RU2329480C2 - Тензопреобразователь давления - Google Patents
Тензопреобразователь давления Download PDFInfo
- Publication number
- RU2329480C2 RU2329480C2 RU2006126268/28A RU2006126268A RU2329480C2 RU 2329480 C2 RU2329480 C2 RU 2329480C2 RU 2006126268/28 A RU2006126268/28 A RU 2006126268/28A RU 2006126268 A RU2006126268 A RU 2006126268A RU 2329480 C2 RU2329480 C2 RU 2329480C2
- Authority
- RU
- Russia
- Prior art keywords
- membrane
- strain
- longitudinal
- pressure
- transverse
- Prior art date
Links
Images
Landscapes
- Pressure Sensors (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Изобретение относится к измерительной технике и может быть использовано для измерения давления жидкостей и газов. Тензопреобразователь давления содержит выполненную из монокристаллического кремния плоскую квадратную мембрану с продольными и поперечными тензорезисторами. Поперечные тензорезисторы расположены на краю мембраны, причем продольные тензорезисторы частично выходят за ее пределы. Технический результат - упрощение технологии изготовления при неизменном выходном сигнале тензопреобразователя. 4 ил.
Description
Изобретение относится к измерительной технике и может быть использовано для измерения давления жидкостей и газов.
Известен тензопреобразователь давления мембранного типа [Патент SU 1830138 A3, G01L 9/04], содержащий мост из поликремниевых тензорезисторов, расположенных на окисленной подложке из монокристаллического кремния, ориентированной в плоскости (100). Тензорезисторы в виде мезаструктур расположены у краев плоской квадратной мембраны на осях ее симметрии, первый и третий вдоль оси, а два других (второй и четвертый) - перпендикулярно оси.
Механические напряжения в плоской квадратной мембране имеют наибольшие значения на краях и в центре мембраны, причем на краях мембраны механические напряжения вдоль оси ее симметрии (TL) значительно больше механических напряжений в перпендикулярном направлении (Tt) [В.А.Гридчин. Проектирование кремниевых интегральных тензопреобразователей с квадратными упругими элементами. - В кн.: Полупроводниковые тензорезисторы / Новосибирск, 1985, с.97-108] и связаны с деформациями следующими соотношениями:
где S11 и S12 - коэффициенты упругой податливости кремниевой подложки.
Учитывая, что на оси симметрии мембраны у края мембраны TL>>Tt, и εt≈0, выходной сигнал мостовой схемы тензопреобразователя давления может быть записан в виде:
где KL - коэффициент тензочувствительности продольного тензорезистора,
Kt - коэффициент тензочувствительности поперечного тензорезистора,
εL1, εL2, εL3, εL4 - деформации 1, 2, 3, 4 тензорезисторов.
Недостатком данного тензопреобразователя давления является то, что при типичных размерах мембраны 2000×2000 мкм2 и тензорезисторов 200×20×0.5 мкм3, 150×15×0.5 мкм3, 100×10×0.5 мкм3 средние механические напряжения (средние деформации), действующие на продольные тензорезисторы, расположенные у края мембраны, меньше максимальных (у края мембраны) соответственно на 35%, 27%, 18%. Учитывая, что коэффициенты тензочувствительности продольных и поперечных тензорезисторов из поликристаллического кремния соответственно равны 36 и -11.2, выходной сигнал мостовой схемы будет меньше максимально возможного (резисторы - точечные и расположены на краю мембраны) соответственно на 26%, 21%, 14%.
Кроме того, известен тензопреобразователь давления мембранного типа [В.А.Гридчин, Грищенко А.В., В.М.Любимский, А.В.Шапорин. Тензопреобразователь давления. Патент на изобретение RU 2237873, С2G 01 L 9/04], являющийся прототипом предлагаемого изобретения, содержащий продольные и поперечные тензорезисторы, расположенные у краев квадратной мембраны, выполненной из монокристаллического кремния, которая имеет разную толщину, причем толщина у краев больше толщины ее средней части, а указанные тензорезисторы расположены на части с большей толщиной.
При действии давления на тензопреобразователь давления происходит деформация мембраны, которая передается поперечным и продольным тензорезисторам. Механические напряжения вдоль оси симметрии мембраны в зависимости от безразмерной координаты х/a в мембране с общим размером a×a=2000×2000 мкм, толщиной толстой части 30 мкм и толщиной тонкой части 25 мкм, размером 1800×1800 мкм2, рассчитанные методом конечных элементов, приведены на фиг.4.
Продольные и поперечные тензорезисторы расположены на части мембраны с большей толщиной, продольные от до а поперечные от до Средние механические напряжения в продольных тензорезисторах меньше максимальных на 4%, а не на 18%, как в случае плоской мембраны при длине тензорезисторов 100 мкм. Для поликремниевых тензорезисторов с коэффициентами тензочувствительности продольных тензорезисторов KL=36 и поперечных тензорезисторов Kt=-11.2 выходной сигнал мостовой схемы, вычисленный по формуле (2), будет меньше максимально возможного (тензорезисторы - точечные и расположены на краю мембраны) на 6%.
Недостатком данного тензопреобразователя давления является то, что мембрана имеет сложную форму и для ее изготовления необходимо проведение большего количества технологических операций, что приводит к усложнению технологии изготовления.
Задачей предлагаемого изобретения является упрощение технологии изготовления при неизменном выходном сигнале тензопреобразователя.
Поставленная задача достигается тем, что в тензопреобразователе давления, содержащем тензорезисторы и выполненную из монокристаллического кремния квадратную мембрану, последняя выполнена плоской, поперечные резисторы расположены на краю мембраны, а продольные тензорезисторы частично выходят за пределы мембраны.
На ФИГ.1 приведен общий вид тензопреобразователя давления, на ФИГ.2 - разрез тензопреобразователя давления по А-А, на ФИГ.3 -зависимости безразмерных механических напряжений от безразмерной координаты в мембране.
Тензопреобразователь давления (ФИГ.1) содержит: 1 - поперечные тензорезисторы, расположенные на квадратной мембране 3, 2 - продольные тензорезисторы, расположенные на квадратной мембране 3, 3 - квадратную мембрану, 4 - алюминиевую разводку, соединяющую тензорезисторы 1, 2, 5 - контактные окна к тензорезисторам.
На ФИГ.2: 6 - подложка (опорное основание), 7 - слой изолирующего окисла на поверхности квадратной мембраны 3, 8 - слой защитного окисла.
Квадратная мембрана 3 (см. ФИГ.1, ФИГ.2) расположена в средней части тензопреобразователя давления и сформирована анизотропным травлением подложки 6 из монокристаллического кремния со слоем изолирующего окисла 7. На поверхности мембраны 3 (см. ФИГ.1) методами микроэлектронной технологии сформированы поперечные 1 и продольные 2 тензорезисторы. Для стабилизации характеристик тензопреобразователь давления покрыт слоем защитного окисла 8, в котором выполнены окна под контактные площадки 5.
Тензопреобразователь работает следующим образом: при действии давления на тензопреобразователь происходит деформация мембраны 3, которая передается поперечным 1 и продольным 2 тензорезисторам. Как показывают расчеты численными методами, механические напряжения достигают максимального значения у границы мембраны и затухают за ее пределами. Скорость затухания механических напряжений при постоянной толщине подложки зависит от толщины мембраны, и чем толще мембрана, тем дальше за ее пределы распространяются механические напряжения [А. Chouaf, Ch. Malhaire, M. Le Berre, M. Dupeux, F. Pourroy, D. Barbier. Stress analysis at singular points of micromachined silicon membranes. Sensors and Actuators // 84 (2000) 109-115; V.A.Gridchin, V.V.Grichenko, V.M.Lubimsky, A.V.Shaporin, J.H.Lee. Design Features for High Pressure Transducers // The Second IEEE - Russia Conference 1999. High Power Microwave Electronics: Measurements, Identification, Applications (MEMIA' 99). Novosibirsk. 1999. p.III.26-III.29; Гридчин В.А., Грищенко В.В., Любимский В.М., Шапорин А.В. Механические напряжения у краев квадратных кремниевых диафрагм // Микроэлектроника, т.34, 2005. С.212-218].
Механические напряжения вдоль оси симметрии мембраны в зависимости от безразмерной координаты х/a в мембране с общим размером a×a=2074×2074 мкм2, толщиной толстой части 245 мкм, рассчитанные методом конечных элементов, приведены на ФИГ.3. Центры поперечных тензорезисторов 1 находятся на краю мембраны, а продольные тензорезисторы 2 расположены от до Средние механические напряжения продольных тензорезисторах меньше максимально возможных, также как в прототипе, на 4%. Для поликремниевых тензорезисторов с коэффициентами тензочувствительности продольных тензорезисторов KL=36 и поперечных тензорезисторов Kt=-11.2 выходной сигнал мостовой схемы, вычисленный по формуле (2), будет меньше максимально возможного (тензорезисторы - точечные и расположены на краю мембраны) на 6%.
Таким образом, по сравнению с прототипом выходной сигнал мостовой схемы остается тем же, а для создания плоской мембраны требуется меньшее количество технологических операций, что упрощает технологию изготовления тензопреобразователя.
Claims (1)
- Тензопреобразователь давления, содержащий поперечные тензорезисторы и продольные тензорезисторы и выполненную из монокристаллического кремния квадратную мембрану, отличающийся тем, что мембрана выполнена плоской, поперечные тензорезисторы расположены на краю мембраны, причем продольные тензорезисторы частично выходят за пределы мембраны.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2006126268/28A RU2329480C2 (ru) | 2006-07-19 | 2006-07-19 | Тензопреобразователь давления |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2006126268/28A RU2329480C2 (ru) | 2006-07-19 | 2006-07-19 | Тензопреобразователь давления |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2006126268A RU2006126268A (ru) | 2008-01-27 |
RU2329480C2 true RU2329480C2 (ru) | 2008-07-20 |
Family
ID=39109562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2006126268/28A RU2329480C2 (ru) | 2006-07-19 | 2006-07-19 | Тензопреобразователь давления |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2329480C2 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2606550C1 (ru) * | 2015-08-21 | 2017-01-10 | Общество с ограниченной ответственностью "МСИДАТ" Микросистемы и датчики" | Чувствительный элемент преобразователя давления и температуры |
RU2631016C1 (ru) * | 2016-07-19 | 2017-09-15 | Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" | Тензопреобразователь давления |
-
2006
- 2006-07-19 RU RU2006126268/28A patent/RU2329480C2/ru not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2606550C1 (ru) * | 2015-08-21 | 2017-01-10 | Общество с ограниченной ответственностью "МСИДАТ" Микросистемы и датчики" | Чувствительный элемент преобразователя давления и температуры |
RU2631016C1 (ru) * | 2016-07-19 | 2017-09-15 | Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" | Тензопреобразователь давления |
Also Published As
Publication number | Publication date |
---|---|
RU2006126268A (ru) | 2008-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7998777B1 (en) | Method for fabricating a sensor | |
KR101213895B1 (ko) | 차량용 엔진의 흡입 공기 압력 측정용의 반도체 비틀림 감지 센서 | |
EP1363104A2 (en) | Tilt sensor and method of forming such device | |
CN101738355A (zh) | 基于微机电系统技术的粘度传感器芯片及其制备方法 | |
US11079298B2 (en) | MEMS pressure sensor with multiple sensitivity and small dimensions | |
US5520054A (en) | Increased wall thickness for robust bond for micromachined sensor | |
CN105716750A (zh) | 一种mems压阻式压力传感器及其制备方法 | |
RU2362133C1 (ru) | Микроэлектронный датчик абсолютного давления и чувствительный элемент абсолютного давления | |
Suja et al. | Investigation on better sensitive silicon based MEMS pressure sensor for high pressure measurement | |
RU2329480C2 (ru) | Тензопреобразователь давления | |
JPWO2009041463A1 (ja) | 半導体圧力センサ | |
CN105668500A (zh) | 一种高灵敏度宽量程力传感器及其制造方法 | |
US6308575B1 (en) | Manufacturing method for the miniaturization of silicon bulk-machined pressure sensors | |
CN100495038C (zh) | 三维集成微机械加速度传感器的制作方法 | |
US7484418B1 (en) | Ultra miniature multi-hole probes having high frequency response | |
Sujit et al. | Polysilicon piezoresistive MEMS pressure sensor: Study of analytical solutions for diaphragm and design & simulation | |
JPH08107219A (ja) | 半導体加速度センサ及び半導体加速度センサの製造方法 | |
Glukhovskoy et al. | Proof of concept: glass-membrane based differential pressure sensor | |
CN213023334U (zh) | 一种多晶硅压阻系数测试结构 | |
US8146436B2 (en) | Silicon sensing structure to detect through-plane motion in a plane of material with thermal expansion substantially different from that of silicon | |
Ferreira et al. | Optimized design of a piezoresistive pressure sensor with measurement span of 1 MPa | |
RU2243517C2 (ru) | Тензопреобразователь давления | |
RU2237873C2 (ru) | Тензопреобразователь давления | |
RU2284613C1 (ru) | Полупроводниковый преобразователь давления и способ его изготовления | |
RU42894U1 (ru) | Тензопреобразователь давления |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
QB4A | Licence on use of patent |
Free format text: LICENCE Effective date: 20110518 |
|
QC41 | Official registration of the termination of the licence agreement or other agreements on the disposal of an exclusive right |
Free format text: LICENCE FORMERLY AGREED ON 20110518 Effective date: 20120528 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20160720 |