RU2367616C2 - Device for electrochemical treatment of water or aqueous solutions - Google Patents
Device for electrochemical treatment of water or aqueous solutions Download PDFInfo
- Publication number
- RU2367616C2 RU2367616C2 RU2007144667/15A RU2007144667A RU2367616C2 RU 2367616 C2 RU2367616 C2 RU 2367616C2 RU 2007144667/15 A RU2007144667/15 A RU 2007144667/15A RU 2007144667 A RU2007144667 A RU 2007144667A RU 2367616 C2 RU2367616 C2 RU 2367616C2
- Authority
- RU
- Russia
- Prior art keywords
- electrode
- chamber
- holes
- channels
- axial
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/4618—Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F2001/46152—Electrodes characterised by the shape or form
- C02F2001/46157—Perforated or foraminous electrodes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/002—Construction details of the apparatus
- C02F2201/003—Coaxial constructions, e.g. a cartridge located coaxially within another
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/46—Apparatus for electrochemical processes
- C02F2201/461—Electrolysis apparatus
- C02F2201/46105—Details relating to the electrolytic devices
- C02F2201/46115—Electrolytic cell with membranes or diaphragms
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
Изобретение относится к области электрохимической обработки воды и/или водных растворов солей с целью изменения их окислительных, восстановительных и структурных свойств. Изобретение может быть использовано для очистки, обеззараживания, структурирования и кондиционирования воды, катодного умягчения воды, а также для получения дезинфицирующих, моющих, стерилизующих, консервирующих, отбеливающих, профилактических растворов и растворов, устраняющих запахи.The invention relates to the field of electrochemical treatment of water and / or aqueous solutions of salts with the aim of changing their oxidizing, reducing and structural properties. The invention can be used for purification, disinfection, structuring and conditioning of water, cathodic softening of water, as well as for disinfecting, washing, sterilizing, preserving, bleaching, prophylactic solutions and solutions that eliminate odors.
Известно устройство для электрохимической обработки воды [патент РФ 2297981, опубл. 21.10.2005, фиг.3], которое имеет в своем составе наружный электрод в виде полого цилиндра и коаксиальный ему внутренний стержневой составной электрод. Кольцевая полость между электродами разделена коаксиальной перегородкой на внешнюю и внутреннюю камеры, снабженные входными и выходными патрубками. Конструкция имеет нижнее основание и верхнюю торцевую крышку. Соединение основания с электродами осуществлено при помощи болтов. Верхняя торцевая крышка присоединена к внутреннему электроду при помощи полого болта, одновременно являющегося выходным патрубком для внутренней камеры, с которой он соединен каналами, радиально проходящими через внутренний электрод. Основным недостатком конструкции является отсутствие унификации торцевых элементов, что усложняет ее изготовление.A device for electrochemical water treatment [RF patent 2297981, publ. October 21, 2005, FIG. 3], which incorporates an outer electrode in the form of a hollow cylinder and an inner rod composite electrode coaxial to it. The annular cavity between the electrodes is divided by a coaxial partition into external and internal chambers equipped with inlet and outlet nozzles. The design has a lower base and an upper end cover. The connection of the base with the electrodes is carried out using bolts. The upper end cover is connected to the inner electrode by means of a hollow bolt, which at the same time is the outlet pipe for the inner chamber, to which it is connected by channels radially passing through the inner electrode. The main drawback of the design is the lack of unification of the end elements, which complicates its manufacture.
Этого недостатка лишено устройство - проточный электрохимический модульный элемент для обработки жидкости [патент РФ 2145940, опубл. 27.02.2000], который имеет в своем составе, как и в описанном выше аналоге, внутренний стержневой электрод, наружный электрод, перегородку, разделяющую полость на внутреннюю и наружную камеру, каждая из которых имеет входной и выходной патрубки, которые закреплены на торцевых диэлектрических втулках, одинаковой конструкции для обоих торцов. Сборка конструкции осуществлена при помощи болтов, ввернутых в торцы внутреннего электрода. Несмотря на относительную унификацию, основным недостатком остается относительная сложность конструкции, поскольку узлы для ввода/вывода жидкости во внутреннюю камеру и в наружную камеру отличаются друг от друга, и в конструкции предусмотрено наличие дополнительных торцевых элементов крепления. Также недостатком является то, что подвод и отвод обрабатываемой жидкость осуществляется боковыми радиальными патрубками, что вызывает необходимость дополнительной подводки с использованием изогнутых труб (коленных отводов) для установки в линейную магистраль.The device is deprived of this drawback - a flowing electrochemical modular element for processing liquid [RF patent 2145940, publ. 02.27.2000], which incorporates, as in the analogue described above, an inner rod electrode, an outer electrode, a partition dividing the cavity into an inner and outer chamber, each of which has an inlet and outlet nozzles that are mounted on the end dielectric bushings , the same design for both ends. The assembly of the structure was carried out using bolts screwed into the ends of the internal electrode. Despite the relative unification, the main drawback remains the relative complexity of the design, since the nodes for input / output of liquid into the inner chamber and into the outer chamber are different from each other, and the design provides for additional end fastening elements. Another disadvantage is that the supply and removal of the processed fluid is carried out by radial lateral pipes, which necessitates additional supply using bent pipes (elbows) for installation in a linear highway.
В качестве прототипа выбрано устройство для электролитической обработки воды [патент РФ 2132821, опубл. 10.07.1999]. Вертикальный проточный электролизер имеет в своем составе внутренний полый электрод, наружный электрод и перегородку, разделяющую кольцевую полость на внутреннюю и наружную камеру. На обоих торцах устройства имеется диэлектрическая втулка, которая закрывается диэлектрической колодкой, выполненной аналогично накидной гайке. Подвод и отвод обрабатываемой жидкости к внутренней камере осуществляется торцевыми радиальными патрубками - штуцерами, которые навинчиваются на торцы внутреннего электрода. Одновременно эти штуцеры являются крепежными элементами. Конструкция прототипа позволяет монтировать проточный электролизер в магистрали обрабатываемой жидкости без использования коленных отводов. Основным недостатком конструкции является недолговечность внутреннего электрода. Это вызвано тем, что в стенке внутреннего электрода имеются сквозные отверстия, через которые полость электрода сообщается с внутренней электролизной камерой. В электролизерах обычно используются электроды двух типов: металлические с покрытием из металлов платиново-иридиевой группы или графитовые. При выполнении электрода из металла наличие отверстий нарушает целостность защитного покрытия на внутреннем электроде, что приводит к электрохимической коррозии корпуса электрода при его контакте с агрессивной средой. При выполнении внутреннего электрода из графита наличие отверстий в трубчатой конструкции повышает хрупкость электрода. И в том и в другом случае срок службы внутреннего электрода существенно снижается по сравнению с целостными электродами (без отверстий в боковых стенках).As a prototype of the selected device for the electrolytic treatment of water [RF patent 2132821, publ. 07/10/1999]. The vertical flow-through electrolyzer incorporates an inner hollow electrode, an outer electrode and a baffle separating the annular cavity into the inner and outer chambers. At both ends of the device there is a dielectric sleeve, which is closed by a dielectric block, made similar to a union nut. The supply and removal of the processed fluid to the inner chamber is carried out by radial end pipes - fittings that are screwed onto the ends of the inner electrode. At the same time, these fittings are fasteners. The design of the prototype allows you to mount a flowing cell in the line of the processed fluid without the use of elbow bends. The main drawback of the design is the fragility of the internal electrode. This is because there are through holes in the wall of the inner electrode through which the cavity of the electrode communicates with the inner electrolysis chamber. Electrolyzers usually use two types of electrodes: metal with a coating of metals of the platinum-iridium group or graphite. When an electrode is made of metal, the presence of holes violates the integrity of the protective coating on the inner electrode, which leads to electrochemical corrosion of the electrode body when it comes in contact with an aggressive environment. When the internal electrode is made of graphite, the presence of holes in the tubular structure increases the fragility of the electrode. In both cases, the service life of the internal electrode is significantly reduced compared to integral electrodes (without holes in the side walls).
Таким образом, существует техническое противоречие: одни устройства надежны, но имеют избыточное количество конструктивных элементов - отдельно для подвода/отвода жидкости и отдельно крепежные элементы, например торцевые болты; другие устройства, например прототип, сравнительно проще, поскольку имеют элементы, совмещающие функции крепежа и подвода/отвода жидкости, но такие устройства имеют ограниченный срок службы и требуют частой замены внутренних электродов.Thus, there is a technical contradiction: some devices are reliable, but have an excessive number of structural elements - separately for supplying / discharging fluids and separately fixing elements, for example end bolts; other devices, such as a prototype, are relatively simpler because they have elements that combine the functions of fasteners and fluid inlet / outlet, but such devices have a limited service life and require frequent replacement of internal electrodes.
В основу изобретения поставлена задача - решить указанное противоречие и создать новое устройство для электрохимической обработки воды или водных растворов.The basis of the invention is the task of resolving this contradiction and creating a new device for the electrochemical treatment of water or aqueous solutions.
Достигаемый технический результат - повышение надежности (длительная эксплуатация устройства без замены внутреннего электрода) при сохранении возможности соосного подключения к магистрали обрабатываемой жидкости без использования коленных отводов (подключение напрямую).Achievable technical result - increased reliability (long-term operation of the device without replacing the internal electrode) while maintaining the possibility of coaxial connection to the processed fluid line without using elbow bends (direct connection).
Поставленная задача решается тем, что устройство для электрохимической обработки воды или водных растворов имеет в своем составе торцевые крышки, наружный трубчатый электрод, внутри которого коаксиально расположен внутренний электрод. Кольцевая полость между электродами разделена коаксиальной полупроницаемой диафрагмой на внутреннюю камеру и внешнюю камеру. Каждая камера снабжена входным и выходным патрубком, при этом входной и выходной патрубок внутренней камеры выполнены осевыми. Эти патрубки соединены с внутренним электродом при помощи резьбового соединения и фиксируют положение торцевых крышек. От прототипа устройство отличается тем, что в боковых стенках осевых патрубков выполнены отверстия, сообщающиеся с внутренней камерой через каналы. Эти каналы выполнены в торцевых крышках и ориентированы в радиальных плоскостях. Предпочтительно выполнение внутреннего электрода стержневым с глухими резьбовыми отверстиями на торце для образования винтовой пары с осевым патрубком, который в свою очередь снабжен резьбовым участком на наружной поверхности.The problem is solved in that the device for the electrochemical treatment of water or aqueous solutions includes end caps, an external tubular electrode, inside of which an internal electrode is coaxially located. The annular cavity between the electrodes is divided by a coaxial semipermeable diaphragm into an inner chamber and an outer chamber. Each chamber is equipped with an inlet and outlet pipe, while the inlet and outlet pipe of the inner chamber are made axial. These nozzles are connected to the internal electrode by a threaded connection and fix the position of the end caps. The device differs from the prototype in that openings are made in the side walls of the axial nozzles, which communicate with the inner chamber through channels. These channels are made in the end caps and are oriented in radial planes. It is preferable that the inner electrode be formed with a rod electrode with blind threaded holes at the end to form a screw pair with an axial nozzle, which in turn is provided with a threaded portion on the outer surface.
Более технологичным является исполнение торцевых крышек сборными, состоящими из двух частей, и выполнение каналов в частях, обращенных внутрь.More technologically advanced is the execution of end caps by prefabricated two-part assemblies and the execution of channels in the parts facing inward.
Каналы, ориентированные в радиальных плоскостях, могут быть перпендикулярными по отношению к оси устройства, а могут быть ориентированы к ней под углом.Channels oriented in radial planes can be perpendicular to the axis of the device, and can be oriented to it at an angle.
Подробнее сущность изобретения поясняется описанным ниже примером реализации и поясняется чертежом, на котором представлено продольное сечение устройства.In more detail, the invention is illustrated by the implementation example described below and is illustrated by the drawing, which shows a longitudinal section of the device.
Устройство содержит внутренний электрод 1, например, в форме стержня цилиндрической формы с торцевыми глухими осевыми отверстиями 2 с внутренней резьбой. Коаксиально внутреннему электроду 1 установлен полый цилиндрический (трубчатый) наружный электрод 3. Между электродами коаксиально им установлена полупроницаемая диафрагма 4, разделяющая кольцевую полость на внутреннюю камеру 5 и наружную камеру 6. Наружная камера 6 имеет входной и выходной патрубки 7′ и 7′′ соответственно, которые радиально закреплены на наружном электроде 3 и сообщаются с камерой 6 через отверстия в этом электроде. Внутренняя камера 5 имеет осевые входной и выходной патрубки (штуцеры) 8′ и 8′′ с внутренними осевыми несквозными отверстиями 9′ и 9′′ соответственно. На закрытом торце патрубка 8′, обращенном внутрь устройства, имеется цилиндрический выступ 10 с наружной резьбой для взаимодействия с резьбовым отверстием 2 на торце внутреннего электрода 1. Аналогичный выступ имеется на закрытом торце патрубка 8′′.The device comprises an internal electrode 1, for example, in the form of a rod of cylindrical shape with end blind axial holes 2 with internal thread. A hollow cylindrical (tubular) outer electrode 3 is installed coaxially with the inner electrode 1. A semipermeable diaphragm 4 is installed coaxially between the electrodes, separating the annular cavity into the inner chamber 5 and the outer chamber 6. The outer chamber 6 has an inlet and an outlet pipe 7 ′ and 7 ″, respectively which are radially mounted on the outer electrode 3 and communicate with the camera 6 through the holes in this electrode. The inner chamber 5 has axial inlet and outlet nozzles (fittings) 8 ′ and 8 ″ with internal axial through holes 9 ′ and 9 ″, respectively. At the closed end of the pipe 8 ′ facing the inside of the device, there is a cylindrical protrusion 10 with an external thread for interacting with the threaded hole 2 at the end of the inner electrode 1. A similar protrusion is available at the closed end of the pipe 8 ″.
Устройство имеет торцевые крышки, идентичные друг другу с обоих торцов. Более технологичной является конструкция, в которой каждая торцевая крышка состоит из двух частей 11, 12. Обращенная наружу часть 12 сборной крышки поджимается выступом (расширяющейся частью, фланцем) на патрубке 8′ (8′′), который работает как головка болта, и шайбой 13. Между шайбой 13 и наружной поверхностью крышки зажат токоподводящий электрод 14. Второй токоподводящий электрод 15 закреплен на наружном электроде 3.The device has end caps that are identical to each other at both ends. More technologically advanced is the design in which each end cover consists of two parts 11, 12. The outward facing part 12 of the assembly cover is pressed by a protrusion (an expanding part, a flange) on the nozzle 8 ′ (8 ″), which acts as a bolt head, and a washer 13. Between the washer 13 and the outer surface of the lid, a current-conducting electrode is clamped 14. A second current-conducting electrode 15 is mounted on the outer electrode 3.
Обращенная внутрь часть крышки 11 представляет собой диэлектрическую втулку и имеет каналы 16, посредством которых осевые отверстия в патрубках 8′ (8′′) через отверстия 17 в боковых стенках патрубков сообщаются с внутренней полостью 5. Каналы 16 расположены в радиальных плоскостях и, предпочтительно, ориентированы под углом к оси устройства, а следовательно, к оси внутренней полости и к оси отверстия 9′ (9′′) патрубка, что уменьшает гидравлические потери. Для исключения прямого перетекания жидкостей между камерами 5 и 6 установлены уплотнительные кольца 18 на торцах диафрагмы 4. Герметичность устройства в целом достигается посредством уплотнительных колец 19, установленных между крышками и контактирующих с одной стороны с наружной поверхностью патрубков 8' (8") и с другой стороны с внутренней поверхностью наружного электрода 3.The inwardly facing portion of the lid 11 is a dielectric sleeve and has channels 16 through which axial holes in the nozzles 8 ′ (8 ″) through the holes 17 in the side walls of the nozzles communicate with the internal cavity 5. The channels 16 are located in radial planes and, preferably, oriented at an angle to the axis of the device, and therefore, to the axis of the internal cavity and to the axis of the hole 9 ′ (9 ″) of the nozzle, which reduces hydraulic losses. To prevent direct flow of liquids between chambers 5 and 6, O-rings 18 are installed at the ends of the diaphragm 4. The tightness of the device as a whole is achieved by O-rings 19 installed between the covers and in contact with the outer surface of the nozzles 8 '(8 ") and on the other side with the inner surface of the outer electrode 3.
Работа устройства иллюстрируется на следующих примерах, в которых токоподвод осуществлен таким образом, что внутренний электрод является анодом, а наружный - катодом.The operation of the device is illustrated by the following examples, in which the current supply is implemented in such a way that the inner electrode is the anode and the outer electrode is the cathode.
В патрубок 8′ подается обрабатываемая жидкость, из патрубка 8′′ - отводится обработанная жидкость (анолит). В зависимости от того, какого свойства раствор необходимо получать, в устройство подается вода и/или различные солевые растворы. Патрубок 7′ предназначен для подачи обрабатывающей жидкости, например солевого раствора, патрубок 7′′ - для отвода солевого раствора (католита). Патрубки 7 и 7′′ могут быть объединены в единый внешний замкнутый контур (с подпиткой активного вещества).The processed fluid is supplied to the pipe 8 ′, the treated liquid (anolyte) is discharged from the pipe 8 ′ ′. Depending on what properties the solution needs to be obtained, water and / or various saline solutions are supplied to the device. The nozzle 7 ′ is intended for supplying a processing fluid, for example, saline, the nozzle 7 ″ “for draining the saline (catholyte). Pipes 7 and 7 ″ can be combined into a single external closed loop (with the feed of the active substance).
Пример 1Example 1
Для получения анолита и католита в патрубок 8′ подают 1% раствор хлорида натрия. Через отверстия 17 и каналы 16 раствор поступает во внутреннюю электродную камеру 5. На электроды подается напряжение. Под давлением раствор через полупроницаемую диафрагму 4 поступает во внешнюю электродную камеру 6. В процессе работы устройства образуются два противоположно заряженных потока ионов на внешней и внутренней поверхностях диафрагмы 4, между потоками возникает разность потенциалов, что приводит к увеличению напряженности электрического поля в диафрагме, в результате повышается подвижность ионов в порах диафрагмы и снижается электрическое сопротивление устройства. В результате образуется электроактивированный раствор - анолит, который выводится через каналы в крышке и патрубок 8 м. Через патрубок 7 может также подаваться 1% раствор хлорида натрия.To obtain anolyte and catholyte, a 1% solution of sodium chloride is fed into the pipe 8 ′. Through holes 17 and channels 16, the solution enters the inner electrode chamber 5. A voltage is applied to the electrodes. Under pressure, the solution through a semipermeable diaphragm 4 enters the external electrode chamber 6. During operation of the device, two oppositely charged ion flows form on the external and internal surfaces of the diaphragm 4, a potential difference arises between the flows, which leads to an increase in the electric field strength in the diaphragm, as a result the mobility of ions in the pores of the diaphragm increases and the electrical resistance of the device decreases. As a result, an electroactivated solution is formed - anolyte, which is discharged through channels in the lid and a 8 m pipe. A 1% sodium chloride solution can also be supplied through pipe 7.
Пример 2Example 2
Для получения дезинфицирующего раствора через патрубок 8′ подают воду, которая поступает во внутреннюю электродную камеру 5, как это описано выше, Одновременно через патрубок 7′ подают 30% раствор хлорида натрия, который циркулирует во внешнем замкнутом контуре, проходя через внешнюю электродную камеру 6. Вода, поступающая во внутреннею (анодную) электродную камеру, под действием окислительно-восстановительных процессов, происходящих в обеих камерах, насыщается ионами хлорноватистой кислоты, короткоживущими кислородными радикалами, небольшим количеством озона и двуокисью хлора за счет миграции ионов от внешней (катодной) электродной камеры и выводится через патрубок 8′′ в виде дезинфицирующего раствора.To obtain a disinfectant solution, water is supplied through the pipe 8 ′, which enters the internal electrode chamber 5, as described above, At the same time, a 30% sodium chloride solution is supplied through the pipe 7 ′, which circulates in an external closed circuit passing through the external electrode chamber 6. Water entering the internal (anode) electrode chamber, under the action of redox processes occurring in both chambers, is saturated with hypochlorous acid ions, short-lived oxygen radicals, lshim amount of ozone and chlorine dioxide due to the migration of ions from the outside (cathode) of the electrode chamber and discharged through a branch pipe 8 '' to form the disinfectant solution.
Пример 3Example 3
Для получения дезинфицирующего раствора через патрубок 7′ подают 1-20% раствор хлорида натрия, который поступает во внешнюю катодную камеру, затем раствор выходит из патрубка 7′′ и через патрубок 8′ поступает во внутреннюю электродную камеру. Раствор, поступающий во внутреннюю (анодную) электродную камеру под действием окислительно-восстановительных процессов, происходящих в обеих камерах, насыщается ионами хлорноватистой кислоты, короткоживущими кислородными радикалами, небольшим количеством озона и двуокисью хлора за счет миграции ионов от внешней (анодной) электродной камеры и выводится через патрубок 8′′ в виде дезинфицирующего раствора.To obtain a disinfectant solution, 1-20% sodium chloride solution is supplied through the pipe 7 ′, which enters the external cathode chamber, then the solution exits the pipe 7 ″ and through the pipe 8 ′ enters the internal electrode chamber. The solution entering the internal (anode) electrode chamber under the influence of redox processes occurring in both chambers is saturated with hypochlorous acid ions, short-lived oxygen radicals, a small amount of ozone and chlorine dioxide due to ion migration from the external (anode) electrode chamber and is discharged through the nozzle 8 ″ in the form of a disinfectant solution.
Пример 4Example 4
Для обработки питьевой воды через патрубок 7′ подают воду из водопровода, которая поступает во внешнюю катодную камеру, затем вода выходит из патрубка 7′′ и через патрубок 8′ поступает во внутреннюю электродную камеру. Вода поступающая во внутреннею (анодную) электродную камеру под действием окислительно-восстановительных процессах происходящих в обеих камерах обеззараживается, изменяет окислительно-восстановительный потенциал и выводится через патрубок 8′′ в виде чистой питьевой воды.To process drinking water through the pipe 7 ′, water is supplied from the water supply, which enters the external cathode chamber, then the water leaves the pipe 7 ″ and through the pipe 8 ′ enters the internal electrode chamber. Water entering the internal (anode) electrode chamber under the influence of redox processes occurring in both chambers is disinfected, changes the redox potential and is discharged through the 8 ″ pipe in the form of clean drinking water.
Приведенными примерами не исчерпывается область применения заявленного устройства, так как в зависимости от используемых растворов и полярности электродов можно получать анолит и католит с другими заданными свойствами. Устройство можно также использовать для обеззараживания воды, изменения окислительно-восстановительного потенциала воды, катодного умягчения воды и других целей.The examples given do not exhaust the scope of the claimed device, since, depending on the solutions used and the polarity of the electrodes, anolyte and catholyte with other desired properties can be obtained. The device can also be used for disinfecting water, changing the redox potential of water, cathodic softening of water and other purposes.
Устройство, изготовленное согласно изобретению, было испытано по известным методикам. В таблице представлены показатели его работы.A device made according to the invention has been tested by known methods. The table shows the performance of his work.
Как это видно из чертежа и приведенного выше описания, устройство имеет осевые патрубки для подвода/отвода обрабатываемой жидкости, что позволяет его подключать к магистрали напрямую без использования дополнительных переходников - коленных отводов. Эти же осевые патрубки одновременно являются крепежными элементами, поскольку как болты вкручиваются в торцевые отверстия внутренних электродов, зажимая электроды между торцевыми крышками. Крышки выполнены идентичными с обоих торцов. Каждая может быть выполнена сборной и состоять из двух частей - одной части, обращенной наружу, и второй части - внутренней втулки. В отличие от прототипа каналы для подвод/отвода обрабатываемой жидкости выполнены не во внутреннем электроде, а в диэлектрической втулке 11 (или собственно в крышке, если она не сборная). Это увеличивает межремонтные периоды для замены внутреннего электрода, поскольку он остается цельным иAs can be seen from the drawing and the above description, the device has axial nozzles for supplying / discharging the processed fluid, which allows it to be connected directly to the line without the use of additional adapters - elbow bends. The same axial nozzles are simultaneously fasteners, as bolts are screwed into the end holes of the internal electrodes, clamping the electrodes between the end caps. The covers are made identical at both ends. Each can be made by the team and consist of two parts - one part facing outward, and the second part - the inner sleeve. Unlike the prototype, the channels for supplying / discharging the fluid to be processed are made not in the internal electrode, but in the dielectric sleeve 11 (or in the lid itself, if it is not prefabricated). This increases the overhaul periods for replacing the internal electrode, as it remains solid and
- защищенным от электрокоррозии специальным покрытием, в случае если выполнен из металла,- a special coating protected from electro-corrosion, if it is made of metal,
- не имеет охрупчивающих его отверстий, в случае если выполнен их графита.- has no embrittling holes, if their graphite is made.
При такой конструкции и при выполнении каналов под углом к оси устройства не образуются застойные зоны и турбулентные завихрения на входе/выходе внутренней камеры.With this design and when the channels are run at an angle to the axis of the device, stagnant zones and turbulent turbulence at the inlet / outlet of the inner chamber are not formed.
Claims (5)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2007144667/15A RU2367616C2 (en) | 2007-11-30 | 2007-11-30 | Device for electrochemical treatment of water or aqueous solutions |
PCT/RU2008/000722 WO2009070056A1 (en) | 2007-11-30 | 2008-11-21 | Device for electrochemically treating water or aqueous solutions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2007144667/15A RU2367616C2 (en) | 2007-11-30 | 2007-11-30 | Device for electrochemical treatment of water or aqueous solutions |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2007144667A RU2007144667A (en) | 2009-06-10 |
RU2367616C2 true RU2367616C2 (en) | 2009-09-20 |
Family
ID=40678792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2007144667/15A RU2367616C2 (en) | 2007-11-30 | 2007-11-30 | Device for electrochemical treatment of water or aqueous solutions |
Country Status (2)
Country | Link |
---|---|
RU (1) | RU2367616C2 (en) |
WO (1) | WO2009070056A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2714818C2 (en) * | 2015-04-21 | 2020-02-19 | Арк Арома Пуре Аб | Chamber for generation of pulsed electric field |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011071414A1 (en) * | 2009-12-10 | 2011-06-16 | Vinogradov Vladimir Vikentievich | Device for the electrochemical treatment of water or aqueous solutions |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2510613A1 (en) * | 1981-07-31 | 1983-02-04 | Orset Christian | ELECTROLYTIC PROCESS FOR PREVENTING SCALING OF PIPES AND DEVICE FOR IMPLEMENTING SAME |
RU2132821C1 (en) * | 1997-06-25 | 1999-07-10 | Стерилокс Текнолоджиз, Инк. | Electrolytic water treatment device |
RU2176989C1 (en) * | 2000-11-01 | 2001-12-20 | Бахир Витольд Михайлович | Electrochemical module cell for treatment of aqueous solutions, plant for production of products of anodic oxidation of solution of alkaline or alkaline-earth metal chlorides |
-
2007
- 2007-11-30 RU RU2007144667/15A patent/RU2367616C2/en active
-
2008
- 2008-11-21 WO PCT/RU2008/000722 patent/WO2009070056A1/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2714818C2 (en) * | 2015-04-21 | 2020-02-19 | Арк Арома Пуре Аб | Chamber for generation of pulsed electric field |
US10694770B2 (en) | 2015-04-21 | 2020-06-30 | Arc Aroma Pure Ab | Chamber for pulsed electric field generation |
Also Published As
Publication number | Publication date |
---|---|
WO2009070056A1 (en) | 2009-06-04 |
RU2007144667A (en) | 2009-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7691249B2 (en) | Method and apparatus for making electrolyzed water | |
JPH07509536A (en) | water electrochemical treatment equipment | |
EP2767513B1 (en) | Method for purifying water without the use of salts, and water-purification reactor | |
JP2002532236A (en) | Microbial control of point-of-use drinking water sources | |
US6843895B2 (en) | Portable device for electrochemical processing of liquids | |
JP4904367B2 (en) | Membrane electrolysis reactor system with four chambers | |
EA013774B1 (en) | Device for the electrochemical treatment of the water and the water solutions | |
RU2367616C2 (en) | Device for electrochemical treatment of water or aqueous solutions | |
WO2007046730A2 (en) | Water electrochemical processing device | |
RU72690U1 (en) | DEVICE FOR ELECTROCHEMICAL TREATMENT OF WATER OR AQUEOUS SOLUTIONS | |
RU96857U1 (en) | DEVICE FOR ELECTROCHEMICAL TREATMENT OF WATER OR AQUEOUS SOLUTIONS | |
KR100634760B1 (en) | Sterile Oxidized Water Production Equipment Using Overpotential Electrode | |
WO2012010177A1 (en) | Device for electrochemically processing water or aqueous solutions | |
WO2011071414A1 (en) | Device for the electrochemical treatment of water or aqueous solutions | |
RU2375313C2 (en) | Flow diaphragm cell | |
RU2139956C1 (en) | Plant for production of hypochlorites solutions by electrolysis | |
JPH01317592A (en) | Production of treated water and device therefor | |
KR20030093171A (en) | Electrolysis having a mesh type electrode | |
RU2130786C1 (en) | Electrochemical device for processing liquid medium | |
RU2454489C1 (en) | Electrochemical cell for treatment of electrolyte solutions | |
RU2636505C2 (en) | Diaphragm electrolyser for purifying and disinfecting water | |
RU2785104C1 (en) | Water purification device | |
RU2729184C1 (en) | Electrochemical reactor and apparatus for electrochemical synthesis of a mixture of oxidants | |
JPH01228589A (en) | Method and apparatus for making aseptic water | |
KR960005047Y1 (en) | Electrolysis device for water and wastewater treatment |