[go: up one dir, main page]

RU2338765C1 - Состав для покрытий с биоцидными свойствами (варианты) и способ получения наноструктурной добавки с биоцидными свойствами - Google Patents

Состав для покрытий с биоцидными свойствами (варианты) и способ получения наноструктурной добавки с биоцидными свойствами Download PDF

Info

Publication number
RU2338765C1
RU2338765C1 RU2007112815/04A RU2007112815A RU2338765C1 RU 2338765 C1 RU2338765 C1 RU 2338765C1 RU 2007112815/04 A RU2007112815/04 A RU 2007112815/04A RU 2007112815 A RU2007112815 A RU 2007112815A RU 2338765 C1 RU2338765 C1 RU 2338765C1
Authority
RU
Russia
Prior art keywords
bentonite
nanoparticles
montmorillonite
ions
alkali metal
Prior art date
Application number
RU2007112815/04A
Other languages
English (en)
Inventor
В чеслав Иванович Беклемышев (RU)
Вячеслав Иванович Беклемышев
Игорь Иванович Махонин (RU)
Игорь Иванович Махонин
Михаил Мефодьевич Афанасьев (RU)
Михаил Мефодьевич Афанасьев
н Ара Аршавирович Абрам (RU)
Ара Аршавирович Абрамян
Владимир Александрович Солодовников (RU)
Владимир Александрович Солодовников
Рафаэль Врамович Вартанов (RU)
Рафаэль Врамович Вартанов
Original Assignee
Вячеслав Иванович Беклемышев
Игорь Иванович Махонин
Михаил Мефодьевич Афанасьев
Ара Аршавирович Абрамян
Владимир Александрович Солодовников
Рафаэль Врамович Вартанов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Вячеслав Иванович Беклемышев, Игорь Иванович Махонин, Михаил Мефодьевич Афанасьев, Ара Аршавирович Абрамян, Владимир Александрович Солодовников, Рафаэль Врамович Вартанов filed Critical Вячеслав Иванович Беклемышев
Priority to RU2007112815/04A priority Critical patent/RU2338765C1/ru
Application granted granted Critical
Publication of RU2338765C1 publication Critical patent/RU2338765C1/ru

Links

Landscapes

  • Paints Or Removers (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Изобретение относится к химической промышленности по производству лакокрасочных материалов, в частности к составам для покрытий, обладающих биоцидными свойствами при обработке различных поверхностей конструкционных изделий, изготовленных из металла, дерева, бетона и т.д. и используемых в различных областях техники, например в строительстве, медицине, судостроительстве и т.д. Технической задачей изобретения является изготовление состава для покрытий с биоцидными свойствами и способа получения наноструктурной добавки с биоцидными свойствами, реализующих технический результат унификации добавки с биоцидными свойствами к различным типам лакокрасочных материалов, повышению эксплуатационной надежности состава за счет улучшения его инактивирующего биоцидного пролонгирующего действия на обрабатываемые поверхности, повышения экологической безопасности и упрощения процесса получения наноструктурных частиц добавки с биоцидными свойствами. Поставленная задача решается тем, что состав содержит связующую основу в виде лакокрасочного материала или пленкообразующего, добавку биоцидного действия с наноструктурным размером частиц - 0,5-10 мас.% количества на состав модифицированного бентонита в форме монтмориллонита с размером наночастиц 2-500 нм, в котором ионы щелочных металлов при модификации бентонита раствором солей серебра и/или меди замещены на ионы Ag+ и/или Cu+, либо состав содержит в качестве добавки капсаицин и модифицированный бентонит в форме монтмориллонита с размером наночастиц 2-500 нм, в котором ионы щелочных металлов при модификации бентонита раствором солей серебра и/или меди замещены на ионы Ag+ и/или Cu+ и/или при модификации бентонита раствором катамина АБ ионы щелочных металлов замещены на катионы последнего: [CnH2n+1N+(CH3)2CH2C6H5], где n=10-18. 3 н. и 9 з.п. ф-лы.

Description

Изобретение относится к химической промышленности по производству лакокрасочных материалов, в частности к составам для покрытий, обладающих биоцидными свойствами при обработке различных поверхностей конструкционных изделий, изготовленных из металла, дерева, бетона и т.д., и используемых в различных областях техники, например в строительстве, медицине, судостроительстве и др.
Используемые в настоящее время лакокрасочные материалы (ЛКМ) традиционно относятся к четырем основным типам: органоразбавляемые, водоразбавляемые, порошковые, радиационно отверждаемые.
Каждый из этих материалов имеет специальное назначение, к особым специфическим особенностям этих материалов относят их биоцидные свойства по предотвращению распространения грибковых бактерий, микроорганизмов на обрабатываемых поверхностях.
В последнее время разрабатываются различные биоцидные лакокрасочные материалы, обеспечивающие получение покрытий с бактерицидными, вирулицидными, фунгицидными и спороцидными свойствами.
Известно использование в химической промышленности составов для покрытий, в которых в качестве биоцидной добавки используют соединения на основе высокомолекулярных солей полигексаметиленгуанимида (ПГМГ) (см., например, патенты RU №2133256, 1999; №2131897, 1999).
Препараты ПГМГ удовлетворяют многим требованиям, предъявляемым к биоцидам для водоразбавляемых ЛКМ. Они эффективны против разнообразных микроорганизмов, хорошо растворяются в воде, не имеют цвета и запаха, устойчивы при хранении, сохраняют в покрытии бактерицидные свойства (см. ст. Воинцева И.И., Скороходова О.Н., Валицкий П.М. и др. «Лак для биоцидных покрытий»//«Лакокрасочные материалы», 3-12, 1999 г.).
Однако при введении солей ПГМГ в ЛКМ возникает проблема их совместимости с различными ЛКМ, основами красок и пленкообразователями, поскольку эти соли растворяются в воде и в низших спиртах, но не растворяются в органических растворителях, используемых в рецептурах ЛКМ, что ограничивает возможность их спользования в органоразбавляемых и радиационно отверждаемых ЛКМ, традиционно применяемых в качестве покрытий для подводной части судов, яхт.
Препараты на основе солей полигексаметиленгуанимида выпускаются в виде концентрированных водных растворов, растворов на основе этилового спирта или порошков. Использование порошкообразных препаратов для приготовления органоразбавляемых составов для покрытий с биоцидными свойствами нецелесообразно вследствие аллергического действия указанного препарата на слизистые и кожу человека, а использование растворов на основе этилового спирта нецелесообразно по технике безопасности, т.к., по мнению ряда специалистов, это может привести к токсическому гепатиту.
Вместе с тем в последнее десятилетие в составах для покрытий с биоцидными свойствами успешно применяются наноразмерные металлические частицы - ультрамалые агрегаты металлов диаметром порядка нескольких нанометров (1 нм=10-9 м).
В большинстве промышленных лакокрасочных материалов в качестве биоцидных добавок используют металлосодержащие композиции на основе таких металлов как олово, свинец, а также ванадий (см., например, патент US №4918147), на основе мышьяка, хрома (см. ж. «Лакокрасочные материалы», 1996 г., 12, с.21).
Однако целесообразность использования свинца, олова и других вышеуказанных металлов в красках и так называемых "основах краски" (то есть компоненты краски до добавления пигмента) ограничено из-за соображений токсичности, и особенно в отношении покрытий для обработки поверхностей подводной части судов, т.к. попадание названных металлов в организмы рыб и животных морской фауны приводит к отравляющему воздействию на организм человека.
Вместе с тем давно известна биологическая активность биоцидного действия различных серебросодержащих добавок, широко используемых в различных отраслях промышленности, в том числе в медицине.
Инактивирующее биоцидное действие серебросодержащих добавок подтверждено и при использовании их в составах для покрытий (см. патенты RU №№2195473, 2186810, 2215010, 2215011).
В изобретении по патенту RU №2195473 в составе для покрытий использована биоцидная добавка на основе фосфата или ацетата полигексаметиленгуанида и препарата, содержащего наноструктурные частицы серебра, диоктилсульфосукцинат натрия, 3,5,7,3,4-пентагидроксифлавон, воду и изооктан.
Однако наличие в составе для покрытий солей полигексаметиленгуанида, как уже отмечалось ранее, технологически ограничено используемыми для изготовлений покрытий ЛКМ, основ красок и пленкообразователей, а наличие в биоцидной добавке химических соединений ПАВ, соответственно диоктилсульфосукцината натрия и 3,5,7,3,4-пентагидроксифлавона удорожает и усложняет компонентный состав биоцидного препарата.
В техническом решении по патенту RU №2215010 в качестве биоцидной добавки в составах для покрытий используют серебросодержащее органическое соединение, предпочтительно стеарат серебра (СН3(СН2)16COOAg или пальмитат серебра CH3(CH2)14COOAg.
В изобретении по патенту RU №2215011:
для водорастворимого ЛКМ с бактерицидными свойствами в качестве биоцида используют соединение [Ag(NH3)2]+, полученное в результате взаимодействия водонерастворимой соли - хлорида серебра с водным раствором аммиака;
для спирторастворимого ЛКМ с бактерицидными свойствами в качестве биоцида использовано соединение [AgI2]-, полученное в результате взаимодействия водонерастворимого иодида серебра в спиртовом растворе иодида калия.
К существенным недостаткам данных технических решений (патент №№2215010, 2215011) следует, прежде всего, отнести отсутствие унифицированности в химико-физической совместимости названных биоцидных добавок с различными типами лакокрасочных материалов, соответственно органоразбавляемыми, водоразбавляемыми. В техническом решении по патенту RU №2186810, являющемся наиболее близким аналогом к заявляемому техническому решению, предложен состав для покрытий с биоцидными свойствами, в котором в качестве биоцидной добавки используют введенный в лакокрасочный материал металлосодержащий компонент на основе наноструктурных частиц серебра или меди или смеси наноструктурных частиц серебра и меди, с временем жизни не менее трех месяцев в составе и при содержании наноструктурных частиц металла от 2×10-6 до 0,3 молей в 1 кг лакокрасочного материала. Размеры наноструктурных частиц металлов от 2 до 200 нм.
Используемые в составе для покрытия названные металлосодержащие биоцидные добавки унифицированы как в отношении органоразбавляемых, водоразбавляемых, порошковых ЛКМ, их основ и пленкообразующих ЛКМ, которые используют, в том числе, в качестве противогрибковых и противообрастающих покрытий при обработке поверхностей подводной части судов, яхт.
Однако известный состав для покрытий, содержащий наноструктурные частицы серебра или меди, имеет существенные недостатки, заключающиеся:
в снижении бактерицидной активности состава лакокрасочного материала вследствие существенного изменения структуры биоцидного компонента в результате явления коагуляции наночастиц металла и выпадения их в осадок при хранении ЛКМ, что приводит к снижению эксплуатационной надежности состава покрытия вследствие ухудшения пролонгирующего действия указанных частиц металлов на поверхности раздела фаз вода или воздух - лакокрасочное покрытие;
в затратной части получения наноструктурных металлических частиц серебра, меди, основанных на использовании дорогостоящих химических или физических методов (см., например, патент №2147487, публ. 2000 г.).
С учетом этих обстоятельств перед заявителем стояла задача изготовления состава для покрытий с биоцидными свойствами и способа получения наноструктурной добавки с биоцидными свойствами, реализующих технический результат унификации добавки с биоцидными свойствами к различным типам лакокрасочных материалов, повышению эксплуатационной надежности состава за счет улучшения его инактивирующего биоцидного (бактерицидного) пролонгирующего действия на обрабатываемые поверхности, повышения экологической безопасности и упрощения процесса получения наноструктурных частиц добавки с биоцидными свойствами.
Для решения поставленной технической задачи предложены следующие составы для покрытий с биоцидными свойствами.
Состав для покрытий, содержащий связующую основу в виде лакокрасочного материала или пленкообразующего, имеющего добавку биоцидного действия с наноструктурным размером частиц, в котором, согласно изобретению, в качестве добавки используют 0,5-10 мас.% количества на состав промодифицированного бентонита в форме монтмориллонита с размером частиц 2-500 нм и в которых ионы щелочных металлов при модификации бентонита раствором солей серебра и/или меди замещены на ионы Ag+ и/или Cu+; и дополнительно может быть осуществлена модификация частиц бентонита раствором катамина АБ, и ионы щелочных металлов замещены на катионы последнего: [CnH2n+1N+(CH3)2CH2C6H5], где n=10-18.
Состав для покрытий, содержащий связующую основу в виде лакокрасочного материала или пленкообразующего, имеющий добавку биоцидного действия с наноструктурным размером частиц, в котором, согласно изобретению, в качестве добавки используют капсаицин и промодифицированный бентонит в форме монтмориллонита с размером наночастиц 2-500 нм и в которых ионы щелочных металлов при модификации бентонита раствором солей серебра и/или меди замещены на ионы Ag+ и/или Cu+ и/или при модификации бентонита раствором катамина АБ ионы щелочных металлов замещены на катионы последнего [CnH2n+1N+(CH3)2CH2C6H5], где n=10-18, при этом состав имеет следующее содержание компонентов, мас.%:
наночастицы модифицированного бентонита 0,5-10
капсаицин 0,001-0,5
вышеуказанная связующая основа остальное.
Согласно изобретению, в качестве добавки используют смесь наночастиц промодифицированного бентонита (монтмориллонит), при этом на одну вес. часть наночастиц промодифицированного бентонита, в котором ионы щелочных металлов замещены на ионы Ag+, используют 0,1-0,5 вес.ч. наночастиц промодифицированного бентонита, в котором ионы щелочных металлов замещены на ионы Cu+.
Согласно изобретению, в качестве добавки используют смесь наночастиц промодифицированного бентонита (монтмориллонит), при этом на одну вес. часть наночастиц бентонита, в которых ионы щелочных металлов замещены на ионы Ag+ или Cu+, используют 0,1-0,5 вес.ч. наночастиц промодифицированного бентонита, в котором ионы щелочных металлов замещены на катионы катамина АБ.
Согласно изобретению, в качестве добавки используют смесь наночастиц промодифицированного бентонита (монтмориллонит), при этом на одну вес. часть наночастиц бентонита, в которых ионы щелочных металлов замещены на ионы Ag+, используют 0,1-0,5 вес.ч. наночастиц промодифицированного бентонита, в котором ионы щелочных металлов замещены на ионы Cu+ и 0,1-0,5 вес.ч. наночастиц промодифицированного бентонита, в котором ионы щелочных металлов замещены на катионы катамина АБ, при весовом соотношении двух последних в смеси наночастиц 1:(0,5-1).
Согласно изобретению, в качестве добавки используют смесь наночастиц промодифицированного бентонита (монтмориллонит) и капсаицин при следующем их весовом соотношении: смесь наночастиц:капсаицин 1:(0,002-1).
Согласно изобретению, используют наночастицы промодифицированного бентонита (монтмориллонит), не содержащие солей щелочных металлов.
Согласно изобретению, в качестве солей серебра используют нитрат серебра.
Согласно изобретению, в качестве солей меди используют сульфат меди.
Для решения поставленной технической задачи предложены следующие способы получения наноструктурных частиц биоцидной добавки.
Способ получения наноструктурных частиц биоцидной добавки, заключающийся в изготовлении коллоидного раствора порошка бентонита в форме монтмориллонита в водной среде, при этом одну вес.ч. бентонита смешивают с 10-30 вес.ч. 5-15% водного раствора NaCl, выдерживают в этом растворе в течение 10-15 час, промывают, фильтруют для удаления соединений хлора и сушат, а затем полученный полуфабрикат модифицируют, при модификации одну вес. часть полуфабриката смешивают с 10-30 вес.ч. водного или водно-спиртового раствора, имеющего 10-30% концентрацию нитрата серебра (AgNO3) или сульфата меди (CuSO4) или 5-10% концентрацию раствора катамина АБ, полученный коллоидный раствор выдерживают в течение 10-30 час, промывают для удаления солей щелочных металлов, фильтруют и сушат, а затем полученный продукт измельчают с получением наночастиц размерностью 2-500 нм.
Согласно изобретению, процесс сушки производят при температуре 45-85°С.
При реализации заявляемого технического решения обеспечивается:
создание состава для покрытий с биоцидными свойствами, унифицированного к различным типам лакокрасочных материалов и имеющего эффективную эксплуатационную надежность за счет улучшения инактивирующего биоцидного (бактерицидного) пролонгирующего действия на обрабатываемые поверхности;
получение биоцидного компонента, технологически простого в изготовлении и обладающего эффективными биоцидными свойствами.
Инактивирующее биоцидное (бактерицидное) пролонгирующее действие заявляемых составов на обрабатываемые поверхности объясняется:
использованием в составе покрытия промодифицированных наночастиц бентонита (монтмориллонит), в «межпакетном» пространстве которых при модификации бентонита щелочные металлы замещены на катионы Ag+ и/или Cu+ и дополнительно катионы катамина АБ, что приводит к реализации процесса блокирования жизнедеятельности одноклеточных (бактерий) и бесклеточных (вирусов) микроорганизмов в «межпакетном» пространстве наночастиц катионами Ag+ и/или Cu+ и дополнительно катионами катамина АБ с одновременным участием другой части этих катионов в активизации реакций ионного обмена при взаимодействии наночастиц с растворами, содержащих катионы металлов заместителей, в результате происходит инактивация биоцидных свойств поверхности раздела фаз: вода или воздух - лакокрасочное покрытие.
Процесс модификации бентонита растворами солей серебра и/или меди и дополнительно катамином АБ и последующее наноструктуирование приводит к образованию характерной структуры наночастиц с послойностью в расположении «пакетов» отрицательно заряженных алюмокислородных и кремнекислородных соединений, «межпакетное» пространство которых обладает высокой сорбционной активностью «впитывания» в себя токсинов, микроорганизмов с одновременным наличием при этом реакций ионного замещения катионов одного металла на катионы других металлов при наличии в «межпакетном» пространстве растворов, содержащих катионы металла-заместителя. Сорбционная активность бентонитов, как следует из анализа уровня техники, широко используются в различных отраслях промышленности, в частности в медицине при разработке различных терапевтических препаратов, в том числе мазей, способных поглощать микробные и тканевые токсины и не присыхающих к ожоговой ране, обеспечивая к ней доступ антибактериального компонента; бентонитовых гелей, используемых, например, в лечебной косметике и обеспечивающих адсорбирующее действие;
совместимостью используемых в составе наночастиц бентонита с различными типами основ красок и пленкообразующих и с различными минералогическими добавками в них, например с каолином, традиционно используемым в различных ЛКМ, в частности, с целью улучшения их цветооптических показателей и укрывистости;
способностью наночастиц бентонита к набуханию, что отвечает условиям надежности пролонгирующего действия биоцидного эффекта, вследствие возникающего при этом накопительного процесса поглощения микроорганизмов с последующим блокированием их жизнедеятельности и имеющего место физико-механического явления по постепенному «отслаиванию» одних наночастиц от обрабатываемой поверхности при взаимодействии последней с водной средой, в том числе морской, с возобновлением при этом биоцидной эффективности вновь обнажившихся наночастиц на поверхности раздела фаз: среда - лакокрасочное покрытие;
использованием наночастиц бентонита, имеющих в результате двухэтапной модификации бентонита увеличенное в объеме «межпакетного» пространства количество ионов Ag+ или Cu+ или катионов катамина АБ, что повышает инактивирующие биоцидные (бактерицидные) свойства состава с одновременным пролонгирующем действием их на обрабатываемых поверхностях;
синергетическим эффектом инактивации биоцидного действия смеси наночастиц.
При анализе известного уровня техники не выявлено технических решений с совокупностью признаков, соответствующих заявляемым техническим решениям и реализующих вышеописанный результат пролонгирующего действия биоцидной активности состава с эффективной защитой обрабатываемых поверхностей от различных грибковых бактерий, микроорганизмов, в том числе при использовании заявляемого состава в качестве покрытий для подводной части судов, яхт.
Приведенный анализ известного уровня техники свидетельствует о соответствии заявляемого технического решения критериям «новизна», «изобретательский уровень».
Заявляемые технические решения могут быть промышленно реализованы при получении различных покрытий с биоцидными свойствами, предназначенных для обработки поверхностей конструкционных изделий, изготовленных из металла, дерева, бетона и т.д., и используемых в различных областях техники, например в строительстве, медицине, судостроительстве и др.
Сущность изобретения поясняется рекомендациями относительно выбора сырьевых компонентов для изготовления состава для покрытий с биоцидными свойствами и получения наноструктурной добавки с биоцидными свойствами, примерами составов и результатами испытаний полученного по изобретению состава.
Для получения состава для покрытий с биоцидными свойствами и получения наноструктурной добавки с биоцидными свойствами используют готовые к применению товарные продукты, в частности:
Бентонитовую глину - монтмориллонит следующей формулы
{3H2O[Na,Mg](0,02-0,14)Ca(0,11-0,3)]0,15-0,39}(Al1,49-1,71Fe0,18-0,44Mg0,04-0,27)2(Si4,0-3,51Al0,49)4(O10,4-9,13OH2,5-1,5)12;
нитрат серебра (AgNO3) - легко растворимые в воде бесцветные кристаллы в массе белого цвета;
сульфат меди (CuSO4) - белый порошок, растворимый в воде;
натрий хлористый (NaCl) - белый кристаллический порошок, растворимый в воде;
дистиллированная вода; спирт, предпочтительно изопропанол;
катамин АБ (ТУ 9392-003-48482528-99) - смесь алкилбензилдиметиламмонийхлоридов формулы [CnH2n+1N+(СН3)2СН2С6Н5]·Cl-, где n=10-18. Бесцветная или желтая прозрачная жидкость растворимая в воде, относящаяся к экологически безопасным бактерицидам, гидрофобизаторам глинистых материалов. Используется для дезинфекции поверхностей в помещениях, посуды, белья, предметов ухода за больными, санитарно-технического оборудования;
капсаицин (ванилиламид 7-метилоктен-5-овой кислоты) формулы
Figure 00000001
,
порошок растворим в воде, в органических растворителях, препарат растительного происхождения биоцидного действия, экологически безопасен.
В качестве товарных продуктов для реализации изобретения были использованы готовые к применению лакокрасочные материалы.
Органоразбавляемые - масляные и алкидностирольные краски, в которых в качестве пленкообразующего используют смолы масляно-стирольные, алкидностирольные (сополимеры) (ГОСТ 982573), в частности используют:
пентафталевую алкидную эмаль ПФ-115 (для наружных и внутренних работ). Эмаль ПФ-115 (ГОСТ 6465-76) представляет собой суспензию пигментов и наполнителей в пентафталевом лаке с добавлением сиккатива и растворителей;
Лак ПФ-170 (ГОСТ 15907-70), представляет собой раствор в органических растворителях пентафталевой смолы, модифицированной растительным маслом с добавлением сиккатива;
лак пентафталевый на основе алкидных смол ПФ-283;
эмаль ЭП-525, предназначена для использования покрытий, эксплуатирующихся в условиях повышенной влажности, действия морской воды, ее паров и различных сред. Состав: суспензия пигментов и наполнителей в растворе эпоксидной смолы в смеси органических растворителей;
эмаль ХС-436 (ТУ 2313-019-5-43546-2002) - суспензия пигментов и наполнителей в растворе винилового сополимера, модифицированного эпоксидной смолой в органических растворителях, и отвердителя АФ-2(ТУ 2434-511-00203521-1994) или ДТБ-2 (ТУ 6-05-241-224-79). Используется для защиты от коррозии района переменной ватерлинии, надводной и подводной части корпусов судов, включая суда ледового плавания.
Водоразбавляемые (водоэмульсионные) краски, в которых в качестве пленкообразующего используют водные дисперсии полимеров, в частности используют водно-дисперсионную акриловую краску ВД-АК-101.
В качестве пленкообразующего используют олифу на основе растительного масла, товарный продукт «Оксоль».
Для получения заявляемого по изобретению состава для покрытий с биоцидными свойствами приготавливают наноструктурные частицы биоцидной добавки, процесс осуществляют предпочтительно в два этапа следующим образом:
1 этап - предварительно измельченный до порошкообразного состояния бентонит (монтмориллонит) в количестве 5 г залили 5% водным раствором NaCl, смешивали с приготовлением коллоидного раствора, выдерживали в данном растворе в течение 15 ч с одновременным перемешиванием, осуществляя тем самым дополнительное обогащение бентонита ионами натрия. Затем после процесса активации натрием производили многократную промывку коллоидного раствора бентонита для удаления ионов хлора и последующую фильтрацию через фильтр «белая лента» или на центрифуге. Полезный выход полученного полуфабриката - 4,8 г;
2 этап:
Пример А: полученный полуфабрикат (1 этап) высушивали и модифицировали (при красном освещении с учетом светочувствительности AgNO3) 15% водно-спиртовым раствором нитрата серебра (AgNO3). Процесс модификации осуществляли с выдержкой в растворе в течение 20 ч, при перемешивании. Полученный модифицированный полуфабрикат многократно промывали для удаления солей натрия, фильтровали и сушили при температуре 70 - 80°С. Расход водных растворов на обработку 4,8 г полуфабриката составил: полуфабрикат:водный раствор 1:20. После сушки продукт подвергали дисперсионному измельчению с использованием бисерной мельницы. Исследования частиц на электронном микроскопе показали дисперсность их размеров от 5 до 300 нм. Получена готовая к применению биоцидная добавка, в которой ионы щелочных металлов (Na+) в результате реакции ионного обмена замещены на катион металла (Ag+). Полезный выход продукта 4,5 г;
Пример Б: полученный полуфабрикат (1 этап) высушивали и модифицировали 15% водно-спиртовым раствором сульфата меди (CuSO4), с последующим осуществлением технологического процесса по примеру А. Получена готовая к применению биоцидная добавка, в которой ионы щелочных металлов (Na+) в результате реакции ионного обмена замещены на катион металла (Cu+). Полезный выход продукта 4,5 г;
Пример В: полученный полуфабрикат (1 этап) высушивали и модифицировали 5% водно-спиртовым раствором катамина АБ, с последующим осуществлением технологического процесса по примеру А. Получена биоцидная добавка, в которой ионы щелочных металлов (Na+) в результате реакции ионного обмена замещены на катион [CnH2n+1N+(СН3)2СН2С6Н5]. Полезный выход продукта 4,4 г.
Используемый во всех примерах водно-спиртовой раствор изготовлен при следующих соотношениях :вода:спирт(изопропанол) 1:(0,5-0,8), предпочтительно использовано соотношение 1:0,75.
Полученный в результате измельчения (с использованием бисерной мельницы) промодифицированного бентонита продукт во всех вышеуказанных примерах, в основной части своей, имеет дисперсность частиц 5-300 нм, небольшое количество полученных наночастиц имеет размерность 2-3 нм и 350-500 нм. Анализ проведен с использованием микроскопических исследований. При проведении исследований составов с использованием наночастиц в диапазоне их дисперсности 2-500 нм установлено, что указанная размерность наночастиц оптимальна, уменьшение параметров дисперсности наночастиц приведет к удорожанию технологического процесса их получения. Дисперсность наночастиц более 500 нм приведет к существенному изменению поверхностных слоев покрытия с образованием на последнем заметных следов раковин, ямок вследствие имеющего место процесса «отслаивания» наночастиц от обрабатываемой поверхности, взаимодействующей с окружающей средой.
Технологический процесс получения наноструктурных частиц биоцидной добавки возможно осуществлять и при изготовлении ее в соответствии с примерами А, Б, В при исключении этапа 1, при этом увеличивают концентрацию используемых растворов с учетом заданных по изобретению пределов.
Заданная по изобретению концентрация солей серебра, или меди, или катамина АБ в водном или водно-спиртовом растворителях оптимально соответствует условиям реакции ионного обмена при обработке бентонита. Уменьшение концентрации указанных веществ в растворителях приводит к ухудшению активности получаемого биоцида. Увеличение концентрации указанных веществ (AgNO3, или CuSO4, или катамина АБ) в растворителях увеличивает затратную часть по используемым материалам, при этом химико-физический анализ исследуемых жидкостных остатков после промывки промодифицированного указанными растворами наночастиц бентонита показал наличие в них непрореагировавших солей серебра, меди, катамина АБ.
Заданные режимы по технологической выдержке, температурам сушки оптимальны для получения наноструктурных частиц промодифицированного бентонита в соответствии с требованиями их биоцидной активности. Уменьшение названных параметров приводит к ухудшению биоцидной активности наночастиц бентонита и физико-механических свойств их, а увеличение - к повышению затратной части по их изготовлению.
Заявляемый по изобретению состав для покрытий с биоцидными свойствами готовят следующим образом.
В готовые к применению лакокрасочные материалы вводят изготовленную в соответствии с описанным выше технологическим процессом биоцидную добавку, перемешивают до получения равномерного дисперсионного продукта. Мелкодисперсную смесь смешивают в случае необходимости с различными целевыми добавками, растворителями и пленкообразующими.
Заявляемое по изобретению мас.% содержание наноструктурных частиц биоцидного компонента в составе оптимально по следующим обстоятельствам:
введение в ЛКМ, или в основы красок, или в пленкообразующее заявляемого по изобретению мас.% содержания наночастиц промодицицированного бентонита не приводит к существенному изменению физико-механических свойств получаемых по изобретению составов для покрытий по сравнению с готовыми к применению ЛКМ.
При сравнительном анализе физико-механических свойств готовых ЛКМ и составов по изобретению установлено, что:
вязкость (с) по вискозиметру ВЗ-246 при Т=20±0,5°С для состава по изобретению, в котором в качестве ЛКМ использована алкидная эмаль ПФ-115 (пример 1) - 116 с, для готовой к применению алкидной эмали ПФ-115 - 114 с; время высыхания (max) при Т=20±2°С для состава по изобретению - 23 час, для алкидной эмали ПФ-115 - 24 час, при этом твердость образуемых названными материалами пленок в обоих случаях по маятниковому прибору (тип М-3) составила 0,23-0,24 условных ед.; укрывистость в обоих случаях - 100-150 г/м2.
Уменьшение мас.% содержания наночастиц биоцидного компонента в составах по изобретению, весовых соотношений используемых смесей наночастиц приводит к ухудшению биоцидной эффективности составов и к нарушению синергетического эффекта по биоцидной эффективности составов, содержащих смеси наночастиц.
Увеличение указанных параметров приведет к:
нарушению рекомендуемых норм по мас.% содержанию набухающих агентов в ЛКМ. Как известно, в лакокрасочных материалах традиционно используются различные технологические добавки, являющиеся полезными в композициях ЛКМ, в том числе природные набухающие агенты, например, бентонит, каолин. Известно, что суммарное количество таких добавок в ЛКМ не более чем 20 мас.%, а, в основном, в ЛКМ используют 1 и 5 мас.% набухающих агентов в расчете на общий вес композиции краски;
повышению затратной части на изготовление составов;
ухудшению свойств составов при длительном их хранении. Оптимальный срок хранения составов по изобретению с учетом совместимости используемых в заявляемых составах наночастиц бентонита с различными готовыми к применению ЛКМ, основами красок и пленкообразующими и однородности дисперсионной среды при получении составов определяется сроком хранения ЛКМ. В основном, лакокрасочные материалы хранятся в среднем около 1 года, при соответствующих температурных условиях (не ниже нуля и не выше 30°С).
Использование в составе капсаицина при заданном мас.% содержании его в составе способствует снижению затратной части по изготовлению заявляемых составов при оптимальной их бактерицидной, противомикробной активности. Уменьшение или увеличение заданного мас.% содержания указанного компонента нецелесообразно, соответственно, с учетом синергетического эффекта и затратной части на изготовление.
Примеры конкретных составов.
Пример 1: наностуктурные частицы промодифицированного бентонита (размер наночастиц 5-300 нм), полученные по примеру А, в количестве по 4,5 г смешивали соответственно со 100 г эмали ПФ-115 и со 100 г акриловой краски ВД-АК-101.
Мас.% содержание компонентов в составах:
наночастицы промодифицированного бентонита - 4,5;
эмаль ПФ-115 или акриловая краска ВД-АК-101 - остальное.
Пример 2: наночастицы промодифицированного бентонита (размер наночастиц 5-300 нм), полученные по примеру А, и наноночастицы промодифицированного бентонита с тем же порядком в размеров наночастиц, полученные по примеру Б, при весовом соотношении соответственно 1 (пример А):0,5 (пример Б), смешивали для получения смеси наночастиц и вводили соответственно в 100 г эмали ЭП-525 и в 100 г акриловой краски ВД-АК-101.
Мас.% содержание компонентов в составах:
Смесь наночастиц промодифицированного бентонита - 4,5;
эмаль ЭП-525 или акриловая краска ВД-АК-101 - остальное.
Пример 3: наночастицы промодифицированного бентонита (размер наночастиц 5-300 нм), полученные по примеру А, наночастицы промодифицированного бентонита с тем же порядком в размерности наночастиц, полученные по примеру Б, при весовом соотношении соответственно 1 (пример А):0,5 (пример Б) и наночастицы промодифицированного бентонита (размер наночастиц 5-300 нм), полученные по примеру В, при весовом соотношении наночастиц бентонита (пример Б) к наночастицам бентонита (пример В) 1:0,5 смешивали для получения смеси наночастиц. Полученную смесь наночастиц промодифицированного бентонита смешивали со 100 г акриловой краски ВД-АК-101.
Мас.% содержание компонентов в составе:
Смесь наночастиц промодифицированного бентонита - 4,5;
акриловая краска ВД-АК-101 - остальное.
Пример 4: смесь наночастиц промодифицированного бентонита в соответствии с примером 3 смешивали со 100 г эмали ПФ-115 с добавлением капсаицина.
Мас.% содержание компонентов в составе:
Смесь наночастиц промодифицированного бентонита - 4,5;
капсаицин - 0, 005;
эмаль ПФ-115 - остальное.
Пример 5: наночастицы промодифицированного бентонита (размер наночастиц 5-300 нм), полученные по примеру А, наноночастицы промодифицированного бентонита с тем же порядком в размерах наночастиц, полученные по примеру Б, при весовом соотношении соответственно 1 (пример А):0,5 (пример Б) и наночастицы промодифицированного бентонита (размер наночастиц 5-300 нм), полученные по примеру В, при весовом соотношении наночастиц бентонита (пример Б) к наночастицам бентонита (пример В) 1:0,5 смешивали для получения смеси наночастиц. Полученные смеси наночастиц промодифицированного бентонита смешивали соответственно со 100 г лака ПФ-170 и со 100 мл олифы (продукт «Оксоль»).
Мас.% содержание компонентов в составах:
Смесь наночастиц промодифицированного бентонита - 4,5;
лак ПФ-170 или олифа (продукт «Оксоль») - остальное.
Пример 6 и пример 6а соответственно: 100 г готового к применению продукта: эмаль ЭП-525 (пример 6) и 100 г готового к применению продукта: эмаль ХС-436 (пример 6а).
Пример 7: 100 г готового к применению продукта: акриловая краска ВД-АК-101;
Пример 8: 100 мл готового к применению продукта: олифа «Оксоль».
Полученными составами по примерам 1-5, 6, 6а, 7 и 8 обрабатывали поверхности испытываемых образцов.
Составами, в которых использованы ЛКМ на основе органоразбавляемых красок, соответственно алкидная эмаль ПФ-115, эмаль ЭП-525 и эмаль ХС-436 формировали покрытия с толщиной слоя до 3 мм на фиберглассовых пластинах.
Составами, в которых использованы ЛКМ на основе водоразбавляемых красок, в частности акриловая краска ВД-АК-101, формировали покрытия с толщиной слоя до 2 мм на панелях, изготовленных с использованием цементно-песчаных смесей (бетон).
Составами, в которых использованы ЛКМ на основе пленкообразующих, в частности лак ПФ-170 и товарный продукт «Оксоль», формировали покрытия с толщиной слоя до 2 мм на панелях, изготовленных из древесины.
Геометрические параметры пластин и панелей - 3×4 (см).
Оценку биоцидную эффективности составов для покрытий осуществляли следующим образом.
Испытания проводились в стерильных условиях с использованием простерилизованного оборудования и материалов. Методика контроля стерильности относится к стандартным способам определения микроорганизмов на обрабатываемых поверхностях.
Исследуемые образцы с формированными на них покрытиями размещались в простерилизованные пластиковые емкости, в которые наливали дистиллированную (деионизированную) воду. Емкости закрывали стерильной крышкой и оставляли на 24 ч в стерильном боксе.
Осуществляли подготовку мембранных фильтров (мембранные фильтры «Владипор»-ТУ 6-05-1903-81) путем их стерилизации, сушки, стерилизации перед использованием (кипячение в деионизированной воде в течение 10 мин).
Через сутки воду из емкостей через мембранные фильтры сливали. Мембранные фильтры, через которые осуществляли слив воды, размещали в предварительно обработанные чашки Петри (ЧП). Чашки Петри обрабатывали простерилизованным мясопептонным бульоном (МПБ) и рыбопептонным бульоном (РПБ) с рН 7,2-7,4. Толщина слоя охлажденного МПБ и РПБ - 2-3 мм. Каждую ЧП с исследуемым образцом фильтра пронумеровали, фиксировали время и дату и размещали в термостате, производили выдержку при температуре 30-37°С. Время выдержки мембранных фильтров в чашках Петри соответствует 5, 10, 15, 30 (ч).
Через 5, 10, 15, 30 (ч) выдержки мембранных фильтров в чашках Петри производилась выемка фильтров и последующий микроскопический анализ поверхностей фильтров по количеству колоний микроорганизмов на них.
В результате испытаний установлено отсутствие колоний микроорганизмов Staphylococcus aureus, Esherichia coli (E. Coli-индикаторная группа бактерий, указывающая на фекальное загрязнение воды) и дрожжевых клеток Candida utilis после 30 ч выдержки мембранных фильтров, взаимодействовавших с деионизированной водой из пластиковых емкостей, в которые были размещены исследуемые образцы, обработанные составами для покрытий в соответствии с примерами 1-5 по изобретению;
наличие колоний микроорганизмов Staphylococcus aureus, Esherichia coli и Candida utilis на поверхности исследуемых мембранных фильтров, взаимодействовавших с деионизированной водой из пластиковых емкостей, в которые были размещены исследуемые образцы, обработанные составами для покрытий в соответствии с примерами 6 и 6а (фиберглассовая пластина с покрытием на основе эмали ЭП-525 и эмали ХС-436) - через 10 ч выдержки для эмали ЭП-525 и через 15 ч выдержки для эмали ХС-436;
наличие колоний микроорганизмов Staphylococcus aureus, Esherichia coli и Candida utilis на поверхности исследуемых мембранных фильтров, взаимодействовавших с деионизированной водой из пластиковых емкостей, в которые были размещены исследуемые образцы, обработанные составом для покрытий в соответствии с примерами 7 и 8 - через 5 ч выдержки.
Учитывая, что морская вода является наиболее агрессивной средой в отношении обработанных ЛКМ объектов, производилась оценка составов для определения их биоцидной эффективности по прикрепляемости к обработанным поверхностям биообъектов, в частности животного происхождения как наиболее агрессивных в отношении поверхностей, обработанных ЛКМ. В процессе исследований в пластиковые чашки наливали профильтрованную морскую воду и помещали в них 3-дневные личинки усоногих рачков на циприсовидной стадии. Циприсовидная стадия представляет собой стадию, на которой личинка усоногого рака обладает способностью прикрепляться к поверхностям. После прикрепления к поверхности личинка подвергается метаморфозу, превращаясь в усоногого рака. В чашки с морской водой вносили тестируемые предварительно разбавленные органическим растворителем составы, изготовленные в соответствии с примерами 1-5 на основе эмалей ПФ-115 и ЭП-525, а также состав в соответствии с примером 6а (состав на основе эмали ХС-436 - пример 6а, не содержащий наноструктурных частиц бентонита и капсаицина). После инкубации в течение 24 ч при 30-35°С поверхности чашек оценивали с помощью препаровочной лупы, выявляя количество прикрепившихся на них личинок. Данные о прикрепляемости личинок с учетом общего количества введенных в чашки личинок выражали в виде процента личинок, прикрепившихся ко дну чашки. По результатам исследований установлено:
полное отсутствие прикрепляемости биообъектов (личинок рачков) к поверхностям чашек, в которые были введены составы по изобретению;
30% приклепляемость биообъектов (личинок рачков) к поверхностям чашки для состава по примеру 6а.
Для подтверждения эксплуатационной надежности составов по изобретению были проведены сравнительные испытания состава по примеру 4 и состава по примеру 6а. Эксплуатационная надежность исследуемых составов оценивалась при микроскопическом исследовании поверхностей, обработанных указанными составами, по шероховатости, что диагнозирует адгезионную прочность получаемого покрытия.
Испытания осуществлялись с использованием металлических цилиндров, имеющих механизм вращения, поверхности цилиндров окрашивали составом по примеру 1 и по примеру 6а. Испытываемые цилиндры размещались в емкости с морской водой (наиболее агрессивная среда в отношении ЛКМ), вращались в этой емкости с постоянной скоростью в течение 10 ч. Испытываемые цилиндры вынимались из емкости и поверхности их исследововались на микроскопическом оборудовании с целью определения на них глубины и высоты впадин шероховатостей, свидетельствующих о нарушении адгезионной прочности исследуемых покрытий. Результаты испытаний показали, что выявленные отклонения по глубине и высоте впадин шероховатостей на поверхностях обоих испытываемых цилиндров совпадают. Приведенные испытания свидетельствует об оптимальности заявляемых составов по мас.% содержанию в них наночастиц промодифицированного бентонита, размерности их, определяющих параметры адгезионной устойчивости заявляемых составов к обрабатываемым поверхностям ввиду отсутствия ускоряющих процессов отслаивания (вымывания) покрытия при взаимодействии его с окружающей средой.
Приведенные исследования свидетельствуют о надежности инактивирующего биоцидного (бактерицидного) пролонгирующего действия заявляемых по изобретению составов на различные обрабатываемые поверхности, взаимодействующие фазами раздела: лакокрасочное покрытие - вода или вода - воздух.
Приведенные исследования также свидетельствуют, что составы по изобретению, содержащие наночастицы бентонита с ионами Ag+, Cu+, катамина АБ, а также состав, содержащий капсаицин, имеют высокую биоцидную эффективность в отношении всех колоний микрооганизмов, при этом наличие в составе капсаицина вследствие его раздражающего действия на биообъекты животного происхождения особенно благоприятно при использовании его в заявляемом составе, предназначенном для покрытий поверхностей, взаимодействующих с такой агрессивной средой, как морская вода.
Приведенные исследования также свидетельствуют об экологической безопасности составов по изобретению вследствие наличия в них экологически безопасных биоцидных добавок, не оказывающих вредного воздействия на среду, в том числе морскую воду.

Claims (12)

1. Состав для покрытий, содержащий связующую основу в виде лакокрасочного материала или пленкообразующего, добавку биоцидного действия с наноструктурным размером частиц, отличающийся тем, что в качестве добавки он содержит 0,5-10 мас.% количества на состав модифицированного бентонита в форме монтмориллонита с размером наночастиц 2-500 нм и в котором ионы щелочных металлов при модификации бентонита раствором солей серебра и/или меди замещены на ионы Ag+ и/или Cu+.
2. Состав для покрытия по п.1, отличающийся тем, что дополнительно содержит частицы бентонита в форме монтмориллонита, модифицированные раствором катамина АБ.
3. Состав для покрытий, содержащий связующую основу в виде лакокрасочного материала или пленкообразующего, добавку биоцидного действия с наноструктурным размером частиц, отличающийся тем, что в качестве добавки он содержит капсаицин и модифицированный бентонит в форме монтмориллонита с размером наночастиц 2-500 нм, и в котором ионы щелочных металлов при модификации бентонита раствором солей серебра и/или меди замещены на ионы Ag+ и/или Cu+ и/или при модификации бентонита раствором катамина АБ ионы щелочных металлов замещены на катионы последнего: [CnH2n+1N+(CH3)2CH2C6H5], где n=10-18, при следующем содержании компонентов, мас.%:
наночастицы модифицированного бентонита 0,5-10 капсаицин 0,001-0,5 вышеуказанная связующая основа остальное
4. Состав по п.1, отличающийся тем, что в качестве добавки содержит смесь наночастиц модифицированного бентонита в форме монтмориллонита, в которой на одну вес.ч. наночастиц модифицированного бентонита, в котором ионы щелочных металлов замещены на ионы Ag+, приходится 0,1-0,5 вес.ч. наночастиц модифицированного бентонита в форме монтмориллонита, в котором ионы щелочных металлов замещены на ионы Cu+.
5. Состав по п.1, отличающийся тем, что в качестве добавки содержит смесь наночастиц модифицированного бентонита в форме монтмориллонита, в котором на одну вес.ч. наночастиц бентонита, в которых ионы щелочных металлов замещены на ионы Ag+ и/или Cu+ приходится 0,1-0,5 вес.ч. наночастиц модифицированного бентонита в форме монтмориллонита, в котором ионы щелочных металлов замещены на катионы катамина АБ.
6. Состав по п.1, отличающийся тем, что в качестве добавки он содержит смесь наночастиц модифицированного бентонита в форме монтмориллонита, в которой на одну вес.ч. наночастиц бентонита в форме монтмориллонита, в котором ионы щелочных металлов замещены на ионы Ag+, приходится 0,1-0,5 вес.ч. наночастиц модифицированного бентонита в форме монтмориллонита, в котором ионы щелочных металлов замещены на ионы Cu+, и 0,1-0,5 вес.ч. наночастиц модифицированного бентонита в форме монтмориллонита, в котором ионы щелочных металлов замещены на катионы катамина АБ при весовом соотношении двух последних в смеси наночастиц как 1:(0,5-1).
7. Состав по п.2, отличающийся тем, что в качестве добавки он содержит смесь наночастиц модифицированного бентонита в форме монтмориллонита и капсаицин при следующем их весовом соотношении: смесь наночастиц:капсаицин как 1:(0,002-1).
8. Состав по п.1 или 2, отличающийся тем, что используют наночастицы промодифицированного бентонита в форме монтмориллонита, не содержащие солей щелочных металлов.
9. Состав по п.1 или 2, отличающийся тем, что в качестве солей серебра используют нитрат серебра.
10. Состав по п.1 или 2, отличающийся тем, что в качестве солей меди используют сульфат меди.
11. Способ получения наноструктурных частиц биоцидной добавки, заключающийся в изготовлении коллоидного раствора порошка бентонита в форме монтмориллонита в водной среде, при этом 1,0 вес.ч. бентонита смешивают с 10-30 вес.ч. 5-15%-ного водного раствора NaCl, выдерживают в этом растворе в течение 10-15 ч, промывают, фильтруют для удаления соединений хлора и сушат, а затем полученный полуфабрикат модифицируют, для этого 1,0 вес.ч. полуфабриката смешивают с 10-30 вес.ч. 10-30%-ного водного или водно-спиртового раствора нитрата серебра AgNO3 или сульфата меди CuSO4 или 5-10%-ного водно-спиртового раствора катамина АБ, далее полученный коллоидный раствор выдерживают в течение 10-30 ч, промывают для удаления солей щелочных металлов, фильтруют и сушат, и полученный продукт измельчают с получением наночастиц размером 2-500 нм.
12. Способ получения наноструктурных частиц биоцидной добавки по п.11, отличающийся тем, что процесс сушки производят при температуре 45-85°С.
RU2007112815/04A 2007-04-06 2007-04-06 Состав для покрытий с биоцидными свойствами (варианты) и способ получения наноструктурной добавки с биоцидными свойствами RU2338765C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007112815/04A RU2338765C1 (ru) 2007-04-06 2007-04-06 Состав для покрытий с биоцидными свойствами (варианты) и способ получения наноструктурной добавки с биоцидными свойствами

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007112815/04A RU2338765C1 (ru) 2007-04-06 2007-04-06 Состав для покрытий с биоцидными свойствами (варианты) и способ получения наноструктурной добавки с биоцидными свойствами

Publications (1)

Publication Number Publication Date
RU2338765C1 true RU2338765C1 (ru) 2008-11-20

Family

ID=40241290

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007112815/04A RU2338765C1 (ru) 2007-04-06 2007-04-06 Состав для покрытий с биоцидными свойствами (варианты) и способ получения наноструктурной добавки с биоцидными свойствами

Country Status (1)

Country Link
RU (1) RU2338765C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2540478C1 (ru) * 2014-02-24 2015-02-10 Общество с ограниченной ответственностью "Уральский центр нанотехнологий" Композиция для получения антимикробного покрытия
US10987442B2 (en) 2009-05-07 2021-04-27 Oberthur Fiduciaire Sas Information medium having antiviral properties, and method for making same
US11059982B2 (en) 2010-11-08 2021-07-13 Oberthur Fiduciaire Sas Fluid compositions that can form a coating having antiviral properties

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10987442B2 (en) 2009-05-07 2021-04-27 Oberthur Fiduciaire Sas Information medium having antiviral properties, and method for making same
US11059982B2 (en) 2010-11-08 2021-07-13 Oberthur Fiduciaire Sas Fluid compositions that can form a coating having antiviral properties
RU2540478C1 (ru) * 2014-02-24 2015-02-10 Общество с ограниченной ответственностью "Уральский центр нанотехнологий" Композиция для получения антимикробного покрытия
WO2015126278A1 (ru) * 2014-02-24 2015-08-27 Общество с ограниченной ответственностью "Уральский центр нанотехнологий" Композиция для получения антимикробного покрытия

Similar Documents

Publication Publication Date Title
EP3177148B1 (en) Antiseptic product, process for preparing same and its use
JP6423833B2 (ja) 抗菌性金属ナノ粒子の組成物および方法
WO2001050864A1 (fr) Agents antibacteriens d'imputrescibilisation et compositions antibacteriennes d'imputrescibilisation
RU2407289C1 (ru) Наноструктурная композиция биоцида
JPH0428646B2 (ru)
Verma et al. Super protective anti-bacterial coating development with silica–titania nano core–shells
TW201542724A (zh) 抗病毒之塗覆組成物
AU2011291395A1 (en) Silver iodate compounds having antimicrobial properties
CN104365668B (zh) 环保长效复合防污材料
RU2338765C1 (ru) Состав для покрытий с биоцидными свойствами (варианты) и способ получения наноструктурной добавки с биоцидными свойствами
Peter et al. CuO/Ag hybrid nanomaterial coated hydrophilic natural rubber film with minimal bacterial adhesion and contact killing efficiency
Ejeromedoghene et al. Facile green synthesis of new chitosan-metal nanoparticles as nano-agrofungicide for the preservation of postharvest cherry fruits
Mallakpour et al. Silver-nanoparticle-embedded antimicrobial paints
JP5704623B2 (ja) 金属−トロポロン錯体を無機層間に担持した抗レジオネラ属菌材料
Zheng et al. Fabrication of Highly Stable Polyurushiol-Decorated Silver Nanoparticles and Evaluation of Their Antibacterial and Anti-Microalgae Activities
Sahithya et al. Green synthesis of silver nanoparticles using marine sea weed Acetabularia acetabulum and their activity as MMT-Ag nanocomposites towards antifouling applications.
EP3474860B1 (en) Antimicrobial compounds and methods of use
RU2741653C1 (ru) Экологически безопасный биоцид для защитных биостойких органосиликатных покрытий
Sen Nanofillers in the Antibacterial and Antifungal Coating Material
US20230309563A1 (en) Antibacterial composite with instant sterilization capability, and preparation method therefor
Eduok MOFs-Based Systems for Anti-Biofouling Applications
Martinelli et al. Chitosan-based Biocides for Water Disinfection
Eduok 23 MOFs-Based Systems for
JPH10231201A (ja) 抗菌材、抗菌性樹脂組成物、抗菌性合成繊維、抗菌性を有する紙、抗菌性塗料、化粧品および抗菌材の製造方法
EP4482539A1 (en) Metal(loid)-based compositions and uses thereof against bacterial biofilms

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090407

NF4A Reinstatement of patent

Effective date: 20101010

MM4A The patent is invalid due to non-payment of fees

Effective date: 20130407