[go: up one dir, main page]

RU2354034C2 - Способ работы преобразователя постоянного напряжения в переменное и устройство для выполнения способа - Google Patents

Способ работы преобразователя постоянного напряжения в переменное и устройство для выполнения способа Download PDF

Info

Publication number
RU2354034C2
RU2354034C2 RU2007105093/09A RU2007105093A RU2354034C2 RU 2354034 C2 RU2354034 C2 RU 2354034C2 RU 2007105093/09 A RU2007105093/09 A RU 2007105093/09A RU 2007105093 A RU2007105093 A RU 2007105093A RU 2354034 C2 RU2354034 C2 RU 2354034C2
Authority
RU
Russia
Prior art keywords
output
converter
voltage
semiconductor
semiconductor switches
Prior art date
Application number
RU2007105093/09A
Other languages
English (en)
Other versions
RU2007105093A (ru
Inventor
Ялал ХАЛЛАК (AT)
Ялал ХАЛЛАК
Original Assignee
Сименс Аг Эстеррайх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Аг Эстеррайх filed Critical Сименс Аг Эстеррайх
Publication of RU2007105093A publication Critical patent/RU2007105093A/ru
Application granted granted Critical
Publication of RU2354034C2 publication Critical patent/RU2354034C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/005Conversion of DC power input into DC power output using Cuk converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/1557Single ended primary inductor converters [SEPIC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)
  • Ac-Ac Conversion (AREA)
  • Control Of Multiple Motors (AREA)
  • General Induction Heating (AREA)

Abstract

Изобретение относится к способу работы электронно-управляемого преобразователя постоянного напряжения в переменное, причем способ характеризуется тем, что преобразователь постоянного напряжения в переменное в течение положительной полуволны выходного переменного напряжения регулируется таким образом, что он работает по типу SEPIC-преобразователя, а в течение отрицательной полуволны выходного переменного напряжения регулируется таким образом, что он работает по типу CUK-преобразователя. Технический результат - повышение КПД. 2 н. и 2 з.п. ф-лы, 7 ил.

Description

Изобретение относится к способу работы электронно-управляемого преобразователя постоянного напряжения в переменное и устройству для выполнения способа.
Электронно-управляемые преобразователи постоянного напряжения в переменное известны, например, из работы С.М. Penalver, et al., "Microprocessor Control of DC/AC Static Converters"; IEEE Transactions on Industrial Electronics, Vol.IE-32, No.3, August 1985, p.186-191. Они используются, например, в солнечных батареях для того, чтобы постоянный ток, выработанный солнечными элементами, преобразовать таким образом, чтобы была возможна отдача в сеть переменного тока общего пользования. Только таким путем гарантируется практически неограниченное использование энергии, выработанной солнечными элементами.
Множество возможностей применения преобразователя постоянного напряжения в переменное привело, в том числе, к тому, что выделились основные типы задатчиков установки высокого уровня, задатчиков установки высокого-низкого уровня и задатчиков установки низкого уровня для специальных случаев применения. В качестве примера можно привести публикацию в журнале EDN от 17 октября 2002 "Slave converters power auxiliary outputs", Sanjaya Maniktala, в которой описаны различные возможности комбинирования основных типов преобразователей постоянного напряжения в переменное.
В основе изобретения лежит задача усовершенствования преобразователя постоянного напряжения в переменное, известного из предшествующего уровня техники.
В соответствии с изобретением указанная задача решается в способе вышеуказанного типа, в котором преобразователь постоянного напряжения в переменное в течение положительной полуволны выходного переменного напряжения регулируется таким образом, что он работает по типу SEPIC-преобразователя (от англ.: Single Ended Primary Inductance Converter (преобразователь с несимметрично нагруженной первичной индуктивностью)), а в течение отрицательной полуволны выходного переменного напряжения регулируется таким образом, что он работает по типу CUK-преобразователя.
Соответствующая изобретению комбинация функций SEPIK-преобразователя и CUK-преобразователя приводит к получению преобразователя постоянного напряжения в переменное с особенно малыми потерями, который вследствие этого имеет высокий КПД, и поэтому особенно подходит для использования в солнечных установках.
Предпочтительным является, если преобразователь постоянного напряжения в переменное включает в себя полупроводниковую мостовую схему, образованную из первого, второго, третьего и четвертого полупроводниковых переключателей, первый выход которой соединен с первым выводом выхода переменного напряжения преобразователя постоянного напряжения в переменное, второй выход которой соединен со вторым выводом выхода переменного напряжения преобразователя постоянного напряжения в переменное, кроме того, предусмотрен первый дроссель, первая сторона которого соединена с положительным полюсом источника постоянного напряжения, а вторая сторона которого через пятый полупроводниковый переключатель соединена с отрицательным полюсом источника постоянного напряжения, если соединение между первым дросселем и пятым полупроводниковым переключателем через первый конденсатор соединено с первым выводом второго дросселя и анодом диода, если второй вывод второго дросселя соединен с первым входом мостовой схемы, и катод диода соединен со вторым входом мостовой схемы, и если отрицательный полюс источника постоянного напряжения соединен со вторым выводом выхода переменного напряжения.
Также предпочтительным является, если посредством микроконтроллера в течение положительной полуволны выходного переменного напряжения второй и третий полупроводниковые переключатели постоянно включены, а первый и четвертый полупроводниковые переключатели постоянно выключены, а пятый полупроводниковый переключатель включается импульсным образом, и если во время отрицательной полуволны выходного переменного напряжения первый и четвертый полупроводниковые переключатели продолжительно включены, а второй и третий полупроводниковые переключатели продолжительно выключены, а пятый полупроводниковый переключатель включается импульсным образом.
Целесообразно, если предусмотрен микроконтроллер, который для управления полупроводниковыми переключателями запрограммирован соответствующим образом.
Изобретение поясняется со ссылками на чертежи, на которых показано следующее.
Фиг.1 - принципиальная схема приведенного для примера преобразователя постоянного напряжения в переменное.
Фиг.2 - принципиальная схема приведенного для примера преобразователя постоянного напряжения в переменное при использовании полевого МОП-транзистора с запирающим слоем n-канала.
Фиг.3 и 4 - иллюстрация протекания тока и состояний переключения в приведенном для примера преобразователе постоянного напряжения в переменное во время положительной полуволны выходного переменного напряжения.
Фиг.5 и 6 - иллюстрация протекания тока и состояний переключения в приведенном для примера преобразователе постоянного напряжения в переменное во время отрицательной полуволны выходного переменного напряжения.
Фиг.7 - временная диаграмма приведенных для примера сигналов управления для полупроводниковых переключателей.
Показанный на чертежах преобразователь постоянного напряжения в переменное включает в себя полупроводниковую мостовую схему, образованную первым, вторым, третьим и четвертым полупроводниковыми переключателями S1, S2, S3, S4. Первый выход полупроводниковой мостовой схемы, образованный из соединения первого и второго полупроводниковых переключателей S1, S2, соединен с первым выводом выхода UOUT переменного напряжения преобразователя постоянного напряжения в переменное. Второй выход полупроводниковой мостовой схемы, образованный из соединения третьего и четвертого полупроводниковых переключателей S3, S4, соединен со вторым выводом выхода UOUT переменного напряжения преобразователя постоянного напряжения в переменное. Кроме того, предусмотрен первый дроссель L1, первая сторона которого соединена с положительным полюсом источника UIN постоянного напряжения, а вторая сторона которого через пятый полупроводниковый переключатель S5 соединена с отрицательным полюсом источника UIN постоянного напряжения. Соединение между первым дросселем L1 и пятым полупроводниковым переключателем S5 через первый конденсатор СC соединено с первым выводом второго дросселя L2 и анодом диода D1, а второй вывод второго дросселя L2 соединен с первым входом мостовой схемы S1, S2, S3, S4, образованным соединением первого и третьего полупроводниковых переключателей S1, S3.
Первый и второй дроссели L1, L2 могут иметь общий сердечник.
Катод диода D1 соединен со вторым входом мостовой схемы S1, S2, S3, S4, образованным соединением второго и четвертого полупроводниковых переключателей S2, S4. Кроме того, отрицательный полюс источника UIN постоянного напряжения соединен со вторым выводом выхода UOUT переменного напряжения.
При применении МОП-транзистора с запирающим слоем n-канала в качестве полупроводниковых переключателей S1, S2, S3, S4, S5 следует учитывать направление монтажа, что на фиг.2 показано пунктирными символами диодов.
В этом варианте выполнения изобретения целесообразно использование диода D2, функция которого в общем случае может быть реализована также соответствующим управлением полупроводникового переключателя.
Управление полупроводниковыми переключателями осуществляется посредством микроконтроллера (не показан).
При этом в соответствии с изобретением во время положительной полуволны выходного переменного напряжения второй и третий полупроводниковые переключатели S2, S3 постоянно включены, а первый и четвертый полупроводниковые переключатели S1, S4 постоянно выключены, в то время как пятый полупроводниковый переключатель S5 включается импульсным образом.
Во время отрицательной полуволны выходного переменного напряжения первый и четвертый полупроводниковые переключатели S1, S4 продолжительно включены, а второй и третий полупроводниковые переключатели S2, S3 продолжительно выключены, а пятый полупроводниковый переключатель S5 включается импульсным образом.
Фиг.3 показывает состояние, в котором преобразователь постоянного напряжения в переменное во время положительной полуволны выходного переменного напряжения принимает электрическую энергию от источника UIN постоянного напряжения. Для этого пятый полупроводниковый переключатель S5 замыкается, и поэтому создается путь для прохождения тока между положительным полюсом источника UIN постоянного напряжения через первый дроссель L1 и первый полупроводниковый переключатель S1. Вторая токовая цепь создается за счет накопленной на конденсаторе СC энергии через пятый и третий полупроводниковые переключатели S5, S3 и вторую катушку L2.
В этом состоянии дроссель L1 накапливает энергию, которая, как показано на фиг.4, после размыкания пятого полупроводникового переключателя S5, выдается через первый полупроводниковый диод D1 и полупроводниковую мостовую схему на выход UOUT переменного напряжения и одновременно на первый конденсатор СC.
Накопленная во втором дросселе L2 энергия, после размыкания пятого полупроводникового переключателя S5, выдается через полупроводниковый диод D1 и полупроводниковую мостовую схему на выход UOUT переменного напряжения.
Возникающие при этом токовые цепи проходят, с одной стороны, от положительного полюса источника UIN постоянного напряжения через первый дроссель L1, первый конденсатор СC, диод D1, второй полупроводниковый переключатель S2 на выход UOUT переменного напряжения и через сеть переменного напряжения к отрицательному полюсу источника UIN постоянного напряжения и, с другой стороны, от второго дросселя L2, через диод D1 и второй полупроводниковый переключатель S2 на выход UOUT переменного напряжения и через сеть переменного напряжения и третий полупроводниковый переключатель S3 назад ко второму дросселю L2.
С помощью фиг.5 и 6 ниже поясняются состояния переключения в течение отрицательной полуволны выходного переменного напряжения. Как видно из фиг.7, на этом временном интервале пятый полупроводниковый переключатель S5 включается импульсным образом, первый и третий полупроводниковые переключатели S1, S3 включаются продолжительным образом, и второй и четвертый полупроводниковые переключатели S2, S4 выключаются продолжительным образом. Тем самым, в соответствии с изобретением, во время отрицательной полуволны выходного переменного напряжения выполняется функция так называемого CUK-преобразователя.
На фиг.5 показаны соотношения, когда пятый полупроводниковый переключатель S5 замкнут.Формируется токовая цепь между положительным полюсом источника UIN постоянного напряжения через первый дроссель L1 и пятый полупроводниковый переключатель S5 к отрицательному полюсу источника постоянного напряжения и вторая токовая цепь через второй дроссель L2, первый конденсатор СC, пятый полупроводниковый переключатель S5, сеть UOUT выходного переменного напряжения и первый полупроводниковый переключатель S1.
В следующем процессе переключения, как показано на фиг.6, пятый полупроводниковый переключатель S5 размыкается.
Получающиеся в результате токовые цепи проходят, с одной стороны, от положительного полюса источника UIN постоянного напряжения через первый дроссель L1, первый конденсатор СC, диод D1 и четвертый полупроводниковый переключатель S4 к отрицательному полюсу источника UIN постоянного напряжения и, с другой стороны, через второй дроссель L2, диод D1, четвертый полупроводниковый переключатель S4, сеть UOUT выходного переменного напряжения и первый полупроводниковый переключатель S1.
На фиг.7 представлен примерный график изменения сигналов управления для полупроводниковых переключателей S1, S2, S3, S4, S5.

Claims (4)

1. Способ работы электронно-управляемого преобразователя постоянного напряжения в переменное с различными переключающими элементами, которые содержат полупроводниковые переключатели (S1, S2, S3, S4), дроссели (L1, L2), конденсаторы (СC) и диоды (D1, D2), отличающийся тем, что отдельные переключающие элементы преобразователя постоянного напряжения в переменное попеременно действуют как элементы SEPIC-преобразователя и CUK-преобразователя со сквозным соединением выходного нулевого проводника (N) с входным отрицательным полюсом, и преобразователь постоянного напряжения в переменное во время положительной полуволны выходного переменного напряжения управляется таким образом, что переключающие элементы выполняют функцию SEPIC - преобразователя, и преобразователь постоянного напряжения в переменное во время отрицательной полуволны выходного переменного напряжения управляется таким образом, что переключающие элементы выполняют функцию CUK-преобразователя.
2. Способ по п.1, отличающийся тем, что преобразователь постоянного напряжения в переменное включает в себя полупроводниковую мостовую схему, образованную из первого, второго, третьего и четвертого полупроводниковых переключателей (S1, S2, S3, S4), первый выход которой соединен с первым выводом выхода (UOUT) переменного напряжения преобразователя постоянного напряжения в переменное, второй выход которой соединен со вторым выводом выхода (UOUT) переменного напряжения преобразователя постоянного напряжения в переменное, кроме того предусмотрен первый дроссель (L1), первая сторона которого соединена с положительным полюсом источника (UIN) постоянного напряжения, а вторая сторона которого через пятый полупроводниковый переключатель (S5) соединена с отрицательным полюсом источника (UIN) постоянного напряжения, соединение между первым дросселем (L1) и пятым полупроводниковым переключателем (S5) через первый конденсатор (СC) соединено с первым выводом второго дросселя (L2) и анодом диода (D1), второй вывод второго дросселя (L2) соединен с первым входом мостовой схемы (S1, S2, S3, S4), и катод диода (D1) соединен со вторым входом мостовой схемы (S1, S2, S3, S4), и отрицательный полюс источника (UIN) постоянного напряжения соединен со вторым выводом выхода (UOUT) переменного напряжения.
3. Способ по п.2, отличающийся тем, что посредством микроконтроллера в течение положительной полуволны выходного переменного напряжения второй и третий полупроводниковые переключатели (S2, S3) постоянно включены, а первый и четвертый полупроводниковые переключатели (S1, S4) постоянно выключены, а пятый полупроводниковый переключатель (S5) включается импульсным образом, а во время отрицательной полуволны выходного переменного напряжения первый и четвертый полупроводниковые переключатели (S1, S4) продолжительно включены, а второй и третий полупроводниковые переключатели (S2, S3) продолжительно выключены, а пятый полупроводниковый переключатель (S5) включается импульсным образом.
4. Преобразователь постоянного напряжения в переменное по любому из пп.1-3, отличающийся тем, что предусмотрен микроконтроллер, который соответственно запрограммирован для управления полупроводниковыми переключателями.
RU2007105093/09A 2004-07-12 2005-07-11 Способ работы преобразователя постоянного напряжения в переменное и устройство для выполнения способа RU2354034C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA1178/2004 2004-07-12
AT11782004 2004-07-12

Publications (2)

Publication Number Publication Date
RU2007105093A RU2007105093A (ru) 2008-08-20
RU2354034C2 true RU2354034C2 (ru) 2009-04-27

Family

ID=35115978

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007105093/09A RU2354034C2 (ru) 2004-07-12 2005-07-11 Способ работы преобразователя постоянного напряжения в переменное и устройство для выполнения способа

Country Status (9)

Country Link
US (1) US7561453B2 (ru)
EP (1) EP1766767B1 (ru)
JP (1) JP4524420B2 (ru)
CN (1) CN1998129B (ru)
AT (1) ATE484877T1 (ru)
DE (1) DE502005010390D1 (ru)
ES (1) ES2354258T3 (ru)
RU (1) RU2354034C2 (ru)
WO (1) WO2006005562A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2523434C2 (ru) * 2012-10-15 2014-07-20 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Способ работы преобразователя постоянного напряжения в переменное и устройство для выполнения способа

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT504777B1 (de) * 2007-01-23 2011-01-15 Siemens Ag Wechselrichter
DE102007030577A1 (de) 2007-06-29 2009-01-02 Sma Solar Technology Ag Wechselrichter zur Einspeisung elektrischer Energie in ein Energieversorgungsnetz
AT505801B1 (de) * 2007-09-20 2012-09-15 Siemens Ag Verfahren zum betrieb eines elektronisch gesteuerten wechselrichters
CN101952786B (zh) * 2007-12-04 2014-03-12 加州动力研究公司 Sepic馈入降压转换器
WO2009156230A2 (de) * 2008-06-25 2009-12-30 Siemens Ag Österreich Wechselrichter und verfahren zum betreiben des wechselrichters
US9337731B2 (en) * 2012-12-13 2016-05-10 Linear Technology Corporation Power converter for generating both positive and negative output signals
US20140268927A1 (en) * 2013-03-14 2014-09-18 Vanner, Inc. Voltage converter systems
DE102016111498A1 (de) * 2015-07-07 2017-01-12 Panasonic Intellectual Property Management Co., Ltd. Stromversorgungsvorrichtung und beleuchtungskörper

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4354223A (en) * 1981-09-02 1982-10-12 General Electric Company Step-up/step down chopper
US5583421A (en) * 1994-08-10 1996-12-10 Hewlett-Packard Company Sepic converter with transformerless line isolation
DE19642522C1 (de) 1996-10-15 1998-04-23 Dietrich Karschny Wechselrichter
GB2335317A (en) * 1998-03-11 1999-09-15 Simon Richard Greenwood Bi-directional voltage converter
US5969484A (en) * 1998-05-14 1999-10-19 Optimum Power Conversion, Inc. Electronic ballast
US6160722A (en) 1999-08-13 2000-12-12 Powerware Corporation Uninterruptible power supplies with dual-sourcing capability and methods of operation thereof
DE10110239A1 (de) * 2001-01-24 2002-07-25 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Betriebsgerät für Lampen mit SEPIC Wandler
US6515883B2 (en) * 2001-03-28 2003-02-04 Powerware Corporation Single-stage power converter and an uninterruptible power supply using same
CN1120562C (zh) * 2001-11-13 2003-09-03 浙江大学 最小电压型有源钳位直流-直流变换器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2523434C2 (ru) * 2012-10-15 2014-07-20 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Способ работы преобразователя постоянного напряжения в переменное и устройство для выполнения способа

Also Published As

Publication number Publication date
ATE484877T1 (de) 2010-10-15
WO2006005562A1 (de) 2006-01-19
RU2007105093A (ru) 2008-08-20
CN1998129B (zh) 2010-06-16
JP4524420B2 (ja) 2010-08-18
EP1766767A1 (de) 2007-03-28
US20080212348A1 (en) 2008-09-04
ES2354258T3 (es) 2011-03-11
CN1998129A (zh) 2007-07-11
JP2008506348A (ja) 2008-02-28
DE502005010390D1 (de) 2010-11-25
EP1766767B1 (de) 2010-10-13
US7561453B2 (en) 2009-07-14

Similar Documents

Publication Publication Date Title
CN101461125B (zh) 逆变器电路和用于运行逆变器电路的方法
US8264159B2 (en) Circuit arrangement and method for operating at least one LED and at least one fluorescent lamp
US9502973B2 (en) Buck converter with III-nitride switch for substantially increased input-to-output voltage ratio
CN101803168A (zh) 用于运行电子控制的逆变器的方法
US8199544B2 (en) Zero-voltage switching power converter
Michal Three-level PWM floating H-bridge sinewave power inverter for high-voltage and high-efficiency applications
JP2005318766A (ja) Dc−dcコンバータ
JP2006014454A (ja) Dc−dcコンバータ
RU2354034C2 (ru) Способ работы преобразователя постоянного напряжения в переменное и устройство для выполнения способа
US7688044B2 (en) Device for transforming and stabilizing a primary AC voltage for supplying an electric load
US11205969B2 (en) Inverter device configured to operate in a CCM and sequentially operate in buck and boost phases
KR100928092B1 (ko) 인버터 작동 방법 및 상기 방법을 실행하기 위한 장치
US6657872B2 (en) Voltage converter
CA2452739A1 (en) Switched-mode power supply
KR100861432B1 (ko) 인버터를 동작시키기 위한 방법, 및 상기 방법을 실행하기위한 장치
TWI849969B (zh) 轉換裝置
Ladhari et al. A novel AC/DC converter topology using a bidirectional GaN switch application: Led driver
CN114123828B (zh) 逆变电路及调制方法
Sterna et al. A novel LED driver converter based on bi-directional GaN HEMT AC switches
US20100289334A1 (en) Inverter
CN117174530A (zh) 接触器及其控制方法
CN116802981A (zh) 电力转换系统和控制方法
Begalke A direct isolated bi-directional converter as a power electronic building block (PEBB)
RU79728U1 (ru) Преобразовательная ячейка
JP2007325424A (ja) 昇圧コンバータ装置

Legal Events

Date Code Title Description
PC4A Invention patent assignment

Effective date: 20100907

MM4A The patent is invalid due to non-payment of fees

Effective date: 20170712