RU2354034C2 - Способ работы преобразователя постоянного напряжения в переменное и устройство для выполнения способа - Google Patents
Способ работы преобразователя постоянного напряжения в переменное и устройство для выполнения способа Download PDFInfo
- Publication number
- RU2354034C2 RU2354034C2 RU2007105093/09A RU2007105093A RU2354034C2 RU 2354034 C2 RU2354034 C2 RU 2354034C2 RU 2007105093/09 A RU2007105093/09 A RU 2007105093/09A RU 2007105093 A RU2007105093 A RU 2007105093A RU 2354034 C2 RU2354034 C2 RU 2354034C2
- Authority
- RU
- Russia
- Prior art keywords
- output
- converter
- voltage
- semiconductor
- semiconductor switches
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/005—Conversion of DC power input into DC power output using Cuk converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1584—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1588—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/1557—Single ended primary inductor converters [SEPIC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Dc-Dc Converters (AREA)
- Ac-Ac Conversion (AREA)
- Control Of Multiple Motors (AREA)
- General Induction Heating (AREA)
Abstract
Изобретение относится к способу работы электронно-управляемого преобразователя постоянного напряжения в переменное, причем способ характеризуется тем, что преобразователь постоянного напряжения в переменное в течение положительной полуволны выходного переменного напряжения регулируется таким образом, что он работает по типу SEPIC-преобразователя, а в течение отрицательной полуволны выходного переменного напряжения регулируется таким образом, что он работает по типу CUK-преобразователя. Технический результат - повышение КПД. 2 н. и 2 з.п. ф-лы, 7 ил.
Description
Изобретение относится к способу работы электронно-управляемого преобразователя постоянного напряжения в переменное и устройству для выполнения способа.
Электронно-управляемые преобразователи постоянного напряжения в переменное известны, например, из работы С.М. Penalver, et al., "Microprocessor Control of DC/AC Static Converters"; IEEE Transactions on Industrial Electronics, Vol.IE-32, No.3, August 1985, p.186-191. Они используются, например, в солнечных батареях для того, чтобы постоянный ток, выработанный солнечными элементами, преобразовать таким образом, чтобы была возможна отдача в сеть переменного тока общего пользования. Только таким путем гарантируется практически неограниченное использование энергии, выработанной солнечными элементами.
Множество возможностей применения преобразователя постоянного напряжения в переменное привело, в том числе, к тому, что выделились основные типы задатчиков установки высокого уровня, задатчиков установки высокого-низкого уровня и задатчиков установки низкого уровня для специальных случаев применения. В качестве примера можно привести публикацию в журнале EDN от 17 октября 2002 "Slave converters power auxiliary outputs", Sanjaya Maniktala, в которой описаны различные возможности комбинирования основных типов преобразователей постоянного напряжения в переменное.
В основе изобретения лежит задача усовершенствования преобразователя постоянного напряжения в переменное, известного из предшествующего уровня техники.
В соответствии с изобретением указанная задача решается в способе вышеуказанного типа, в котором преобразователь постоянного напряжения в переменное в течение положительной полуволны выходного переменного напряжения регулируется таким образом, что он работает по типу SEPIC-преобразователя (от англ.: Single Ended Primary Inductance Converter (преобразователь с несимметрично нагруженной первичной индуктивностью)), а в течение отрицательной полуволны выходного переменного напряжения регулируется таким образом, что он работает по типу CUK-преобразователя.
Соответствующая изобретению комбинация функций SEPIK-преобразователя и CUK-преобразователя приводит к получению преобразователя постоянного напряжения в переменное с особенно малыми потерями, который вследствие этого имеет высокий КПД, и поэтому особенно подходит для использования в солнечных установках.
Предпочтительным является, если преобразователь постоянного напряжения в переменное включает в себя полупроводниковую мостовую схему, образованную из первого, второго, третьего и четвертого полупроводниковых переключателей, первый выход которой соединен с первым выводом выхода переменного напряжения преобразователя постоянного напряжения в переменное, второй выход которой соединен со вторым выводом выхода переменного напряжения преобразователя постоянного напряжения в переменное, кроме того, предусмотрен первый дроссель, первая сторона которого соединена с положительным полюсом источника постоянного напряжения, а вторая сторона которого через пятый полупроводниковый переключатель соединена с отрицательным полюсом источника постоянного напряжения, если соединение между первым дросселем и пятым полупроводниковым переключателем через первый конденсатор соединено с первым выводом второго дросселя и анодом диода, если второй вывод второго дросселя соединен с первым входом мостовой схемы, и катод диода соединен со вторым входом мостовой схемы, и если отрицательный полюс источника постоянного напряжения соединен со вторым выводом выхода переменного напряжения.
Также предпочтительным является, если посредством микроконтроллера в течение положительной полуволны выходного переменного напряжения второй и третий полупроводниковые переключатели постоянно включены, а первый и четвертый полупроводниковые переключатели постоянно выключены, а пятый полупроводниковый переключатель включается импульсным образом, и если во время отрицательной полуволны выходного переменного напряжения первый и четвертый полупроводниковые переключатели продолжительно включены, а второй и третий полупроводниковые переключатели продолжительно выключены, а пятый полупроводниковый переключатель включается импульсным образом.
Целесообразно, если предусмотрен микроконтроллер, который для управления полупроводниковыми переключателями запрограммирован соответствующим образом.
Изобретение поясняется со ссылками на чертежи, на которых показано следующее.
Фиг.1 - принципиальная схема приведенного для примера преобразователя постоянного напряжения в переменное.
Фиг.2 - принципиальная схема приведенного для примера преобразователя постоянного напряжения в переменное при использовании полевого МОП-транзистора с запирающим слоем n-канала.
Фиг.3 и 4 - иллюстрация протекания тока и состояний переключения в приведенном для примера преобразователе постоянного напряжения в переменное во время положительной полуволны выходного переменного напряжения.
Фиг.5 и 6 - иллюстрация протекания тока и состояний переключения в приведенном для примера преобразователе постоянного напряжения в переменное во время отрицательной полуволны выходного переменного напряжения.
Фиг.7 - временная диаграмма приведенных для примера сигналов управления для полупроводниковых переключателей.
Показанный на чертежах преобразователь постоянного напряжения в переменное включает в себя полупроводниковую мостовую схему, образованную первым, вторым, третьим и четвертым полупроводниковыми переключателями S1, S2, S3, S4. Первый выход полупроводниковой мостовой схемы, образованный из соединения первого и второго полупроводниковых переключателей S1, S2, соединен с первым выводом выхода UOUT переменного напряжения преобразователя постоянного напряжения в переменное. Второй выход полупроводниковой мостовой схемы, образованный из соединения третьего и четвертого полупроводниковых переключателей S3, S4, соединен со вторым выводом выхода UOUT переменного напряжения преобразователя постоянного напряжения в переменное. Кроме того, предусмотрен первый дроссель L1, первая сторона которого соединена с положительным полюсом источника UIN постоянного напряжения, а вторая сторона которого через пятый полупроводниковый переключатель S5 соединена с отрицательным полюсом источника UIN постоянного напряжения. Соединение между первым дросселем L1 и пятым полупроводниковым переключателем S5 через первый конденсатор СC соединено с первым выводом второго дросселя L2 и анодом диода D1, а второй вывод второго дросселя L2 соединен с первым входом мостовой схемы S1, S2, S3, S4, образованным соединением первого и третьего полупроводниковых переключателей S1, S3.
Первый и второй дроссели L1, L2 могут иметь общий сердечник.
Катод диода D1 соединен со вторым входом мостовой схемы S1, S2, S3, S4, образованным соединением второго и четвертого полупроводниковых переключателей S2, S4. Кроме того, отрицательный полюс источника UIN постоянного напряжения соединен со вторым выводом выхода UOUT переменного напряжения.
При применении МОП-транзистора с запирающим слоем n-канала в качестве полупроводниковых переключателей S1, S2, S3, S4, S5 следует учитывать направление монтажа, что на фиг.2 показано пунктирными символами диодов.
В этом варианте выполнения изобретения целесообразно использование диода D2, функция которого в общем случае может быть реализована также соответствующим управлением полупроводникового переключателя.
Управление полупроводниковыми переключателями осуществляется посредством микроконтроллера (не показан).
При этом в соответствии с изобретением во время положительной полуволны выходного переменного напряжения второй и третий полупроводниковые переключатели S2, S3 постоянно включены, а первый и четвертый полупроводниковые переключатели S1, S4 постоянно выключены, в то время как пятый полупроводниковый переключатель S5 включается импульсным образом.
Во время отрицательной полуволны выходного переменного напряжения первый и четвертый полупроводниковые переключатели S1, S4 продолжительно включены, а второй и третий полупроводниковые переключатели S2, S3 продолжительно выключены, а пятый полупроводниковый переключатель S5 включается импульсным образом.
Фиг.3 показывает состояние, в котором преобразователь постоянного напряжения в переменное во время положительной полуволны выходного переменного напряжения принимает электрическую энергию от источника UIN постоянного напряжения. Для этого пятый полупроводниковый переключатель S5 замыкается, и поэтому создается путь для прохождения тока между положительным полюсом источника UIN постоянного напряжения через первый дроссель L1 и первый полупроводниковый переключатель S1. Вторая токовая цепь создается за счет накопленной на конденсаторе СC энергии через пятый и третий полупроводниковые переключатели S5, S3 и вторую катушку L2.
В этом состоянии дроссель L1 накапливает энергию, которая, как показано на фиг.4, после размыкания пятого полупроводникового переключателя S5, выдается через первый полупроводниковый диод D1 и полупроводниковую мостовую схему на выход UOUT переменного напряжения и одновременно на первый конденсатор СC.
Накопленная во втором дросселе L2 энергия, после размыкания пятого полупроводникового переключателя S5, выдается через полупроводниковый диод D1 и полупроводниковую мостовую схему на выход UOUT переменного напряжения.
Возникающие при этом токовые цепи проходят, с одной стороны, от положительного полюса источника UIN постоянного напряжения через первый дроссель L1, первый конденсатор СC, диод D1, второй полупроводниковый переключатель S2 на выход UOUT переменного напряжения и через сеть переменного напряжения к отрицательному полюсу источника UIN постоянного напряжения и, с другой стороны, от второго дросселя L2, через диод D1 и второй полупроводниковый переключатель S2 на выход UOUT переменного напряжения и через сеть переменного напряжения и третий полупроводниковый переключатель S3 назад ко второму дросселю L2.
С помощью фиг.5 и 6 ниже поясняются состояния переключения в течение отрицательной полуволны выходного переменного напряжения. Как видно из фиг.7, на этом временном интервале пятый полупроводниковый переключатель S5 включается импульсным образом, первый и третий полупроводниковые переключатели S1, S3 включаются продолжительным образом, и второй и четвертый полупроводниковые переключатели S2, S4 выключаются продолжительным образом. Тем самым, в соответствии с изобретением, во время отрицательной полуволны выходного переменного напряжения выполняется функция так называемого CUK-преобразователя.
На фиг.5 показаны соотношения, когда пятый полупроводниковый переключатель S5 замкнут.Формируется токовая цепь между положительным полюсом источника UIN постоянного напряжения через первый дроссель L1 и пятый полупроводниковый переключатель S5 к отрицательному полюсу источника постоянного напряжения и вторая токовая цепь через второй дроссель L2, первый конденсатор СC, пятый полупроводниковый переключатель S5, сеть UOUT выходного переменного напряжения и первый полупроводниковый переключатель S1.
В следующем процессе переключения, как показано на фиг.6, пятый полупроводниковый переключатель S5 размыкается.
Получающиеся в результате токовые цепи проходят, с одной стороны, от положительного полюса источника UIN постоянного напряжения через первый дроссель L1, первый конденсатор СC, диод D1 и четвертый полупроводниковый переключатель S4 к отрицательному полюсу источника UIN постоянного напряжения и, с другой стороны, через второй дроссель L2, диод D1, четвертый полупроводниковый переключатель S4, сеть UOUT выходного переменного напряжения и первый полупроводниковый переключатель S1.
На фиг.7 представлен примерный график изменения сигналов управления для полупроводниковых переключателей S1, S2, S3, S4, S5.
Claims (4)
1. Способ работы электронно-управляемого преобразователя постоянного напряжения в переменное с различными переключающими элементами, которые содержат полупроводниковые переключатели (S1, S2, S3, S4), дроссели (L1, L2), конденсаторы (СC) и диоды (D1, D2), отличающийся тем, что отдельные переключающие элементы преобразователя постоянного напряжения в переменное попеременно действуют как элементы SEPIC-преобразователя и CUK-преобразователя со сквозным соединением выходного нулевого проводника (N) с входным отрицательным полюсом, и преобразователь постоянного напряжения в переменное во время положительной полуволны выходного переменного напряжения управляется таким образом, что переключающие элементы выполняют функцию SEPIC - преобразователя, и преобразователь постоянного напряжения в переменное во время отрицательной полуволны выходного переменного напряжения управляется таким образом, что переключающие элементы выполняют функцию CUK-преобразователя.
2. Способ по п.1, отличающийся тем, что преобразователь постоянного напряжения в переменное включает в себя полупроводниковую мостовую схему, образованную из первого, второго, третьего и четвертого полупроводниковых переключателей (S1, S2, S3, S4), первый выход которой соединен с первым выводом выхода (UOUT) переменного напряжения преобразователя постоянного напряжения в переменное, второй выход которой соединен со вторым выводом выхода (UOUT) переменного напряжения преобразователя постоянного напряжения в переменное, кроме того предусмотрен первый дроссель (L1), первая сторона которого соединена с положительным полюсом источника (UIN) постоянного напряжения, а вторая сторона которого через пятый полупроводниковый переключатель (S5) соединена с отрицательным полюсом источника (UIN) постоянного напряжения, соединение между первым дросселем (L1) и пятым полупроводниковым переключателем (S5) через первый конденсатор (СC) соединено с первым выводом второго дросселя (L2) и анодом диода (D1), второй вывод второго дросселя (L2) соединен с первым входом мостовой схемы (S1, S2, S3, S4), и катод диода (D1) соединен со вторым входом мостовой схемы (S1, S2, S3, S4), и отрицательный полюс источника (UIN) постоянного напряжения соединен со вторым выводом выхода (UOUT) переменного напряжения.
3. Способ по п.2, отличающийся тем, что посредством микроконтроллера в течение положительной полуволны выходного переменного напряжения второй и третий полупроводниковые переключатели (S2, S3) постоянно включены, а первый и четвертый полупроводниковые переключатели (S1, S4) постоянно выключены, а пятый полупроводниковый переключатель (S5) включается импульсным образом, а во время отрицательной полуволны выходного переменного напряжения первый и четвертый полупроводниковые переключатели (S1, S4) продолжительно включены, а второй и третий полупроводниковые переключатели (S2, S3) продолжительно выключены, а пятый полупроводниковый переключатель (S5) включается импульсным образом.
4. Преобразователь постоянного напряжения в переменное по любому из пп.1-3, отличающийся тем, что предусмотрен микроконтроллер, который соответственно запрограммирован для управления полупроводниковыми переключателями.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATA1178/2004 | 2004-07-12 | ||
AT11782004 | 2004-07-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2007105093A RU2007105093A (ru) | 2008-08-20 |
RU2354034C2 true RU2354034C2 (ru) | 2009-04-27 |
Family
ID=35115978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2007105093/09A RU2354034C2 (ru) | 2004-07-12 | 2005-07-11 | Способ работы преобразователя постоянного напряжения в переменное и устройство для выполнения способа |
Country Status (9)
Country | Link |
---|---|
US (1) | US7561453B2 (ru) |
EP (1) | EP1766767B1 (ru) |
JP (1) | JP4524420B2 (ru) |
CN (1) | CN1998129B (ru) |
AT (1) | ATE484877T1 (ru) |
DE (1) | DE502005010390D1 (ru) |
ES (1) | ES2354258T3 (ru) |
RU (1) | RU2354034C2 (ru) |
WO (1) | WO2006005562A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2523434C2 (ru) * | 2012-10-15 | 2014-07-20 | Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации | Способ работы преобразователя постоянного напряжения в переменное и устройство для выполнения способа |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT504777B1 (de) * | 2007-01-23 | 2011-01-15 | Siemens Ag | Wechselrichter |
DE102007030577A1 (de) | 2007-06-29 | 2009-01-02 | Sma Solar Technology Ag | Wechselrichter zur Einspeisung elektrischer Energie in ein Energieversorgungsnetz |
AT505801B1 (de) * | 2007-09-20 | 2012-09-15 | Siemens Ag | Verfahren zum betrieb eines elektronisch gesteuerten wechselrichters |
CN101952786B (zh) * | 2007-12-04 | 2014-03-12 | 加州动力研究公司 | Sepic馈入降压转换器 |
WO2009156230A2 (de) * | 2008-06-25 | 2009-12-30 | Siemens Ag Österreich | Wechselrichter und verfahren zum betreiben des wechselrichters |
US9337731B2 (en) * | 2012-12-13 | 2016-05-10 | Linear Technology Corporation | Power converter for generating both positive and negative output signals |
US20140268927A1 (en) * | 2013-03-14 | 2014-09-18 | Vanner, Inc. | Voltage converter systems |
DE102016111498A1 (de) * | 2015-07-07 | 2017-01-12 | Panasonic Intellectual Property Management Co., Ltd. | Stromversorgungsvorrichtung und beleuchtungskörper |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4354223A (en) * | 1981-09-02 | 1982-10-12 | General Electric Company | Step-up/step down chopper |
US5583421A (en) * | 1994-08-10 | 1996-12-10 | Hewlett-Packard Company | Sepic converter with transformerless line isolation |
DE19642522C1 (de) | 1996-10-15 | 1998-04-23 | Dietrich Karschny | Wechselrichter |
GB2335317A (en) * | 1998-03-11 | 1999-09-15 | Simon Richard Greenwood | Bi-directional voltage converter |
US5969484A (en) * | 1998-05-14 | 1999-10-19 | Optimum Power Conversion, Inc. | Electronic ballast |
US6160722A (en) | 1999-08-13 | 2000-12-12 | Powerware Corporation | Uninterruptible power supplies with dual-sourcing capability and methods of operation thereof |
DE10110239A1 (de) * | 2001-01-24 | 2002-07-25 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Betriebsgerät für Lampen mit SEPIC Wandler |
US6515883B2 (en) * | 2001-03-28 | 2003-02-04 | Powerware Corporation | Single-stage power converter and an uninterruptible power supply using same |
CN1120562C (zh) * | 2001-11-13 | 2003-09-03 | 浙江大学 | 最小电压型有源钳位直流-直流变换器 |
-
2005
- 2005-07-11 EP EP05784710A patent/EP1766767B1/de not_active Not-in-force
- 2005-07-11 US US11/632,334 patent/US7561453B2/en not_active Expired - Fee Related
- 2005-07-11 AT AT05784710T patent/ATE484877T1/de active
- 2005-07-11 ES ES05784710T patent/ES2354258T3/es active Active
- 2005-07-11 CN CN2005800236757A patent/CN1998129B/zh not_active Expired - Fee Related
- 2005-07-11 WO PCT/EP2005/007486 patent/WO2006005562A1/de active Application Filing
- 2005-07-11 RU RU2007105093/09A patent/RU2354034C2/ru not_active IP Right Cessation
- 2005-07-11 JP JP2007520730A patent/JP4524420B2/ja not_active Expired - Fee Related
- 2005-07-11 DE DE502005010390T patent/DE502005010390D1/de active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2523434C2 (ru) * | 2012-10-15 | 2014-07-20 | Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации | Способ работы преобразователя постоянного напряжения в переменное и устройство для выполнения способа |
Also Published As
Publication number | Publication date |
---|---|
ATE484877T1 (de) | 2010-10-15 |
WO2006005562A1 (de) | 2006-01-19 |
RU2007105093A (ru) | 2008-08-20 |
CN1998129B (zh) | 2010-06-16 |
JP4524420B2 (ja) | 2010-08-18 |
EP1766767A1 (de) | 2007-03-28 |
US20080212348A1 (en) | 2008-09-04 |
ES2354258T3 (es) | 2011-03-11 |
CN1998129A (zh) | 2007-07-11 |
JP2008506348A (ja) | 2008-02-28 |
DE502005010390D1 (de) | 2010-11-25 |
EP1766767B1 (de) | 2010-10-13 |
US7561453B2 (en) | 2009-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101461125B (zh) | 逆变器电路和用于运行逆变器电路的方法 | |
US8264159B2 (en) | Circuit arrangement and method for operating at least one LED and at least one fluorescent lamp | |
US9502973B2 (en) | Buck converter with III-nitride switch for substantially increased input-to-output voltage ratio | |
CN101803168A (zh) | 用于运行电子控制的逆变器的方法 | |
US8199544B2 (en) | Zero-voltage switching power converter | |
Michal | Three-level PWM floating H-bridge sinewave power inverter for high-voltage and high-efficiency applications | |
JP2005318766A (ja) | Dc−dcコンバータ | |
JP2006014454A (ja) | Dc−dcコンバータ | |
RU2354034C2 (ru) | Способ работы преобразователя постоянного напряжения в переменное и устройство для выполнения способа | |
US7688044B2 (en) | Device for transforming and stabilizing a primary AC voltage for supplying an electric load | |
US11205969B2 (en) | Inverter device configured to operate in a CCM and sequentially operate in buck and boost phases | |
KR100928092B1 (ko) | 인버터 작동 방법 및 상기 방법을 실행하기 위한 장치 | |
US6657872B2 (en) | Voltage converter | |
CA2452739A1 (en) | Switched-mode power supply | |
KR100861432B1 (ko) | 인버터를 동작시키기 위한 방법, 및 상기 방법을 실행하기위한 장치 | |
TWI849969B (zh) | 轉換裝置 | |
Ladhari et al. | A novel AC/DC converter topology using a bidirectional GaN switch application: Led driver | |
CN114123828B (zh) | 逆变电路及调制方法 | |
Sterna et al. | A novel LED driver converter based on bi-directional GaN HEMT AC switches | |
US20100289334A1 (en) | Inverter | |
CN117174530A (zh) | 接触器及其控制方法 | |
CN116802981A (zh) | 电力转换系统和控制方法 | |
Begalke | A direct isolated bi-directional converter as a power electronic building block (PEBB) | |
RU79728U1 (ru) | Преобразовательная ячейка | |
JP2007325424A (ja) | 昇圧コンバータ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC4A | Invention patent assignment |
Effective date: 20100907 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20170712 |