьютере, программируемом микропроцессоре или микроконтроллере и периферийных элементах интегральной схемы, ASIC или другой интегральной схемы, аппаратной электронной или логической схеме, такой как схема дискретного компонента, программируемом логическом устройстве, таком как PLD, PLA, FPGA или PAL, или подобном устройстве. В основном любое устройство, на котором постоянно находится конечный автомат, может реализовать блок-схемы, изображенные на чертежах, и описанные способы могут использоваться для выполнения функций процессора этого изобретения.
Хотя это изобретение было описано в отношении определенных вариантов его осуществления, очевидно, что для специалистов в данной области техники ясны многие варианты, модификации и изменения. Например, в других вариантах осуществления различные компоненты вариантов осуществления могут быть добавлены, заменены или переставлены. Соответственно изложенные здесь предпочтительные варианты осуществления изобретения предназначены для пояснения, а не наложения ограничений. Не удаляясь от сущности и не выходя из объема изобретения, могут быть сделаны различные изменения.

Claims (28)

1. Способ определения качества соответствия блока для вектора движения-кандидата в системе видеокодера, заключающий в том, что
вычисляют показатель разности посредством вычитания предсказанных данных изображения из текущего кадра изображения,
вычисляют смещение на основе показателя разности между вектором движения-предсказателем и вектором движения-кандидатом и
определяют измененный показатель разности посредством суммирования показателя разности и смещения.
2. Способ по п.1, в котором этап определения измененного показателя разности на основе показателя разности и смещения включает в себя суммирование показателя разности со смещением.
3. Способ по п.1, в котором этап вычисления смещения на основе вектора движения-предсказателя и вектора движения-кандидата дополнительно включает в себя определение показателя разности векторов движения между вектором движения-предсказателем и вектором движения-кандидатом и вычисление смещения на основе показателя разности векторов движения между вектором движения-предсказателем и вектором движения-кандидатом.
4. Способ по п.3, в котором этап вычисления смещения на основе вектора движения-предсказателя и вектора движения-кандидата дополнительно включает в себя умножение показателя разности векторов движения между вектором движения-предсказателем и вектором движения-кандидатом на константу.
5. Способ по п.4, в котором константа равна приблизительно 5.
6. Способ по п.1, в котором этап вычисления смещения на основе вектора движения-предсказателя и вектора движения-кандидата дополнительно включает в себя суммирование абсолютного значения разности между горизонтальными координатами вектора движения-предсказателя и вектора движения-кандидата с абсолютным значением разности между вертикальными координатами вектора движения - предсказателя и вектора движения - кандидата.
7. Способ по п.1, в котором этап вычисления смещения на основе вектора движения-предсказателя и вектора движения-кандидата дополнительно включает в себя суммирование квадрата разности между горизонтальными координатами вектора движения-предсказателя и вектора движения-кандидата с квадратом разности между вертикальными координатами вектора движения-предсказателя и вектора движения-кандидата.
8. Способ по п.1, в котором вектором движения-кандидатом является один из нескольких векторов движения-кандидатов, оцениваемых для макроблока, и в котором вектор движения-предсказатель остается фиксированным для каждого. вектора движения-кандидата в макроблоке.
9. Способ по п.1, в котором показателем разности является показатель суммы абсолютных разностей.
10. Способ по п.1, в котором показателем разности является показатель суммы квадратов разностей.
11. Способ по п.1, в котором дополнительно определяют итоговый вектор движения на основании вектора движения-кандидата и выводят итоговый вектор движения.
12. Способ определения качества соответствия блока для вектора движения-кандидата в системе видеокодера с использованием векторов движения, представляющих разность в координатах макроблока данных в текущем кадре данных изображения и координатах соответствующего макроблока данных в эталонном кадре данных изображения, заключающий в том, что определяют схему поиска, осуществляют поиск по области на основе схемы поиска для вектора движения-кандидата для оценки,
вычисляют показатель разности посредством вычитания предсказанных данных изображения из текущего кадра изображения,
вычисляют смещение на основе показателя разности между вектором движения-предсказателем и вектором движения-кандидатом,
определяют измененный показатель разности посредством суммирования показателя разности со смещением и
определяют итоговый вектор движения на основе измененного показателя разности.
13. Способ по п.12, в котором определяют итоговый вектор движения для использования на второй стадии системы видеокодера.
14. Способ по п.12, в котором показателем разности является по меньшей мере один из показателей-показатель суммы абсолютных разностей и показатель суммы квадратов разностей.
15. Способ по п.12, в котором этап поиска по области дополнительно включает в себя поиск вокруг нескольких предсказателей вектора движения с использованием схемы поиска и в котором этап определения итогового вектора движения дополнительно включает в себя определение итогового вектора движения, имеющего измененный показатель разности выше предварительно определенного порогового значения, выполнение второй схемы поиска вокруг нескольких новых предсказателей вектора движения на основе итогового вектора движения и определение нового итогового вектора движения на основе результатов этапа выполнения второй схемы поиска.
16. Способ по п.12, в котором этап определения схемы поиска дополнительно включает в себя определение схемы поиска, которая более распространена в горизонтальном направлении, чем в вертикальном направлении.
17. Способ по п.12, дополнительно выводят вектор движения на основании итогового вектора движения.
18. Устройство для определения качества соответствия блока для вектора движения-кандидата в системе видеокодера с использованием векторов движения, представляющих разность в координатах макроблока данных в текущем кадре данных изображения и координатах соответствующего макроблока данных в эталонном кадре данных изображения, содержащее
вход для макроблока текущего изображения,
схему оценки движения,
причем оценка движения вычисляется для блоков данных изображения из текущего кадра изображения с использованием одного или нескольких ранее обработанных кадров изображения, при этом схема оценки содержит
вычислитель показателя разности, сконфигурированный с возможностью определения показателя разности посредством вычитания предсказанных данных изображения из текущего кадра изображения,
вычислитель смещения, сконфигурированный с возможностью определения показателя разности вектора движения между вектором движения-предсказателем и вектором движения-кандидатом,
вычислитель разности, сконфигурированный с возможностью вычисления показателя разности, представляющего качество соответствия макроблока, и
схему определения вектора движения, определяющую вектор движения посредством добавления показателя разности в вычислитель смещения и выход для вектора движения.
19. Устройство по п.18, в котором вычислителем показателя разности является по меньшей мере один из вычислителей-вычислитель суммы абсолютных разностей и вычислитель суммы квадратов разностей.
20. Устройство по п.18, в котором вычислитель смещения вычисляет смещение посредством определения показателя разности векторов движения между вектором движения-предсказателем и вектором движения-кандидатом.
21. Устройство по п.20, в котором вычислитель смещения дополнительно вычисляет смещение посредством умножения показателя разности векторов движения между вектором движения-предсказателем и вектором движения-кандидатом на константу.
22. Устройство по п.20, в котором вычислитель смещения дополнительно определяет показатель разности векторов движения между вектором движения-предсказателем и вектором движения-кандидатом посредством суммирования абсолютного значения разности между горизонтальными координатами вектора движения-предсказателя и вектора движения-кандидата с абсолютным значением разности между вертикальными координатами вектора движения-предсказателя и вектора движения-кандидата.
23. Устройство по п.22, в котором вектором движения-кандидатом является один из нескольких векторов движения-кандидатов, оцениваемых для макроблока, и в котором вектор движения-предсказатель остается фиксированным для каждого вектора движения-кандидата в макроблоке.
24. Устройство по п.20, в котором вычислитель смещения дополнительно определяет показатель разности векторов движения между вектором движения-предсказателем и вектором движения-кандидатом посредством суммирования квадрата разности между горизонтальными координатами вектора движения-предсказателя и вектора движения-кандидата с квадратом разности между вертикальными координатами вектора движения-предсказателя и вектора движения-кандидата.
25. Устройство по п.18, дополнительно содержащее схему компенсации движения, соединенную со схемой оценки движения по измененной сумме абсолютных разностей.
26. Устройство по п.25, дополнительно содержащее сумматор, соединенный с входом макроблока текущего изображения и соединенный со схемой компенсации движения.
27. Устройство по п.26, дополнительно содержащее схему дискретного косинусного преобразования, соединенную с сумматором, и квантователь, соединенный со схемой дискретного косинусного преобразования.
28. Устройство по п.27, дополнительно содержащее обратный квантователь, соединенный с квантователем, и схему обратного дискретного косинусного преобразования, соединенную с обратным квантователем.
RU2005106280/09A 2002-08-06 2003-07-25 Способ и устройство для определения качества соответствия блока RU2381630C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/213,652 2002-08-06
US10/213,652 US7023921B2 (en) 2002-08-06 2002-08-06 Method and apparatus for determining block match quality

Publications (2)

Publication Number Publication Date
RU2005106280A RU2005106280A (ru) 2005-10-10
RU2381630C2 true RU2381630C2 (ru) 2010-02-10

Family

ID=31494499

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005106280/09A RU2381630C2 (ru) 2002-08-06 2003-07-25 Способ и устройство для определения качества соответствия блока

Country Status (7)

Country Link
US (1) US7023921B2 (ru)
EP (1) EP1574038B1 (ru)
KR (1) KR101018564B1 (ru)
AU (1) AU2003256763A1 (ru)
MX (1) MXPA05001448A (ru)
RU (1) RU2381630C2 (ru)
WO (1) WO2004014060A2 (ru)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2477891C1 (ru) * 2011-09-02 2013-03-20 Открытое акционерное общество "Концерн радиостроения "Вега" Способ обнаружения модификации электронного изображения (варианты)
RU2538317C2 (ru) * 2010-04-22 2015-01-10 Медиатэк, Инк. Способ предсказания движения и способ кодирования видеоинформации
RU2594985C2 (ru) * 2012-01-18 2016-08-20 ДжейВиСи КЕНВУД КОРПОРЕЙШН Устройство кодирования движущегося изображения, способ кодирования движущегося изображения и программа кодирования движущегося изображения, а также устройство декодирования движущегося изображения, способ декодирования движущегося изображения и программа декодирования движущегося изображения
RU2606399C2 (ru) * 2011-12-28 2017-01-10 ДжейВиСи КЕНВУД КОРПОРЕЙШН Устройство кодирования движущегося изображения, способ кодирования движущегося изображения и программа кодирования движущегося изображения, а также устройство декодирования движущегося изображения, способ декодирования движущегося изображения и программа декодирования движущегося изображения
US9560373B2 (en) 2011-05-31 2017-01-31 Sun Patent Trust Image coding method and apparatus with candidate motion vectors
RU2614542C2 (ru) * 2011-05-31 2017-03-28 Сан Пэтент Траст Способ кодирования видео, устройство кодирования видео, способ декодирования видео, устройство декодирования видео и устройство кодирования/декодирования видео
US9615107B2 (en) 2011-05-27 2017-04-04 Sun Patent Trust Image coding method, image coding apparatus, image decoding method, image decoding apparatus, and image coding and decoding apparatus
RU2624560C2 (ru) * 2012-03-16 2017-07-04 Квэлкомм Инкорпорейтед Кодирование вектора движения и би-предсказание в hevc и его расширениях
US9723322B2 (en) 2011-05-27 2017-08-01 Sun Patent Trust Decoding method and apparatus with candidate motion vectors
RU2629359C1 (ru) * 2013-01-18 2017-08-29 ДжейВиСи КЕНВУД КОРПОРЕЙШН Устройство и способ декодирования движущегося изображения, долговременный считываемый компьютером носитель записи для хранения программы декодирования движущегося изображения
US9826249B2 (en) 2011-05-24 2017-11-21 Velos Media, Llc Decoding method and apparatuses with candidate motion vectors
US9872036B2 (en) 2011-04-12 2018-01-16 Sun Patent Trust Moving picture coding method, moving picture coding apparatus, moving picture decoding method, moving picture decoding apparatus and moving picture coding and decoding apparatus
US10129561B2 (en) 2011-08-03 2018-11-13 Sun Patent Trust Video encoding method, video encoding apparatus, video decoding method, video decoding apparatus, and video encoding/decoding apparatus
US10200709B2 (en) 2012-03-16 2019-02-05 Qualcomm Incorporated High-level syntax extensions for high efficiency video coding
US10887585B2 (en) 2011-06-30 2021-01-05 Sun Patent Trust Image decoding method, image coding method, image decoding apparatus, image coding apparatus, and image coding and decoding apparatus
US11218708B2 (en) 2011-10-19 2022-01-04 Sun Patent Trust Picture decoding method for decoding using a merging candidate selected from a first merging candidate derived using a first derivation process and a second merging candidate derived using a second derivation process

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6907080B1 (en) * 2000-06-07 2005-06-14 Intel Corporation Adaptive early exit techniques in image correlation
US6654502B1 (en) * 2000-06-07 2003-11-25 Intel Corporation Adaptive early exit techniques in image correlation
US6700996B1 (en) * 2000-06-07 2004-03-02 Intel Corporation Adaptive early exit techniques in image correlation
US6765964B1 (en) 2000-12-06 2004-07-20 Realnetworks, Inc. System and method for intracoding video data
US7076397B2 (en) * 2002-10-17 2006-07-11 Bmc Software, Inc. System and method for statistical performance monitoring
GB0227570D0 (en) * 2002-11-26 2002-12-31 British Telecomm Method and system for estimating global motion in video sequences
GB0227566D0 (en) * 2002-11-26 2002-12-31 British Telecomm Method and system for estimating global motion in video sequences
TWI329815B (en) * 2004-02-06 2010-09-01 Ind Tech Res Inst Method of improved block matching for frame compression
US8000392B1 (en) 2004-02-27 2011-08-16 Vbrick Systems, Inc. Phase correlation based motion estimation in hybrid video compression
US7697610B2 (en) * 2004-09-13 2010-04-13 Microsoft Corporation Variable block size early termination for video coding
US8446964B2 (en) * 2005-07-18 2013-05-21 Broadcom Corporation Method and system for noise reduction with a motion compensated temporal filter
US8588513B2 (en) * 2005-07-18 2013-11-19 Broadcom Corporation Method and system for motion compensation
US7903739B2 (en) * 2005-08-05 2011-03-08 Lsi Corporation Method and apparatus for VC-1 to MPEG-2 video transcoding
US7912127B2 (en) * 2005-08-05 2011-03-22 Lsi Corporation H.264 to VC-1 and VC-1 to H.264 transcoding
US7881384B2 (en) 2005-08-05 2011-02-01 Lsi Corporation Method and apparatus for H.264 to MPEG-2 video transcoding
US8045618B2 (en) 2005-08-05 2011-10-25 Lsi Corporation Method and apparatus for MPEG-2 to VC-1 video transcoding
US8208540B2 (en) 2005-08-05 2012-06-26 Lsi Corporation Video bitstream transcoding method and apparatus
KR20070069615A (ko) 2005-12-28 2007-07-03 삼성전자주식회사 움직임 추정장치 및 움직임 추정방법
US8265145B1 (en) * 2006-01-13 2012-09-11 Vbrick Systems, Inc. Management and selection of reference frames for long term prediction in motion estimation
KR100949983B1 (ko) 2006-03-30 2010-03-29 엘지전자 주식회사 비디오 신호를 디코딩/인코딩하기 위한 방법 및 장치
WO2007148909A1 (en) * 2006-06-19 2007-12-27 Lg Electronics, Inc. Method and apparatus for processing a vedeo signal
WO2008023968A1 (en) 2006-08-25 2008-02-28 Lg Electronics Inc A method and apparatus for decoding/encoding a video signal
US7865030B2 (en) * 2006-09-13 2011-01-04 Broadcom Corporation Method and system for motion compensated temporal filtering using both FIR and IIR filtering
US8509313B2 (en) * 2006-10-10 2013-08-13 Texas Instruments Incorporated Video error concealment
KR100870554B1 (ko) * 2007-01-08 2008-11-27 한양대학교 산학협력단 웨이블릿 기반의 효율적인 스케일러블 비디오 부호화를위한 움직임 보상 시간적 필터링 방법 및 그 방법을실행하기 위한 프로그램이 기록된 기록매체
US8184696B1 (en) * 2007-09-11 2012-05-22 Xilinx, Inc. Method and apparatus for an adaptive systolic array structure
KR100939917B1 (ko) 2008-03-07 2010-02-03 에스케이 텔레콤주식회사 움직임 예측을 통한 부호화 시스템 및 움직임 예측을 통한부호화 방법
US8311116B2 (en) * 2008-07-09 2012-11-13 Marvell World Trade Ltd. Method and apparatus for periodic structure handling for motion compensation
US8358696B2 (en) * 2008-12-31 2013-01-22 Intel Corporation Motion estimation techniques
FR2945698B1 (fr) * 2009-05-18 2017-12-22 Canon Kk Procede et dispositif de codage d'une sequence video
US8917769B2 (en) 2009-07-03 2014-12-23 Intel Corporation Methods and systems to estimate motion based on reconstructed reference frames at a video decoder
US8462852B2 (en) * 2009-10-20 2013-06-11 Intel Corporation Methods and apparatus for adaptively choosing a search range for motion estimation
US20110002387A1 (en) * 2009-07-03 2011-01-06 Yi-Jen Chiu Techniques for motion estimation
US9654792B2 (en) 2009-07-03 2017-05-16 Intel Corporation Methods and systems for motion vector derivation at a video decoder
KR101452859B1 (ko) 2009-08-13 2014-10-23 삼성전자주식회사 움직임 벡터를 부호화 및 복호화하는 방법 및 장치
US8411750B2 (en) * 2009-10-30 2013-04-02 Qualcomm Incorporated Global motion parameter estimation using block-based motion vectors
KR101768207B1 (ko) 2010-01-19 2017-08-16 삼성전자주식회사 축소된 예측 움직임 벡터의 후보들에 기초해 움직임 벡터를 부호화, 복호화하는 방법 및 장치
TWI403172B (zh) * 2010-08-27 2013-07-21 Himax Tech Ltd 動作向量的估計方法
RU2010144450A (ru) 2010-10-29 2012-05-10 ЭлЭсАй Корпорейшн (US) Оценка движения для видео транскодера
CN102986224B (zh) 2010-12-21 2017-05-24 英特尔公司 用于增强的解码器侧运动向量导出处理的系统及方法
GB2534591A (en) * 2015-01-29 2016-08-03 Nokia Technologies Oy Video encoding and decoding
US10999602B2 (en) 2016-12-23 2021-05-04 Apple Inc. Sphere projected motion estimation/compensation and mode decision
US11259046B2 (en) 2017-02-15 2022-02-22 Apple Inc. Processing of equirectangular object data to compensate for distortion by spherical projections
US10924747B2 (en) 2017-02-27 2021-02-16 Apple Inc. Video coding techniques for multi-view video
JP6946419B2 (ja) * 2017-04-13 2021-10-06 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 復号装置、復号方法及びプログラム
US11093752B2 (en) 2017-06-02 2021-08-17 Apple Inc. Object tracking in multi-view video
US10754242B2 (en) 2017-06-30 2020-08-25 Apple Inc. Adaptive resolution and projection format in multi-direction video
CN109063694B (zh) * 2018-09-12 2021-07-02 北京科技大学 一种视频目标检测识别方法
CN110312124B (zh) * 2019-07-31 2020-09-08 中国矿业大学 一种基于显著性多特征融合的移动巡检视频质量修正方法
CN116158077B (zh) * 2020-08-24 2025-04-22 华为技术有限公司 一种优化运动矢量的方法及其相关设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5428403A (en) * 1991-09-30 1995-06-27 U.S. Philips Corporation Motion vector estimation, motion picture encoding and storage
US5594504A (en) * 1994-07-06 1997-01-14 Lucent Technologies Inc. Predictive video coding using a motion vector updating routine
EP0863674A2 (en) * 1997-03-07 1998-09-09 General Instrument Corporation Prediction and coding of bi-directionally predicted video object planes for interlaced digital video
RU2128405C1 (ru) * 1991-02-27 1999-03-27 Дженерал Электрик Компани Устройство кодирования видеосигнала, представляющего изображения, приемник телевизионного сигнала, включающего данные заголовков и полезные данные в виде сжатых видеоданных
US6011870A (en) * 1997-07-18 2000-01-04 Jeng; Fure-Ching Multiple stage and low-complexity motion estimation for interframe video coding
US6037986A (en) * 1996-07-16 2000-03-14 Divicom Inc. Video preprocessing method and apparatus with selective filtering based on motion detection

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3727530A1 (de) * 1987-08-18 1989-03-02 Philips Patentverwaltung Verfahren zur bestimmung von bewegungsvektoren
US5835163A (en) * 1995-12-21 1998-11-10 Siemens Corporate Research, Inc. Apparatus for detecting a cut in a video
US5721595A (en) * 1996-06-19 1998-02-24 United Microelectronics Corporation Motion estimation block matching process and apparatus for video image processing
US5847776A (en) 1996-06-24 1998-12-08 Vdonet Corporation Ltd. Method for entropy constrained motion estimation and coding of motion vectors with increased search range
US5825930A (en) * 1997-03-05 1998-10-20 Samsung Electronics Co., Ltd. Motion estimating method
GB9712651D0 (en) * 1997-06-18 1997-08-20 Nds Ltd Improvements in or relating to encoding digital signals
JP3538055B2 (ja) * 1999-02-15 2004-06-14 日本電気株式会社 動きベクトル検出装置
US6532264B1 (en) * 2000-03-27 2003-03-11 Teranex, Inc. Processing sequential video images to detect image motion among interlaced video fields or progressive video images
US6842483B1 (en) * 2000-09-11 2005-01-11 The Hong Kong University Of Science And Technology Device, method and digital video encoder for block-matching motion estimation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2128405C1 (ru) * 1991-02-27 1999-03-27 Дженерал Электрик Компани Устройство кодирования видеосигнала, представляющего изображения, приемник телевизионного сигнала, включающего данные заголовков и полезные данные в виде сжатых видеоданных
US5428403A (en) * 1991-09-30 1995-06-27 U.S. Philips Corporation Motion vector estimation, motion picture encoding and storage
US5594504A (en) * 1994-07-06 1997-01-14 Lucent Technologies Inc. Predictive video coding using a motion vector updating routine
US6037986A (en) * 1996-07-16 2000-03-14 Divicom Inc. Video preprocessing method and apparatus with selective filtering based on motion detection
EP0863674A2 (en) * 1997-03-07 1998-09-09 General Instrument Corporation Prediction and coding of bi-directionally predicted video object planes for interlaced digital video
US6011870A (en) * 1997-07-18 2000-01-04 Jeng; Fure-Ching Multiple stage and low-complexity motion estimation for interframe video coding

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2538317C2 (ru) * 2010-04-22 2015-01-10 Медиатэк, Инк. Способ предсказания движения и способ кодирования видеоинформации
US11012705B2 (en) 2011-04-12 2021-05-18 Sun Patent Trust Moving picture coding method, moving picture coding apparatus, moving picture decoding method, moving picture decoding apparatus and moving picture coding and decoding apparatus
US12238326B2 (en) 2011-04-12 2025-02-25 Sun Patent Trust Moving picture coding method, moving picture coding apparatus, moving picture decoding method, moving picture decoding apparatus and moving picture coding and decoding apparatus
US11917186B2 (en) 2011-04-12 2024-02-27 Sun Patent Trust Moving picture coding method, moving picture coding apparatus, moving picture decoding method, moving picture decoding apparatus and moving picture coding and decoding apparatus
US11356694B2 (en) 2011-04-12 2022-06-07 Sun Patent Trust Moving picture coding method, moving picture coding apparatus, moving picture decoding method, moving picture decoding apparatus and moving picture coding and decoding apparatus
US9872036B2 (en) 2011-04-12 2018-01-16 Sun Patent Trust Moving picture coding method, moving picture coding apparatus, moving picture decoding method, moving picture decoding apparatus and moving picture coding and decoding apparatus
US10609406B2 (en) 2011-04-12 2020-03-31 Sun Patent Trust Moving picture coding method, moving picture coding apparatus, moving picture decoding method, moving picture decoding apparatus and moving picture coding and decoding apparatus
US10536712B2 (en) 2011-04-12 2020-01-14 Sun Patent Trust Moving picture coding method, moving picture coding apparatus, moving picture decoding method, moving picture decoding apparatus and moving picture coding and decoding apparatus
US10382774B2 (en) 2011-04-12 2019-08-13 Sun Patent Trust Moving picture coding method, moving picture coding apparatus, moving picture decoding method, moving picture decoding apparatus and moving picture coding and decoding apparatus
US10178404B2 (en) 2011-04-12 2019-01-08 Sun Patent Trust Moving picture coding method, moving picture coding apparatus, moving picture decoding method, moving picture decoding apparatus and moving picture coding and decoding apparatus
US11228784B2 (en) 2011-05-24 2022-01-18 Velos Media, Llc Decoding method and apparatuses with candidate motion vectors
US10484708B2 (en) 2011-05-24 2019-11-19 Velos Media, Llc Decoding method and apparatuses with candidate motion vectors
US10129564B2 (en) 2011-05-24 2018-11-13 Velos Media, LCC Decoding method and apparatuses with candidate motion vectors
US9826249B2 (en) 2011-05-24 2017-11-21 Velos Media, Llc Decoding method and apparatuses with candidate motion vectors
US11115664B2 (en) 2011-05-27 2021-09-07 Sun Patent Trust Image coding method, image coding apparatus, image decoding method, image decoding apparatus, and image coding and decoding apparatus
US9723322B2 (en) 2011-05-27 2017-08-01 Sun Patent Trust Decoding method and apparatus with candidate motion vectors
US9883199B2 (en) 2011-05-27 2018-01-30 Sun Patent Trust Coding method and apparatus with candidate motion vectors
US12323616B2 (en) 2011-05-27 2025-06-03 Sun Patent Trust Coding method and apparatus with candidate motion vectors
US11979582B2 (en) 2011-05-27 2024-05-07 Sun Patent Trust Image coding method, image coding apparatus, image decoding method, image decoding apparatus, and image coding and decoding apparatus
US11895324B2 (en) 2011-05-27 2024-02-06 Sun Patent Trust Coding method and apparatus with candidate motion vectors
US10034001B2 (en) 2011-05-27 2018-07-24 Sun Patent Trust Image coding method, image coding apparatus, image decoding method, image decoding apparatus, and image coding and decoding apparatus
US11575930B2 (en) 2011-05-27 2023-02-07 Sun Patent Trust Coding method and apparatus with candidate motion vectors
US11570444B2 (en) 2011-05-27 2023-01-31 Sun Patent Trust Image coding method, image coding apparatus, image decoding method, image decoding apparatus, and image coding and decoding apparatus
US9838695B2 (en) 2011-05-27 2017-12-05 Sun Patent Trust Image coding method, image coding apparatus, image decoding method, image decoding apparatus, and image coding and decoding apparatus
US10200714B2 (en) 2011-05-27 2019-02-05 Sun Patent Trust Decoding method and apparatus with candidate motion vectors
US11076170B2 (en) 2011-05-27 2021-07-27 Sun Patent Trust Coding method and apparatus with candidate motion vectors
US10212450B2 (en) 2011-05-27 2019-02-19 Sun Patent Trust Coding method and apparatus with candidate motion vectors
US10721474B2 (en) 2011-05-27 2020-07-21 Sun Patent Trust Image coding method, image coding apparatus, image decoding method, image decoding apparatus, and image coding and decoding apparatus
US10708598B2 (en) 2011-05-27 2020-07-07 Sun Patent Trust Image coding method, image coding apparatus, image decoding method, image decoding apparatus, and image coding and decoding apparatus
US9615107B2 (en) 2011-05-27 2017-04-04 Sun Patent Trust Image coding method, image coding apparatus, image decoding method, image decoding apparatus, and image coding and decoding apparatus
US10595023B2 (en) 2011-05-27 2020-03-17 Sun Patent Trust Image coding method, image coding apparatus, image decoding method, image decoding apparatus, and image coding and decoding apparatus
US11368710B2 (en) 2011-05-31 2022-06-21 Velos Media, Llc Image decoding method and image decoding apparatus using candidate motion vectors
US11057639B2 (en) 2011-05-31 2021-07-06 Sun Patent Trust Derivation method and apparatuses with candidate motion vectors
US12348768B2 (en) 2011-05-31 2025-07-01 Sun Patent Trust Derivation method and apparatuses with candidate motion vectors
US9900613B2 (en) 2011-05-31 2018-02-20 Sun Patent Trust Image coding and decoding system using candidate motion vectors
US10412404B2 (en) 2011-05-31 2019-09-10 Velos Media, Llc Image decoding method and image decoding apparatus using candidate motion vectors
US11949903B2 (en) 2011-05-31 2024-04-02 Sun Patent Trust Image decoding method and image decoding apparatus using candidate motion vectors
US11917192B2 (en) 2011-05-31 2024-02-27 Sun Patent Trust Derivation method and apparatuses with candidate motion vectors
US9819961B2 (en) 2011-05-31 2017-11-14 Sun Patent Trust Decoding method and apparatuses with candidate motion vectors
US11509928B2 (en) 2011-05-31 2022-11-22 Sun Patent Trust Derivation method and apparatuses with candidate motion vectors
US9560373B2 (en) 2011-05-31 2017-01-31 Sun Patent Trust Image coding method and apparatus with candidate motion vectors
RU2614542C2 (ru) * 2011-05-31 2017-03-28 Сан Пэтент Траст Способ кодирования видео, устройство кодирования видео, способ декодирования видео, устройство декодирования видео и устройство кодирования/декодирования видео
US10645413B2 (en) 2011-05-31 2020-05-05 Sun Patent Trust Derivation method and apparatuses with candidate motion vectors
US10652573B2 (en) 2011-05-31 2020-05-12 Sun Patent Trust Video encoding method, video encoding device, video decoding method, video decoding device, and video encoding/decoding device
US9609356B2 (en) 2011-05-31 2017-03-28 Sun Patent Trust Moving picture coding method and apparatus with candidate motion vectors
US10951911B2 (en) 2011-05-31 2021-03-16 Velos Media, Llc Image decoding method and image decoding apparatus using candidate motion vectors
US10887585B2 (en) 2011-06-30 2021-01-05 Sun Patent Trust Image decoding method, image coding method, image decoding apparatus, image coding apparatus, and image coding and decoding apparatus
US10129561B2 (en) 2011-08-03 2018-11-13 Sun Patent Trust Video encoding method, video encoding apparatus, video decoding method, video decoding apparatus, and video encoding/decoding apparatus
US11553202B2 (en) 2011-08-03 2023-01-10 Sun Patent Trust Video encoding method, video encoding apparatus, video decoding method, video decoding apparatus, and video encoding/decoding apparatus
US10284872B2 (en) 2011-08-03 2019-05-07 Sun Patent Trust Video encoding method, video encoding apparatus, video decoding method, video decoding apparatus, and video encoding/decoding apparatus
US10440387B2 (en) 2011-08-03 2019-10-08 Sun Patent Trust Video encoding method, video encoding apparatus, video decoding method, video decoding apparatus, and video encoding/decoding apparatus
US11979598B2 (en) 2011-08-03 2024-05-07 Sun Patent Trust Video encoding method, video encoding apparatus, video decoding method, video decoding apparatus, and video encoding/decoding apparatus
RU2477891C1 (ru) * 2011-09-02 2013-03-20 Открытое акционерное общество "Концерн радиостроения "Вега" Способ обнаружения модификации электронного изображения (варианты)
US11647208B2 (en) 2011-10-19 2023-05-09 Sun Patent Trust Picture coding method, picture coding apparatus, picture decoding method, and picture decoding apparatus
US12120324B2 (en) 2011-10-19 2024-10-15 Sun Patent Trust Picture coding method, picture coding apparatus, picture decoding method, and picture decoding apparatus
US11218708B2 (en) 2011-10-19 2022-01-04 Sun Patent Trust Picture decoding method for decoding using a merging candidate selected from a first merging candidate derived using a first derivation process and a second merging candidate derived using a second derivation process
RU2651834C9 (ru) * 2011-12-28 2019-04-04 ДжейВиСи КЕНВУД КОРПОРЕЙШН Устройство декодирования движущегося изображения, способ декодирования движущегося изображения и долговременный считываемый компьютером носитель записи
RU2697386C1 (ru) * 2011-12-28 2019-08-14 ДжейВиСи КЕНВУД КОРПОРЕЙШН Устройство декодирования движущегося изображения и способ декодирования движущегося изображения
RU2651834C1 (ru) * 2011-12-28 2018-04-24 ДжейВиСи КЕНВУД КОРПОРЕЙШН Устройство декодирования движущегося изображения, способ декодирования движущегося изображения и долговременный считываемый компьютером носитель записи
RU2689377C1 (ru) * 2011-12-28 2019-05-28 ДжейВиСи КЕНВУД КОРПОРЕЙШН Устройство декодирования движущегося изображения, способ декодирования движущегося изображения и долговременный считываемый компьютером носитель записи
RU2697806C9 (ru) * 2011-12-28 2020-09-02 ДжейВиСи КЕНВУД КОРПОРЕЙШН Устройство декодирования движущегося изображения и способ декодирования движущегося изображения
RU2606399C9 (ru) * 2011-12-28 2017-07-12 ДжейВиСи КЕНВУД КОРПОРЕЙШН Устройство кодирования движущегося изображения, способ кодирования движущегося изображения и программа кодирования движущегося изображения, а также устройство декодирования движущегося изображения, способ декодирования движущегося изображения и программа декодирования движущегося изображения
RU2606399C2 (ru) * 2011-12-28 2017-01-10 ДжейВиСи КЕНВУД КОРПОРЕЙШН Устройство кодирования движущегося изображения, способ кодирования движущегося изображения и программа кодирования движущегося изображения, а также устройство декодирования движущегося изображения, способ декодирования движущегося изображения и программа декодирования движущегося изображения
RU2697386C9 (ru) * 2011-12-28 2021-01-15 ДжейВиСи КЕНВУД КОРПОРЕЙШН Устройство декодирования движущегося изображения и способ декодирования движущегося изображения
RU2689377C9 (ru) * 2011-12-28 2020-01-14 ДжейВиСи КЕНВУД КОРПОРЕЙШН Устройство декодирования движущегося изображения, способ декодирования движущегося изображения и долговременный считываемый компьютером носитель записи
RU2697806C1 (ru) * 2011-12-28 2019-08-20 ДжейВиСи КЕНВУД КОРПОРЕЙШН Устройство декодирования движущегося изображения и способ декодирования движущегося изображения
RU2654516C9 (ru) * 2012-01-18 2021-05-31 ДжейВиСи КЕНВУД КОРПОРЕЙШН Устройство и способ декодирования движущегося изображения, долговременный считываемый компьютером носитель записи для хранения программы декодирования движущегося изображения
RU2654516C1 (ru) * 2012-01-18 2018-05-21 ДжейВиСи КЕНВУД КОРПОРЕЙШН Устройство и способ декодирования движущегося изображения, долговременный считываемый компьютером носитель записи для хранения программы декодирования движущегося изображения
RU2688149C1 (ru) * 2012-01-18 2019-05-20 ДжейВиСи КЕНВУД КОРПОРЕЙШН Устройство и способ декодирования движущегося изображения, адаптированные к извлечению информации о движении, долговременный считываемый компьютером носитель записи, хранящий программу декодирования движущегося изображения, адаптированную к извлечению информации о движении
RU2688149C9 (ru) * 2012-01-18 2021-02-18 ДжейВиСи КЕНВУД КОРПОРЕЙШН Устройство и способ декодирования движущегося изображения, адаптированные к извлечению информации о движении, долговременный считываемый компьютером носитель записи, хранящий программу декодирования движущегося изображения, адаптированную к извлечению информации о движении
RU2594985C2 (ru) * 2012-01-18 2016-08-20 ДжейВиСи КЕНВУД КОРПОРЕЙШН Устройство кодирования движущегося изображения, способ кодирования движущегося изображения и программа кодирования движущегося изображения, а также устройство декодирования движущегося изображения, способ декодирования движущегося изображения и программа декодирования движущегося изображения
RU2699388C1 (ru) * 2012-01-18 2019-09-05 ДжейВиСи КЕНВУД КОРПОРЕЙШН Устройство и способ декодирования движущегося изображения, адаптированные к извлечению информации о движении
RU2699388C9 (ru) * 2012-01-18 2020-11-03 ДжейВиСи КЕНВУД КОРПОРЕЙШН Устройство и способ декодирования движущегося изображения, адаптированные к извлечению информации о движении
RU2624560C2 (ru) * 2012-03-16 2017-07-04 Квэлкомм Инкорпорейтед Кодирование вектора движения и би-предсказание в hevc и его расширениях
US10200709B2 (en) 2012-03-16 2019-02-05 Qualcomm Incorporated High-level syntax extensions for high efficiency video coding
RU2629359C1 (ru) * 2013-01-18 2017-08-29 ДжейВиСи КЕНВУД КОРПОРЕЙШН Устройство и способ декодирования движущегося изображения, долговременный считываемый компьютером носитель записи для хранения программы декодирования движущегося изображения

Also Published As

Publication number Publication date
US20040028134A1 (en) 2004-02-12
KR101018564B1 (ko) 2011-03-03
EP1574038A2 (en) 2005-09-14
WO2004014060B1 (en) 2007-08-02
MXPA05001448A (es) 2005-09-30
US7023921B2 (en) 2006-04-04
AU2003256763A8 (en) 2004-02-23
WO2004014060A3 (en) 2007-06-21
KR20050056956A (ko) 2005-06-16
AU2003256763A1 (en) 2004-02-23
EP1574038A4 (en) 2009-12-16
RU2005106280A (ru) 2005-10-10
EP1574038B1 (en) 2013-08-21
WO2004014060A2 (en) 2004-02-12

Similar Documents

Publication Publication Date Title
RU2381630C2 (ru) Способ и устройство для определения качества соответствия блока
US6925123B2 (en) Method and apparatus for performing high quality fast predictive motion search
KR100534207B1 (ko) 비디오 부호화기의 움직임 추정기 및 그 방법
JP5044568B2 (ja) 予測誘導間引き探索を使用する動き推定
US9621917B2 (en) Continuous block tracking for temporal prediction in video encoding
US8040948B2 (en) Method and system for coding moving image signals, corresponding computer program product
CN101378504B (zh) 用于h.264编码的块匹配运动估计方法
US20150172687A1 (en) Multiple-candidate motion estimation with advanced spatial filtering of differential motion vectors
KR100560843B1 (ko) 비디오 부호기에서 적응 움직임 벡터의 탐색 영역을결정하는 방법 및 장치
US7433407B2 (en) Method for hierarchical motion estimation
Paul et al. Video coding using the most common frame in scene
JP5566786B2 (ja) 誤差絶対値和の推定システム及び推定方法
JP2009296443A (ja) ベクトル探索範囲制限装置および動画像符号化装置
JP2004260251A (ja) 動きベクトル検出装置及び動きベクトル検出プログラム
Kundu Modified block matching algorithm for fast block motion estimation
KR100255634B1 (ko) 움직임 검출장치
Rajpal et al. New dynamic pattern search based fast motion estimation algorithm
KR100924642B1 (ko) 블록 정합 알고리즘을 이용하는 움직임 추정 방법
Fang et al. Predictive-based cross line for fast motion estimation in MPEG-4 videos
Bhandari et al. Analysis the performance of three step search algorithm for motion estimation
Mishra et al. Full Search Algorithm for Movie Files
Duanmu et al. A continuous tracking algorithm for long-term memory motion estimation [video coding]
Wu et al. A novel two pass hexagonal search algorithm for motion estimation

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20120626

PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20170302

PC41 Official registration of the transfer of exclusive right

Effective date: 20180111

MM4A The patent is invalid due to non-payment of fees

Effective date: 20200726