RU2350455C1 - Способ упрочнения сферических поверхностей - Google Patents
Способ упрочнения сферических поверхностей Download PDFInfo
- Publication number
- RU2350455C1 RU2350455C1 RU2007138667/02A RU2007138667A RU2350455C1 RU 2350455 C1 RU2350455 C1 RU 2350455C1 RU 2007138667/02 A RU2007138667/02 A RU 2007138667/02A RU 2007138667 A RU2007138667 A RU 2007138667A RU 2350455 C1 RU2350455 C1 RU 2350455C1
- Authority
- RU
- Russia
- Prior art keywords
- waveguide
- springs
- disk springs
- deforming elements
- workpiece
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 16
- 238000005728 strengthening Methods 0.000 title 1
- 230000002093 peripheral effect Effects 0.000 claims abstract description 6
- 230000000737 periodic effect Effects 0.000 claims description 10
- 230000000694 effects Effects 0.000 abstract description 2
- 239000007787 solid Substances 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 12
- 239000004033 plastic Substances 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 230000035939 shock Effects 0.000 description 3
- 244000309464 bull Species 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000005068 cooling lubricant Substances 0.000 description 1
- 239000002173 cutting fluid Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Landscapes
- Springs (AREA)
Abstract
Изобретение относится к технологии машиностроения, а именно к отделочно - упрочняющей обработке сферических поверхностей деталей. Обеспечивают вращательное движение устройству, содержащему корпус, с расположенными в нем деформирующими элементами, бойком и волноводом, к которому прикладывают периодическую импульсную нагрузку. Осуществляют вращательное движение обрабатываемой заготовке. Деформирующие элементы охватывают обрабатываемую заготовку и выполнены в виде тарельчатых пружин в количестве, равном четному числу. Тарельчатые пружины размещены во втулке с буртиком, установленной на корпусе. Тарельчатые пружины имеют сплошную плоскую периферийную торцовую поверхность и коническую поверхность с углом наклона к центральной оси, имеющей радиальные пазы и центральное отверстие. Тарельчатые пружины набраны в пакет с расположением радиальных пазов в шахматном порядке относительно друг друга. Пакет тарельчатых пружин установлен между буртиком втулки и волноводом. В результате расширяются технологические возможности, увеличивается производительность и снижается себестоимость. 6 ил.
Description
Изобретение относится к технологии машиностроения, в частности к способам отделочно-упрочняющей обработки сферических поверхностей деталей, например, автомобильных шаровых пальцев из сталей и сплавов поверхностным пластическим деформированием (ППД) с импульсным нагружением инструмента.
Известен способ и устройство для обработки неполных сферических поверхностей деталей ППД, при котором обрабатываемой заготовки и деформирующему инструменту сообщают вращательное движение, причем деформирующему устройству сообщают вращение по окружности, лежащей в плоскости, смещенной относительно центра обрабатываемой сферической поверхности, при этом угловая скорость деформирующего устройства связана с угловой скоростью обрабатываемой заготовки соотношением ωин>>ωд, кроме того, дано математическое соотношение между усилием нагружения и усилием обкатывания [1].
Способ отличается низким КПД, большой энергоемкостью, недостаточно большой глубиной упрочненного слоя и невысокой степенью упрочнения обрабатываемой поверхности.
Задачей изобретения является расширение технологических возможностей ППД благодаря использованию импульсного нагружения деформирующего инструмента, позволяющее управлять глубиной упрочненного слоя, степенью упрочнения и микрорельефом поверхности, а также повышение качества, точности и производительности обработки благодаря использованию многоэлементного деформирующего инструмента.
Поставленная задача решается предлагаемым способом, предназначенным для упрочнения сферических поверхностей, при котором устройство, содержащее корпус, с расположенными в нем деформирующими элементами, бойком и волноводом, к которому прикладывают периодическую импульсную нагрузку, вырабатываемую гидравлическим генератором импульсов, подводят к обрабатываемой поверхности, дают вращательное движение, а обрабатываемой заготовке - вращательное движение, причем периодическая импульсная нагрузка продольного направления от волновода переводится в радиальное направление деформирующих элементов, охватывающих обрабатываемую заготовку и принадлежащих тарельчатым пружинам, четное количество которых размещены во втулке с буртиком, установленной на корпусе, при этом упомянутые тарельчатые пружины имеют сплошную плоскую периферийную торцовую поверхность и коническую с углом наклона αСВ к центральной оси поверхность с радиальными пазами и прерывистым центральным отверстием, причем тарельчатые пружины набраны в пакет с радиальными пазами, расположенными в шахматном порядке относительно друг друга и выпуклыми коническими торцами друг к другу, кроме того, пакет тарельчатых пружин установлен между буртиком втулки и волноводом. Сущность предлагаемого способа поясняется чертежами. На фиг.1 представлена схема обработки поверхностным пластическим деформированием заготовки автомобильного шарового пальца, установленного в специальном приспособлении с базированием по конической поверхности, устройством в момент импульсного нагружения деформирующих элементов - тарельчатых пружин; на фиг.2 - то же в момент снятия нагружения с деформирующих элементов - тарельчатых пружин и отвода бойка от волновода и волновода от тарельчатых пружин; на фиг.3 - сечение А-А на фиг.1; на фиг.4 - сечение Б-Б на фиг.3, момент нагружения деформирующих элементов; на фиг.5 - сечение В-В на фиг.4; на фиг.6 - сечение Б-Б на фиг.3, момент свободного состояния (без нагружения) деформирующих элементов.
Предлагаемый способ предназначен для поверхностного пластического деформирования (ППД) для упрочнения сферических поверхностей 1 с периодическим импульсным нагружением деформирующих элементов 2, при этом обрабатываемой заготовке 3, например, автомобильного шарового пальца, сообщают вращательное движение VЗ, а деформирующим элементам - вращательное движение VИ и продольную подачу SПР с целью подвода и поджатия их к центру О сферической поверхности.
Корпус 4, являющийся гидроцилиндром, выполнен полым и на нем на резьбе установлена втулка 5 с буртиком 6. В корпусе 4 расположены боек 7 и одна из ступеней волновода 8, а во втулке 5 расположены вторая ступень волновода 8 и деформирующие элементы 2, четное количество которых установлено между буртиком 6 и волноводом 8.
На волновод 8 через боек 7 воздействует периодическая импульсная нагрузка РИМ, вырабатываемая гидравлическим генератором импульсов (ГГИ) (не показан), который соединен с корпусом 4 [2-4].
Деформирующие элементы 2 выполнены в форме тарельчатых пружин и имеют сплошную плоскую периферийную торцовую поверхность 2П и коническую 2K с углом наклона αСВ к центральной оси поверхность с радиальными пазами и прерывистым центральным отверстием. Таким образом, коническая часть 2K тарельчатой пружины разделена радиальными пазами на лепестки, консольно расположенные относительно периферийной поверхности 2П и отогнутые на угол αСВ относительно центральной оси.
Тарельчатые пружины 2 набраны в пакет с радиальными пазами, расположенными в шахматном порядке относительно друг друга, выпуклыми коническими торцами друг к другу, и установлены между буртиком 6 втулки 2 и волноводом 8.
Тарельчатые пружины имеют возможность самоцентрироваться по обрабатываемой заготовке, так как они установлены по внутреннему диаметру втулки 5 по скользящей посадке с зазором.
Тарельчатые пружины выполнены (по ГОСТ 3057-79) из стали 60С2А с различным расстоянием между радиальными пазами и различными размерами контактирующих с заготовкой деформирующих элементов. Чем больше радиальных пазов имеет тарельчатая пружина, тем меньше ее жесткость и сопротивляемость прогибу и тем меньше площадь контакта деформирующих элементов с обрабатываемой поверхностью.
При перемещении бойка 7 и волновода 8 снизу вверх, согласно фиг.1-2, тарельчатые пружины 2 воспринимают на себя периодическую импульсную нагрузку РИМ волновода, благодаря которой нижние пружины перемещаются вверх, а их лепестки прогибаются, выпрямляются и приближаются к плоскости периферийной поверхности, причем диаметр отверстий dо тарельчатых пружин 2 уменьшается до d1, d2 … и так далее, где индекс 1, 2 - нумерация пружин в пакете, начиная с верхней, контактирующей с буртиком 6.
Общая продольная периодическая импульсная нагрузка РИМ бойка, передаваемая волноводу, воспринимается всем пакетом тарельчатых пружин и равномерно распределяется на каждую пружину. Это значит, что каждая тарельчатая пружина своими лепестками оказывает упрочняющее воздействие с импульсной нагрузкой РИМ Н, направленной к обрабатываемой поверхности (см. фиг.4).
Периодическую импульсную РИМ нагрузку прикладывают в направлении продольной подачи и благодаря особенностям конструкции тарельчатых пружин направляют ее к обрабатываемой поверхности.
Периодическая импульсная нагрузка РИМ должна быть больше суммарной силы, требуемой для деформации тарельчатых пружин и силы, необходимой для упрочнения. Отвод волновода и бойка после удара в первоначальное положение (согласно фиг.1-2, вниз) осуществляется за счет упругости тарельчатых пружин и возвращения их в первоначальное свободное состояние. С целью смягчения удара волновода по корпусу при отводе волновода в торце корпуса установлен демпфер 9, например, в виде резинового кольца.
В результате удара бойка по торцу волновода и, в свою очередь, волновода по торцу пакета тарельчатых пружин, последние воздействуют на обрабатываемую поверхность с цикличностью, задаваемой гидравлическим генератором импульсов. Возможность рационального использования энергии ударных волн определяется размерами пружин.
В результате удара бойка 7 по торцу волновода 8 в бойке и волноводе возникают ударные и противоположно направленные импульсы одинаковой амплитуды и продолжительности, каждый из которых будет воздействовать на обрабатываемую поверхность с цикличностью, равной двойной продолжительности импульсов. Дойдя до обрабатываемой поверхности, ударный импульс распределяется на проходящий и отражающий. Проходящий импульс формирует динамическую составляющую силы деформации.
Острые кромки деформирующих элементов пружин, непосредственно контактирующих с обрабатываемой сферической поверхностью 1 заготовки, выполнены закругленными с радиусом R=h/2, где h - толщина тарельчатых пружин, мм.
Деформирующие элементы каждой пружины без нагрузки совершают вращательное движение по своей окружности диаметром do, лежащей в плоскости, которая смещена относительно центра О обрабатываемой сферической поверхности на величину, зависящую от конструктивных особенностей обрабатываемой заготовки. Неполная сферическая поверхность обрабатываемой заготовки вынуждает устанавливать продольную ось устройства под углом α относительно плоскости, перпендикулярной продольной оси заготовки.
Точность формы обрабатываемой сферической поверхности заготовки предлагаемым устройством повышается и снижается величина шероховатости благодаря самоцентрированию и самоустановке тарельчатых пружин по обрабатываемой заготовке при ее биениях и вибрациях.
Глубина упрочненного слоя предлагаемым способом достигает 0,5…1,5 мм, что значительно (в 1,5…2 раза) больше, чем при традиционном ППД. Наибольшая степень упрочнения составляет 15…25%. В результате обработки предлагаемым способом по сравнению с традиционным ППД эффективная глубина слоя, упрочненного на 20% и более, возрастает в 1,5…2,2 раза, а глубина слоя, упрочненного на 10% и более - в 1,3…1,6 раза.
Пример. Для оценки параметров качества поверхностного слоя, упрочненного предлагаемым способом, проведены экспериментальные исследования обработки автомобильного шарового пальца с использованием данного разработанного устройства. Заготовку пальца шарового верхнего 2101-2904187, установленную в специальном электромеханическом приспособлении, упрочняли на станке мод. 16К20 с помощью устройства с использованием ГГИ [2-4]. Заготовка изготовлена из стали 20Х ГОСТ 1050-74. Тарельчатые пружины выполнены по ГОСТ 3057-79 из стали 60С2А. Смазывающе-охлаждающей жидкостью служил сульфофрезол (5%-ная эмульсия).
Обрабатывали сферу диаметром 32,7±0,1; исходный параметр шероховатости Ra=3,2 мкм, достигнутый - Ra=0,63. Значения технологических факторов (частоты ударов, величины подачи, скорости вращения заготовки и инструмента) выбирались таким образом, чтобы обеспечить кратность ударного воздействия на элементарную площадку обрабатываемой поверхности в диапазоне 6…10. Дальнейшее увеличение кратности деформирующего воздействия ведет к разупрочнению.
Скорость вращения заготовки VЗ=10 м/мин (nЗ=100 мин-1); скорость деформирующих элементов - VИ=50 м/мин (nИ=500 мин-1); продольная подача SПР устройства осуществлялась вручную до создания зазора между деформирующими элементами и обрабатываемой поверхностью z=0,3…0,6 мм.
Требуемая шероховатость и точность сферической поверхности была достигнута за Тм=0,75 мин (против Тм баз=2,75 мин по базовому варианту при традиционной обработке обкатыванием на Орловском сталепрокатном заводе ОСПАЗ). Контроль проводился скобой индикаторной с индикатором ИЧ 10 Б кл. 1 ГОСТ 577-68 и на профилометре мод. 283 тип AII ГОСТ 193 00-86. В обработанной партии (равной 100 штук) бракованных деталей не обнаружено. Отклонение обработанной поверхности от сферичности составило не более 0,02 мм, что допустимо ТУ.
Величина силы импульсного воздействия пружин на обрабатываемую поверхность составляла РИМ=255…400 кН. Глубина упрочненного импульсной обработкой слоя в 3…4 раза выше, чем при традиционном обкатывании.
Упрочненный слой при традиционном обкатывании формируется в условиях длительного действия больших статических усилий. По предлагаемому способу аналогичная глубина упрочненного слоя достигается в результате кратковременного воздействия на очаг деформации пролонгированного импульса энергии.
Исследования напряженного состояния упрочненного поверхностного слоя импульсной обработкой показали, что максимальные остаточные напряжения находятся близко к поверхности, как при чеканке, что благоприятно для большинства сопрягаемых деталей механизмов и машин. Сравнение глубины напряженного и упрочненного слоя, градиента напряжений и градиента наклепа показывает, что глубина напряженного слоя в 1,1…1,3 раза больше, чем глубина наклепанного слоя, что согласуется с теорией поверхностного пластического деформирования. Обработка показала, что параметр шероховатости обработанных сферических поверхностей уменьшился до значения Ra=0,32…0,63 мкм при исходном - Ra=3,2…6,3 мкм, производительность повысилась более чем в три раза по сравнению с традиционным обкатыванием. Энергоемкость процесса уменьшилась в 2,2 раза. Микровибрации в процессе обработки благоприятно сказываются на условиях работы инструмента - тарельчатых пружин. Наложение малого по амплитуде колебательного движения приводит к более равномерному распределению нагрузки на инструмент, вызывает дополнительные циклические перемещения контактных поверхностей инструмента и заготовки, облегчает формирование упрочняемой поверхности. Колебания способствуют лучшему проникновению смазочно-охлаждающей жидкости (СОЖ) в зону обработки. При наложении колебаний деформирующая поверхность инструмента периодически «отдыхает», что способствует увеличению ее стойкости. Обработка в условиях колебаний резко увеличивает эффективность охлаждающего, диспергирующего и пластифицирующего действия СОЖ вследствие облегчения ее доступа в зону контакта инструмента и заготовки.
Предлагаемый способ расширяет технологические возможности импульсной обработки поверхностным пластическим деформированием за счет управления глубиной упрочненного слоя и микрорельефом сферической поверхности путем использования устройства и инструмента специальной формы с большим количеством деформирующих элементов, что позволяет увеличить производительность и снизить расходы на изготовление благодаря простоте конструкции.
Источники информации
1. Патент РФ 2031770, МКП6 B24В 39/04, 39/00. Способ обработки неполных сферических поверхностей деталей поверхностным деформированием. Гаврилин А.М., Самойлов Н.Н. 5045958/27; 14.04.92; 27.03.95. Бюл. №9 - прототип.
2. Патент РФ 2 098 259, МКИ6 В24В 39/00. Лазуткин А.Г., Киричек А.В., Соловьев Д.Л. Способ статикоимпульсной обработки поверхностным пластическим деформированием. №96110476/02, 23.05.96; 10.12.97. Бюл. №34.
3. Киричек А.В., Лазуткин А.Г., Соловьев Д.Л. Статико - импульсная обработка и оснастка для ее реализации // СТИН, 1999, №6. - С.20-24.
4. Патент РФ 2090342. Лазуткин А.Г., Киричек А.В., Соловьев Д.Л. Гидроударное устройство для обработки деталей поверхностным пластическим деформированием. 1997. Бюл. №34.
Claims (1)
- Способ упрочнения сферических поверхностей, включающий подведение к обрабатываемой поверхности и обеспечение вращательного движения устройству, содержащему корпус, с расположенными в нем деформирующими элементами, бойком и волноводом, к которому прикладывают периодическую импульсную нагрузку, вырабатываемую гидравлическим генератором импульсов, и осуществление вращательного движения обрабатываемой заготовке, отличающийся тем, что периодическую импульсную нагрузку прикладывают к волноводу в продольном направлении и осуществляют ее перевод в радиальное направление к деформирующим элементам, которые охватывают обрабатываемую заготовку и выполнены в виде тарельчатых пружин в количестве, равном четному числу, которые размещены во втулке с буртиком, установленной на корпусе, при этом упомянутые тарельчатые пружины имеют сплошную плоскую периферийную торцовую поверхность и коническую поверхность с углом наклона к центральной оси, с радиальными пазами и прерывистым центральным отверстием, при этом тарельчатые пружины набраны в пакет с расположением радиальных пазов в шахматном порядке относительно друг друга и выпуклыми коническими торцами друг к другу, а пакет тарельчатых пружин установлен между буртиком втулки и волноводом.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2007138667/02A RU2350455C1 (ru) | 2007-10-17 | 2007-10-17 | Способ упрочнения сферических поверхностей |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2007138667/02A RU2350455C1 (ru) | 2007-10-17 | 2007-10-17 | Способ упрочнения сферических поверхностей |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2350455C1 true RU2350455C1 (ru) | 2009-03-27 |
Family
ID=40542731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2007138667/02A RU2350455C1 (ru) | 2007-10-17 | 2007-10-17 | Способ упрочнения сферических поверхностей |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2350455C1 (ru) |
-
2007
- 2007-10-17 RU RU2007138667/02A patent/RU2350455C1/ru not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2350455C1 (ru) | Способ упрочнения сферических поверхностей | |
RU2350454C1 (ru) | Устройство для упрочнения сферических поверхностей | |
RU2367565C1 (ru) | Способ статико-импульсного иглофрезерования или упрочнения сферических поверхностей | |
RU2366562C1 (ru) | Способ статико-импульсного упрочнения валов | |
RU2367561C1 (ru) | Устройство для отделочной обработки сферических поверхностей | |
RU2366558C1 (ru) | Способ статико-импульсного упрочнения плоских поверхностей с использованием роторного генератора механических импульсов | |
RU2324584C1 (ru) | Способ статико-импульсного поверхностного пластического деформирования | |
RU2370355C1 (ru) | Способ импульсного упрочнения сферических поверхностей | |
RU2283748C1 (ru) | Устройство для статико-импульсного раскатывания | |
RU2287426C1 (ru) | Способ статико-импульсного раскатывания | |
RU2347664C1 (ru) | Способ комбинированной статико-импульсной обработки поверхностным пластическим деформированием | |
RU2371299C1 (ru) | Устройство импульсного упрочнения сферических поверхностей | |
RU2383426C1 (ru) | Устройство для статико-импульсного упрочнения винтов | |
RU2367562C1 (ru) | Способ упрочнения | |
RU2291764C1 (ru) | Комбинированный инструмент для обработки отверстий иглофрезерованием с упрочнением | |
RU2347663C1 (ru) | Устройство для статико-импульсного обкатывания валов | |
RU2347661C1 (ru) | Устройство для импульсного упрочнения отверстий | |
RU2287424C1 (ru) | Устройство для статико-импульсного поверхностного пластического деформирования вращающимся инструментом | |
RU2366559C1 (ru) | Роторный генератор механических импульсов для статико-импульсного упрочнения плоских поверхностей | |
RU2325265C1 (ru) | Устройство для статикоимпульсного поверхностного пластического деформирования | |
RU2383425C1 (ru) | Устройство для статико-импульсного упрочнения винтов | |
RU2364490C1 (ru) | Способ статико-импульсного упрочнения плоских поверхностей | |
RU2312004C1 (ru) | Упругий деформирующий инструмент для статикоимпульсной обработки | |
RU2350457C1 (ru) | Способ импульсного упрочнения винтов | |
RU2366561C1 (ru) | Устройство для статико-импульсного упрочнения валов |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20091018 |