[go: up one dir, main page]

RU2236610C2 - Реактивный двигатель - Google Patents

Реактивный двигатель Download PDF

Info

Publication number
RU2236610C2
RU2236610C2 RU2002129673/06A RU2002129673A RU2236610C2 RU 2236610 C2 RU2236610 C2 RU 2236610C2 RU 2002129673/06 A RU2002129673/06 A RU 2002129673/06A RU 2002129673 A RU2002129673 A RU 2002129673A RU 2236610 C2 RU2236610 C2 RU 2236610C2
Authority
RU
Russia
Prior art keywords
air
pipes
chamber
engine
fuel
Prior art date
Application number
RU2002129673/06A
Other languages
English (en)
Other versions
RU2002129673A (ru
Inventor
А.И. Орлов (RU)
А.И. Орлов
И.А. Орлов (RU)
И.А. Орлов
Original Assignee
Орлов Анатолий Иванович
Орлов Иван Анатольевич
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Орлов Анатолий Иванович, Орлов Иван Анатольевич filed Critical Орлов Анатолий Иванович
Priority to RU2002129673/06A priority Critical patent/RU2236610C2/ru
Publication of RU2002129673A publication Critical patent/RU2002129673A/ru
Application granted granted Critical
Publication of RU2236610C2 publication Critical patent/RU2236610C2/ru

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Реактивный двигатель для транспорта снабжен устройством преобразования энергии и устройством преобразования жидкого топлива в газообразное состояние, между которыми расположена рабочая камера сгорания непрерывного действия. Устройство преобразования жидкого топлива в газообразное состояние выполнено в виде запальника, имеющего во входной части форсунку со свечами зажигания, а в выходной удлиненной его части установлен прибор подготовки топлива и топливные форсунки для подачи газообразного топлива в рабочую камеру сгорания. Камера сгорания имеет входное, воздушное устройство с диффузором, жаровую часть со свечами зажигания и выходную сужающуюся часть, которая выполнена удлиненной формы в виде горловины, входящей в устройство преобразования энергии. Последнее соединено со входом реактивного сопла через смесительную камеру и выполнено в виде нескольких последовательно расположенных и входящих друг в друга с зазорами цилиндрических труб. Цилиндрические трубы устройства преобразования энергии имеют разные диаметры отверстий с увеличением диаметра отверстий последующих труб по отношению к диаметру отверстий предыдущих труб. Смесительная камера соединена с расширительной частью реактивного сопла, на выходе которого установлена камера, направляющая газовоздушный поток параллельно оси двигателя. С другой стороны корпуса двигателя на выходе воздухозаборника установлена вакуумная камера с воздуховодными трубами. С противоположной стороны вакуумной камеры плотно прилегает полусфера с отверстиями, в которые входят всасывающие воздуховодные трубы, соединяющие устройство преобразования энергии с вакуумной камерой. Вакуумная камера имеет цилиндрическую форму с внешней и внутренней оболочкой. Внутри последней перед устройством преобразования жидкого топлива в газообразное состояние установлен осевой, воздушный компрессор, на одной оси с которым, на входе воздухозаборника, установлена воздушная турбина. Изобретение повышает долговечность и кпд двигателя. 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к газотурбинным установкам, в частности к реактивному двигателю вакуумного принципа действия, и может быть использовано в воздушном, водном и наземном транспорте.
Известен роторно-реактивный двигатель по заявке №93052921, Россия, публ. 1966.07.10, который имеет ось вращения или вал, камеры сгорания с лопастями, компрессор, систему регулирования подачи топлива и воздуха в камеры сгорания, систему зажигания, систему запуска двигателя, систему управления двигателем.
Известен реактивный двигатель по патенту РФ №2187011, публ. 2002.10.08, который имеет камеру сгорания, за которой установлена турбина, центральное тело, сопло, выходная труба.
Недостатком известных аналогов является усложненная конструкция двигателей из-за наличия вспомогательных сложных систем двигателя, кроме того, исключается возможность получения высокого коэффициента использования тепла, в связи с тем, что энергия газа из камеры сгорания поступает непосредственно на лопасти турбины, которые не выдерживают высокой температуры газа, вследствие чего происходит вынужденное охлаждение газа перед турбиной.
Наиболее близким аналогом к заявляемому является усовершенствованный прямоточный двигатель по заявке №96107452, Россия, публ. 1988.07.10, который имеет корпус, воздухозаборник, турбину, сопло, компрессор, и как минимум, одну камеру сгорания, между камерами сгорания расположен турбокомпрессорный агрегат газового компрессора, перед камерой сгорания расположен воздушный компрессор, одна из камер сгорания является камерой прерывистого действия, другая является жидкостно-ракетной камерой сгорания, а одна из других камер сгорания прерывистого действия имеет, как минимум, один лопаточный вращающийся золотник.
Известный аналог имеет сложную и трудоемкую конструкцию, перенасыщенную камерами сгорания, и так же как предыдущие аналоги, не позволяет получить высокий коэффициент полезного использования энергии тепла. Вследствие того, что между камерой сгорания и реактивным соплом имеется довольно сложное устройство - турбокомпрессорный агрегат газового компрессора, который в процессе прохождения газа высокой температуры обжигает лопасти турбины, тем самым, сдерживает возможность полного использования газа в камере сгорания.
Технической задачей предлагаемого к патентованию изобретения является создание условий для получения высокого коэффициента использования энергии “тепла” за счет расширения, нагнетания и преобразования энергии “тепла” с использованием энергии “холода”.
Для решения технической задачи, реактивный двигатель, включающий корпус, воздухозаборник, турбину, компрессор, сопло и камеру сгорания (признаки сходные с ближайшим аналогом), снабжен устройством преобразования энергии и устройством преобразования жидкого топлива в газообразное состояние непрерывного действия. Устройство преобразования жидкого топлива в газообразное состояние выполнено в виде запальника, имеющего во входной части форсунку со свечами зажигания, а во выходной удлиненной его части установлен прибор подготовки топлива и топливные форсунки для подачи газообразного топлива в рабочую камеру сгорания, которая имеет входное воздушное устройство с диффузором, жаровую часть, заданного объема для возможности круговых движений воздуха и увеличения скорости его потока, и выходную сужающуюся часть, которая имеет удлиненную форму в виде горловины, входящей в устройство преобразования энергии, соединенного со входом реактивного сопла через смесительную камеру. Устройство преобразования энергии выполнено в виде нескольких последовательно установленных и входящих друг в друга с зазорами, цилиндрических труб, всасывающего принципа действия, одинаковой длины, жестко соединенных между собой направляющими пластинами, образующими воздушные щели - каналы с заданной площадью сечения для возможности движения по ним атмосферного воздуха. Цилиндрические трубы имеют разные диаметры отверстий с увеличением диаметра отверстий последующих труб для создания инерционного прямолинейно-направленного движения по ним газовоздушной массы в смесительную камеру и реактивное сопло. Смесительная камера имеет цилиндрическую форму и своей круглой поверхностью соединена с расширительной частью реактивного сопла, на входе которого установлена камера для направления газовоздушного потока параллельно оси двигателя. Со стороны корпуса двигателя на выходе воздухозаборника расположена вакуумная камера с воздуховодными трубами, с противоположной стороны которой плотно прилегает полусфера с отверстиями, в которые входят всасывающие воздуховодные трубы, соединяющие устройство преобразования энергии с вакуумной камерой. Вакуумная камера имеет цилиндрическую форму с внешней и внутренней оболочкой, внутри последней, перед устройством преобразования жидкого топлива в газообразное состояние, установлен осевой воздушный компрессор, на одной оси с которым, на входе воздухозаборника, установлена воздушная турбина, снабженная плоскими лопастями из механически прочного металла и соединенная с конусным устройством, установленным на одной оси с двигателем. Расстояние от внешней оболочки вакуумной камеры до ее внутренней оболочки равно длине плоской лопасти осевой воздушной турбины.
Совокупность новых отличительных от ближайшего аналога конструктивных признаков, в их новой взаимосвязи, обеспечивает новизну и полезный результат от реализации предлагаемого двигателя:
получение высокого коэффициента использования энергии “тепла” за счет расширения, нагнетания и преобразования энергии “тепла” с использованием энергии “холода”.
За счет конструктивного выполнения устройства преобразования энергии в виде нескольких, последовательно установленных друг в друга цилиндрических труб одинаковой длины, но с разными диаметрами отверстий, расположения этого устройства перед смесительной камерой и после рабочей камеры сгорания непрерывного действия, обеспечивается использование сверхзвуковой скорости инерционного, прямолинейно-направленного движения потока увеличенной рабочей газовоздушной массы, а также использование потенциальной внутренней энергии “холода” молекул воздуха и преобразование энергии газа высокой температуры с энергией “холода”, атмосферного воздуха.
В результате проведенного патентного поиска по фонду Краснодарского ЦНТИ, других аналогов, с совокупностью признаков, присущих заявленному изобретению, кроме описанных выше, не обнаружено, в связи с чем, можно сделать вывод, что предлагаемый к патентованию реактивный двигатель обладает новизной и патентоспособностью.
На чертеже схематично изображен реактивный двигатель. Двигатель содержит корпус 1 цилиндрической формы, воздухозаборник 2, по центру которого на одной оси с двигателем жестко установлено конусное устройство 3, выполненное из легкого, механически прочного материала с острым концом, выступающим за пределы корпуса воздухозаборника 2. Внутри конусного устройства 3 установлены вспомогательные агрегаты, например топливный насос 4, который посредством муфты сцепления 5 соединен с генератором электрического тока 6, выполняющим функции стартера, который посредством муфты сцепления 7 соединен с валом осевой воздушной турбины 8, которая расположена в зоне входящих воздушный потоков, установлена на входе воздухозаборника и имеет собственные плоские лопасти 9 из механически прочного металла, лопасти 10 вентилятора, которые образуют каналы 11 осевой воздушной турбины 8 и каналы 12 осевого воздушного компрессора 13, установленного на одной оси с осевой воздушной турбиной 8 перед устройством преобразования жидкого топлива в газообразное состояние. Осевой воздушный компрессор предназначен для повышения давления воздуха перед поступлением его в рабочую камеру сгорания 27 и состоит из трех ступеней, обеспечивающих нагнетаемым воздухом работу устройства преобразования жидкого топлива в газообразное состояние, а также непрерывность работы рабочей камеры сгорания 27. От осевого воздушного компрессора 13 отходят воздуховодные трубы 15 и 16, по его длине, в зоне входящих воздушных циркуляционных каналов расположена вакуумная камера 18, выполненная из высокопрочного металла с внешней и внутренней оболочками. Расстояние от внешней оболочки вакуумной камеры до ее внутренней оболочки равно длине плоской лопасти 9 осевой воздушной турбины. Во внутреннюю оболочку вакуумной камеры установлен осевой воздушный компрессор 13 с противоположной стороны вакуумной камеры плотно прилегает полусфера 40 с отверстиями 41, в которые входят всасывающие воздуховодные трубы 17, соединяющие устройство преобразования энергии с вакуумной камерой 18.
Устройство преобразования жидкого топлива в газообразное состояние выполнено в виде запальника 19 овально-цилиндрической формы, имеющего в своей входной части форсунку 22 со свечами 23 зажигания и в выходной своей части прибор 20 подготовки топлива и топливные форсунки 21 для подачи газообразного топлива в рабочую камеру сгорания 27 непрерывного действия.
Рабочая камера сгорания так же, как и запальник 19, имеет овально-цилиндрическую форму и состоит из диффузора 24 (расширяющейся части), входного воздушного устройства 25 “лепесткового типа” для создания циклонного вращательного движения воздуха, жаровой части со свечами 42 и с заданным объемом для круговых движений воздуха, сужающейся части 28 (конфузора) для движения уплотненного газа и увеличения скорости его потока и выходной удлиненной части - горловины 29 для создания сверхзвуковой скорости движения газа, соединенной с устройством преобразования энергии таким образом, что входит удлиненной горловиной в его первое отверстие наименьшего диаметра.
Устройство преобразования энергии выполнено в виде нескольких последовательно установленных и входящих друг в друга цилиндрических труб 30, 31 и 32 всасывающего принципа действия, одинаковой длины, жестко соединенных между собой в продольном направлении направляющими пластинами с зазорами, образующими воздушные щели-каналы 33, 34, 35 и 36, с заданной площадью сечения для возможности движения по этим каналам малыми дозами воздуха, поступающего из атмосферы.
Цилиндрические трубы 30, 31 и 32 имеют одинаковые по длине размеры, но разные диаметры отверстий, которые выполнены с увеличением диаметра отверстий последующих труб по отношению к диаметрам отверстий предыдущих труб для возможности обеспечения инерционного прямолинейно-направленного движения по этим трубам газовоздушной массы в смесительную камеру.
Смесительная камера 37 имеет цилиндрическую форму и предназначена для накопления увеличенной газовоздушной массы, использования кинетической энергии сверхзвуковой скорости инерционного прямолинейно-направленного движения газовоздущной массы, направления газовоздушного потока параллельно оси двигателя, а также преобразования потенциальной внутренней “тепловой” энергии молекул газа и потенциальной энергии “холода” молекул воздуха. Смесительная камера соединена своей круглой цилиндрической поверхностью с расширительной частью реактивного сопла 38, на выходе которого расположена камера 39 для направления газовоздушного потока параллельно осевой линии двигателя.
Двигатель работает следующим образом.
Для запуска двигателя в работу подается электрическое питание на станцию электронного управления.
Кнопкой “пуск” включают напряжение на генератор электрического тока 6, работающий в данном случае в качестве стартера. Стартер раскручивает топливный насос 4, воздушную турбину 8 и осевой воздушный компрессор 13, в результате лопасти 10 вентилятора осевой воздушной турбины нагнетают воздух в осевой воздушный компрессор 13. Воздух из атмосферы через конусное устройство 3 воздухозаборника нагнетается по воздуховодным трубам 15 и 16. При этом конусное устройство уплотняет и направляет поток воздуха на плоские лопасти 9 осевой воздушной турбины. Скорость проходящего воздушного потока через эти плоские лопасти 9 равна скорости инерционного движения потока газовоздушной массы в смесительной камере. Одновременно воздух нагнетается в кожух 26 рабочей камеры сгорания 27 и диффузор 24 входной части рабочей камеры сгорания, при этом за счет диффузора увеличивается масса воздуха и давление в рабочей камере сгорания. Одновременно воздух подается по воздуховодной трубе 16 во входную часть запальника 19 устройства преобразования жидкого топлива в газообразное состояние, при этом входная часть этого устройства изменяет направление движения воздуха на 90°. Внутри запальника 19 воздух приобретает круговое вращательное движение, уплотняется на его стенках, в центре воздушного вихря плотность воздуха уменьшается и жидкое топливо подается непрерывно под давлением в камеру сгорания запальника, распыляется в нем форсункой 22. Затем подается напряжение на свечи 23 запальника 19 и искра зажигания воспламеняет топливную смесь в устройстве преобразования жидкого топлива в газообразное состояние, т.е. в запальнике идет реакция горения обогащенного топлива с воздухом и тепловая энергия газа проходит через удлиненную горловину запальника 19 в полость рабочей камеры сгорания 27. Жидкое топливо в распыленном виде через топливную форсунку 21 прибора подготовки топлива 20 также подается в газовый тракт удлиненной горловины запальника 19. Топливо прогревается в обогащенном газовом потоке, испаряется до парогазообразования и затем поступает в рабочую камеру сгорания 27, в отверстия входного устройства 25 “лепесткового типа”, где создается циклонное круговое вращательное движение воздуха на 90°.
Далее воздушный поток переходит в жаровую часть рабочей камеры сгорания 27, где в ее заданном объеме происходит круговое движение воздуха и увеличение скорости его потока. В вихревом движении смешиваются воздух с газообразным топливом и в рабочей камере сгорания образуется газовоздушная смесь, которая воспламеняется от температуры газа запальника 19 или свечей зажигания 42 рабочей камеры сгорания на период запуска двигателя.
Реакция горения в рабочей камере сгорания в ее овальной жаровой части идет интенсивно, в результате чего, газообразное топливо с воздухом сгорает мгновенно и полно с выделением высокой температуры, которая с увеличенной плотностью и увеличенным давлением выходит через сужающуюся часть 28 (конфузор) рабочей камеры сгорания в ее удлиненную, цилиндрической формы, горловину 29, в которой кинетическая энергия движения потока газа достигает сверхзвуковой инерционной скорости и газовый поток получает направленное движение по цилиндрическим трубам 30, 31 и 32 устройства преобразования энергии, сначала в его первую цилиндрическую трубу с наименьшим диаметром отверстия, а затем проходит через следующие отверстия цилиндрических труб с увеличенным диаметром отверстий по отношению к отверстиям предыдущих цилиндрических труб.
Скорость газовоздушного потока, проходящего по цилиндрическим трубам, достигает сверхзвуковой скорости. В щелях 33, 34, 35 и 36 устройства преобразования энергии создается разреженная зона и просходит всасывание воздуха из всасывающих воздуховодных труб 17, входящих в отверстия 41 полусферы 40 вакуумной камеры 18, и нагнетание воздуха в смесительную камеру 35. Вся газовоздушная масса поступает в смесительную камеру 37, а затем в расширительную часть реактивного сопла 38, где за счет расширения газовоздушной массы происходит мгновенное падение ее плотности и давления, что способствует увеличению всасывающего из атмосферы воздуха в воздуховодные трубы 17 и вакуумную камеру 18 через конусное устройство 3 воздухозаборника 2. При расширении газовоздушной массы в реактивном сопле появляется разница между давлением в рабочей камере сгорания 27 и давлением в расширительной части реактивного сопла 38, в результате разности этих давлений увеличивается реактивная тяга двигателя, положительно влияющая на производительность работы устройства преобразования энергии.
Таким образом, реактивный двигатель работает в постоянно действующем стабильном режиме, обеспечивающем постоянную циркуляцию воздуха внутри корпуса двигателя и непрерывное всасывание воздуха из атмосферы, тем самым достигается высокий коэффициент использования энергии “тепла” за счет расширения, нагнетания и преобразования энергии “тепла” с использованием энергии “холода”, т.е. атмосферного воздуха.
В связи с тем, что воздушная турбина расположена на входе воздухозаборника перед осевым воздушным компрессором, обеспечена надежная его защита от воздействия на его лопасти газов высокой температуры, в отличие от вышеописанных аналогов, тем самым повышается долговечность и производительность работы воздушной турбины и двигателя в целом.
По сравнению с ближайшим аналогом и другими известными в области реактивных двигателей предлагаемое к патентованию изобретение имеет наиболее упрощенную и экономичную конструкцию.

Claims (2)

1. Реактивный двигатель, включающий корпус, воздухозаборник, камеру сгорания, турбину, компрессор и сопло, отличающийся тем, что он снабжен устройством преобразования энергии и устройством преобразования жидкого топлива в газообразное состояние, между которыми расположена рабочая камера сгорания непрерывного действия, причем устройство преобразования жидкого топлива в газообразное состояние выполнено в виде запальника, имеющего во входной части форсунку со свечами зажигания, а в выходной, удлиненной его части установлены прибор подготовки топлива и топливные форсунки для подачи газообразного топлива в рабочую камеру сгорания, которая имеет входное воздушное устройство с диффузором, жаровую часть со свечами зажигания, имеющую заданный объем для возможности круговых движений воздуха и увеличения скорости его потока, и выходную, сужающуюся часть, которая выполнена удлиненной формы в виде горловины, входящей в устройство преобразования энергии, которое соединено со входом реактивного сопла через смесительную камеру и выполнено в виде нескольких последовательно расположенных и входящих друг в друга с зазорами цилиндрических труб всасывающего принципа действия одинаковой длины, жестко соединенных между собой направляющими пластинами, образующими воздушные щели-каналы с заданной площадью сечения для возможности движения по ним атмосферного воздуха, причем цилиндрические трубы устройства преобразования энергии имеют разные диаметры отверстий с увеличением диаметра отверстий последующих труб по отношению к диаметру отверстий предыдущих труб для создания инерционного прямолинейно направленного движения газовоздушной массы в смесительную камеру и реактивное сопло, причем смесительная камера имеет цилиндрическую форму и своей круглой поверхностью соединена с расширительной частью реактивного сопла, на выходе которого установлена камера, направляющая газовоздушный поток параллельно оси двигателя, а с другой стороны корпуса двигателя расположена вакуумная камера, с противоположной стороны которой плотно прилегает полусфера с отверстиями, в которые входят всасывающие воздуховодные трубы, соединяющие устройство преобразования энергии с вакуумной камерой, которая имеет цилиндрическую форму с внешней и внутренней оболочками, внутри последней перед устройством преобразования жидкого топлива в газообразное состояние установлен осевой воздушный компрессор, на одной оси с которым на входе воздухозаборника установлена воздушная турбина, снабженная плоскими лопастями из механически прочного металла и соединенная с конусным устройством, установленным на одной оси с двигателем.
2. Двигатель по п.1, отличающийся тем, что расстояние от внешней оболочки вакуумной камеры до ее внутренней оболочки равно длине плоской лопасти осевой воздушной турбины.
RU2002129673/06A 2002-11-04 2002-11-04 Реактивный двигатель RU2236610C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2002129673/06A RU2236610C2 (ru) 2002-11-04 2002-11-04 Реактивный двигатель

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2002129673/06A RU2236610C2 (ru) 2002-11-04 2002-11-04 Реактивный двигатель

Publications (2)

Publication Number Publication Date
RU2002129673A RU2002129673A (ru) 2004-06-27
RU2236610C2 true RU2236610C2 (ru) 2004-09-20

Family

ID=33433137

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002129673/06A RU2236610C2 (ru) 2002-11-04 2002-11-04 Реактивный двигатель

Country Status (1)

Country Link
RU (1) RU2236610C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102606311A (zh) * 2011-01-24 2012-07-25 万学先 气动喷气发动机
RU2578236C1 (ru) * 2015-02-18 2016-03-27 Александр Иванович Рудаков Способ создания тяги двигателя и конструкция двигателя
CN109252981A (zh) * 2018-10-25 2019-01-22 中国人民解放军空军工程大学 涡轮/激波汇聚爆震组合发动机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102606311A (zh) * 2011-01-24 2012-07-25 万学先 气动喷气发动机
RU2578236C1 (ru) * 2015-02-18 2016-03-27 Александр Иванович Рудаков Способ создания тяги двигателя и конструкция двигателя
CN109252981A (zh) * 2018-10-25 2019-01-22 中国人民解放军空军工程大学 涡轮/激波汇聚爆震组合发动机

Similar Documents

Publication Publication Date Title
KR102046455B1 (ko) 연료 노즐, 이를 포함하는 연소기 및 가스 터빈
KR20190013595A (ko) 연소기용 토치 점화기
US5207054A (en) Small diameter gas turbine engine
US6928804B2 (en) Pulse detonation system for a gas turbine engine
US12092336B2 (en) Turbine engine assembly including a rotating detonation combustor
CN110718843B (zh) 吸气式连续旋转爆震燃烧驱动的预混式二氧化碳气动激光器
US2482394A (en) Gas turbine
KR102091043B1 (ko) 연소기용 노즐, 연소기 및 이를 포함하는 가스 터빈
US6981366B2 (en) Turbineless jet engine
US5027603A (en) Turbine engine with start injector
US8250854B2 (en) Self-starting turbineless jet engine
KR101954535B1 (ko) 연소기 및 이를 포함하는 가스 터빈
US20180179950A1 (en) Turbine engine assembly including a rotating detonation combustor
JPH06505789A (ja) 気体燃料噴射器
RU2236610C2 (ru) Реактивный двигатель
RU2017145773A (ru) Горелка для камеры сгорания газотурбинной энергосиловой установки, камера сгорания газотурбинной энергосиловой установки, содержащая такую горелку, и газотурбинная энергосиловая установка, содержащая такую камеру сгорания
US8272221B2 (en) Hydrogen gas generator for jet engines
RU2096644C1 (ru) Комбинированный прямоточный воздушно-реактивный двигатель
CN110168205B (zh) 燃气涡轮发动机
CN107218155B (zh) 一种脉冲预引爆可稳定工作的爆震发动机
RU163848U1 (ru) Пульсирующий воздушно-реактивный двигатель
KR102661014B1 (ko) 덕트 조립체 및 이를 포함하는 연소기
US11920795B2 (en) Fuel injection device, nozzle, and combustor including the same
KR102660055B1 (ko) 연소기용 노즐, 연소기, 및 이를 포함하는 가스 터빈
KR102599921B1 (ko) 연소기용 노즐, 연소기, 및 이를 포함하는 가스 터빈

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20141105