RU2231868C1 - Композиционный материал для сепаратора щелочных аккумуляторных батарей - Google Patents
Композиционный материал для сепаратора щелочных аккумуляторных батарей Download PDFInfo
- Publication number
- RU2231868C1 RU2231868C1 RU2002130742/09A RU2002130742A RU2231868C1 RU 2231868 C1 RU2231868 C1 RU 2231868C1 RU 2002130742/09 A RU2002130742/09 A RU 2002130742/09A RU 2002130742 A RU2002130742 A RU 2002130742A RU 2231868 C1 RU2231868 C1 RU 2231868C1
- Authority
- RU
- Russia
- Prior art keywords
- zirconium dioxide
- composite material
- separators
- powder
- fibers
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 27
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 61
- 239000000835 fiber Substances 0.000 claims abstract description 38
- 239000000843 powder Substances 0.000 claims abstract description 22
- 239000002245 particle Substances 0.000 claims abstract description 10
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims abstract 7
- 239000000463 material Substances 0.000 abstract description 14
- 239000003792 electrolyte Substances 0.000 abstract description 11
- 238000004519 manufacturing process Methods 0.000 abstract description 8
- 230000007774 longterm Effects 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract description 5
- 238000003487 electrochemical reaction Methods 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract 1
- 238000004870 electrical engineering Methods 0.000 abstract 1
- 238000005260 corrosion Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 5
- 239000003513 alkali Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- CWBIFDGMOSWLRQ-UHFFFAOYSA-N trimagnesium;hydroxy(trioxido)silane;hydrate Chemical compound O.[Mg+2].[Mg+2].[Mg+2].O[Si]([O-])([O-])[O-].O[Si]([O-])([O-])[O-] CWBIFDGMOSWLRQ-UHFFFAOYSA-N 0.000 description 4
- 239000010425 asbestos Substances 0.000 description 3
- 229910052895 riebeckite Inorganic materials 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 229920005594 polymer fiber Polymers 0.000 description 2
- 229920006380 polyphenylene oxide Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052620 chrysotile Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Separators (AREA)
Abstract
Изобретение относится к области композиционных материалов, в частности к пористым диэлектрическим гибким материалам для химических источников тока. Техническим результатом изобретения является создание композиционного материала, пригодного для изготовления сепараторов щелочных аккумуляторных батарей, способного удерживать электролит и не препятствовать электрохимической реакции, обладающего высокой химической устойчивостью к воздействию электролита в условиях длительной эксплуатации и длительного хранения при обычных и повышенных температурах. Согласно изобретению композиционный материал для изготовления сепаратора щелочных аккумуляторных батарей содержит порошок диоксида циркония и волокна на основе диоксида циркония при следующем соотношении компонентов (мас.%): диоксид циркония (порошок) 50-72; волокна диоксида циркония 28-50. При этом диаметр волокна диоксида циркония составляет 1,5-12 мкм, а диаметр частиц порошка диоксида циркония 0,05-10 мкм. 1 табл.
Description
Изобретение относится к области композиционных материалов, в частности к пористым диэлектрическим гибким материалам для химических источников тока. Изделия, полученные из этого материала, найдут широкое применение при производстве аккумуляторных батарей как для источников электроэнергии бортовых систем питания летательных аппаратов, так и для судовых, автомобильных и бытовых аккумуляторов.
Сепаратор щелочных аккумуляторных батарей должен обеспечивать электрическую изоляцию электродов, обладать достаточной пористостью для удержания электролита, выдерживать определенные перепады температур и обладать достаточной прочностью, чтобы предотвращать осыпание и оплывание активных масс электродов.
Традиционными компонентами сепараторов щелочных аккумуляторных батарей являются волокна щелочеустойчивых органических полимеров и материалы на основе асбестовых волокон.
Известны гибкие сепараторы батарей, изготовленные на основе мата из хризотилового асбеста (хризотил - гидросиликат магния Mg6Si4О10(OH)8), пропитанного полифениленоксидом и покрытого гибкой пленкой, состоящей из органического или керамического материала сепаратора, титаната калия в виде коротких волокон и органического полимера, такого как полифениленоксид, сформованного в виде короба или оболочки, в которую можно вставлять электрод (Патент США №3.625.770, Н 01 М 3/02).
Недостатком такого сепаратора является невысокая коррозионная стойкость, обусловленная выщелачиванием из асбеста оксида кремния в процессе длительной эксплуатации, что ухудшает электрические характеристики аккумуляторов.
Известен также нетканый материал для сепаратора, в котором один или более смешанных слоев из запутанных коротких (от 1 до 25 мм) и запутанных длинных (свыше 25 мм) волокон образуют нетканую основу (Патент США №6037079, Н 01 М 2/16.14). Слои запутанных волокон содержат композитные волокна, в основном на основе полиолефина, высокопрочные волокна (с прочностью одного волокна не менее 5 г/денье) и плавкие волокна, имеющие хотя бы на своей поверхности смолообразный компонент с точкой плавления ниже, чем у композиционных и высокопрочных волокон. После расплавления этих плавких волокон в материале получается спутано - сплавленный нетканый материал, которому затем путем дополнительной обработки придаются гидрофильные свойства.
Существует способ получения сепараторов путем обертывания плоских листов вокруг электродов. Эти листы предлагается делать из различных волокнистых материалов - нетканых стеклянных волокон или нетканых полимерных волокон, например полиэтилена или полипропилена, которые удерживают электролит капиллярными силами, а кроме этого обеспечивают пространство для газа, т.к. матрица не полностью заполнена электролитом (Патент США №6153335, Н 01 М 4/56).
Недостатком сепараторов из полимерных волокон является их низкая температуроустойчивость. При эксплуатации щелочных никель-кадмиевых аккумуляторов могут возникать локальные перегревы до температур порядка 300°С, что приводит к разложению и карбонизации полимерного материала сепаратора и, в конечном итоге, к короткому замыканию между электродами.
Наиболее близким по технической сущности и достигаемому результату к предлагаемому является выбранный в качестве прототипа сепаратор для щелочного никель-водородного аккумулятора на основе порошка диоксида циркония и волокон конвертированного хризотилового асбеста при следующем соотношении компонентов: диоксид циркония - 90-75%, конвертированный хризотиловый асбест - 10-25% (по массе). (Патент РФ №2173918, Н 01 М 2/16, 6/14, 8/02).
Такой сепаратор имеет высокие электрические характеристики, однако недостатком его является то, что при взаимодействии с электролитом происходит выщелачивание соединений кремния из волокон асбеста. Об этом свидетельствует зафиксированная потеря массы материала сепаратора (порядка 2-4 мас.%) в результате коррозионных испытаний в 9,8 н.растворе гидроксида калия при температуре 130°С в течение 100 часов. При эксплуатации аккумулятора в течение нормативного срока (10 лет) это может привести к изменению структурных характеристик сепаратора и, в результате этого, к снижению его электротехнических показателей.
Технической задачей данного изобретения является создание композиционного материала, пригодного для изготовления сепараторов щелочных аккумуляторных батарей, способного удерживать электролит и не препятствовать электрохимической реакции, т.е. иметь низкое электросопротивление, обладающего высокой химической устойчивостью к воздействию электролита в условиях длительной эксплуатации и длительного хранения как при обычных, так и при повышенных температурах.
Решение поставленной задачи достигается тем, что предлагаемый композиционный материал для изготовления сепаратора щелочных аккумуляторных батарей содержит порошок диоксида циркония и волокна на основе диоксида циркония при следующем соотношении компонентов (мас.%):
Диоксид циркония (порошок) 50-72
Волокна диоксида циркония 28-50
при этом диаметр волокна диоксида циркония составляет 1,5-12 мкм, а диаметр порошка диоксида циркония 0,05-10 мкм.
В данном случае волокна диоксида циркония с диаметром от 1,5 до 12 мкм исполняют роль каркаса композиционного материала, обеспечивающего гибкость и механическую прочность конструкции, а также способность удерживать электролит, обусловленную гидрофильностью поверхности и капиллярными силами. При использовании волокон с диаметром больше 12 мкм каркас материала имеет слишком высокую пористость и низкую способность удерживать порошковый наполнитель. Волокна тоньше 1,5 мкм не обеспечивают необходимой механической прочности материала. Содержание волокна в материале менее 28 мас.% приводит к снижению механической прочности композита, а увеличение его количества свыше 50 мас.% снижает однородность материала.
Мелкодисперсные частицы порошка диоксида циркония с диаметром от 0,05 до 10 мкм, располагающиеся в пространстве между волокнами, создают мелкопористую структуру материала, что препятствует прорастанию дендритов металлического электрода через сепаратор, и обеспечивают свободную циркуляцию электролита между электродами. Частицы порошка с диаметром менее 0,05 мкм не удерживаются в пространстве между волокнами. Использование порошка диоксида циркония с частицами крупнее, чем 10 мкм, приводит к повышению неоднородности материала.
Как показали эксперименты, диоксид циркония в виде волокна обладает высокой коррозионной устойчивостью к воздействию концентрированных растворов щелочей при повышенных температурах. Использование в качестве каркаса композиционного материала волокон из диоксида циркония приводит к повышению стабильности эксплуатационных характеристик изготовленных из него сепараторов щелочных аккумуляторных батарей на протяжении всего нормативного срока службы аккумуляторов.
Примеры осуществления предлагаемого технического решения.
Пример 1
4 г волокна из диоксида циркония со средним диаметром ~5 мкм и средней длиной ~300 мкм диспергировали в 0,5 л воды в барабане шаровой мельницы в течение 15 мин. В полученную суспензию вводили 12 г порошка диоксида циркония со средним диаметром частиц ~3 мкм при перемешивании лопастной мешалкой. Из суспензии методом вакуумного фильтрования через пористую подложку получали заготовку композиционного материала, которую после сушки прессовали до необходимой толщины. Композиционный материал содержал 72 мас.% порошка диоксида циркония и 28 мас.% волокна.
Пример 2
В соответствии с примером 1 была получена суспензия, содержащая 8 г волокна диоксида циркония со средним диаметром ~12 мкм и средней длиной ~700 мкм и 8 г порошка диоксида циркония со средним диаметром частиц ~10 мкм в 1 л воды, из которой получен композиционный материал с содержанием 35 мас.% волокна и 65 мас.% порошка.
Пример 3
В соответствии с примером 1 получен образец композиционного материала, содержащий 40 мас.% волокна диоксида циркония со средним диаметром ~1,5 мкм и средней длиной ~90 мкм и 60 мас.% порошка ZrO2 со средним диаметром частиц ~0,1 мкм.
Пример 4
В соответствии с примером 1 получен образец композиционного материала, содержащий 50 мас.% волокна диоксида циркония со средним диаметром ~7 мкм и средней длиной ~400 мкм и 50 мас.% порошка ZrO3 со средним диаметром частиц 7 мкм.
Пример 5
В соответствии с примером 1 получен образец композиционного материала, содержащий 30 мас.% волокна диоксида циркония со средним диаметром ~3 мкм и средней длиной ~180 мкм и 70 мас.% порошка диоксида циркония со средним диаметром частиц ~0,05-2 мкм.
Пример 6
В соответствии с примером 1 получен образец композиционного материала, содержащий 50 мас.% волокна со средним диаметром ~3 мкм и средней длиной ~180 мкм и 50 мас.% порошка ZrО2 со средним диаметром частиц ~3 мкм.
Коррозионные испытания проводились в 9,8 н.растворе гидроксида калия, нагретом до 130°С, в течение 100 часов.
В таблице приведены составы и характеристики композиционных материалов, полученных в соответствии с предлагаемым техническим решением в сравнении с прототипом.
Из таблицы видно, что полученные в соответствии с настоящим изобретением образцы композиционного материала при толщине 0,3 мм имеют пористость в пределах 56-70%, что несколько ниже пористости прототипа, однако, щелочеудержание у них превосходит прототип. Удельное электросопротивление образцов композиционного материала, заполненных электролитом (30% раствор КОН) совпадает с сопротивлением прототипа.
Коррозионные испытания образцов композиционного материала, полученных согласно изобретению, показали, что они имеют коррозионную устойчивость на два порядка выше прототипа.
Как показали испытания, предложенный композиционный материал имеет высокую коррозионную стойкость в щелочах, значительно превосходящую прототип, и при толщине 0,3 мм его пористость составляет ~63%, что позволит использовать его при изготовлении сепараторов щелочных батарей для бортовых аккумуляторов, которые должны иметь длительный ресурс работы, а также сохранять работоспособность после длительного хранения на борту в запасном состоянии, и в случае стерилизации щелочного аккумулятора, которая происходит при температуре 135°С.
Claims (2)
1. Композиционный материал для сепараторов щелочных аккумуляторных батарей, содержащий порошок диоксида циркония, отличающийся тем, что он дополнительно содержит волокна диоксида циркония при следующем соотношении компонентов, мас.%:
Порошок диоксида циркония 50 - 72
Волокна диоксида циркония 28 - 50
2. Композиционный материал по п.1, отличающийся тем, что диаметр волокон диоксида циркония составляет 1,5-12 мкм, а диаметр частиц порошка диоксида циркония - 0,05-10 мкм.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2002130742/09A RU2231868C1 (ru) | 2002-11-18 | 2002-11-18 | Композиционный материал для сепаратора щелочных аккумуляторных батарей |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2002130742/09A RU2231868C1 (ru) | 2002-11-18 | 2002-11-18 | Композиционный материал для сепаратора щелочных аккумуляторных батарей |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2002130742A RU2002130742A (ru) | 2004-05-10 |
RU2231868C1 true RU2231868C1 (ru) | 2004-06-27 |
Family
ID=32846394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2002130742/09A RU2231868C1 (ru) | 2002-11-18 | 2002-11-18 | Композиционный материал для сепаратора щелочных аккумуляторных батарей |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2231868C1 (ru) |
-
2002
- 2002-11-18 RU RU2002130742/09A patent/RU2231868C1/ru not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3749604A (en) | Heat resistant substrates and battery separators made therefrom | |
TW393797B (en) | An electrode for a battery and a battery using it | |
US20050255769A1 (en) | Electrical separator,method for making same and use thereof in high-power lithium cells | |
EP2619365A2 (en) | Compositions and delivery systems with leachable metal ions | |
JP2006222083A (ja) | 不織布、繊維および電気化学的電池 | |
US5656391A (en) | lectrochemical alkali metal cell and process for its manufacture | |
KR20090064373A (ko) | 용융 탄산염-연료 전지용 전극 및 이의 제조 방법 | |
NL7905773A (nl) | Zinkelektroden. | |
US3592693A (en) | Consumable metal anode with dry electrolytic enclosed in envelope | |
US4944991A (en) | Formation of alumina impregnated carbon fiber mats | |
CS209894B2 (en) | Separator for the lead accumulators | |
KR101077951B1 (ko) | 산화에 의해 전처리되는 아연 음극용 세라믹 도전체 | |
US3625770A (en) | Flexible matrix and battery separator embodying same | |
CA2175783A1 (en) | Battery separator | |
Cheong et al. | Surface modified ceramic fiber separators for thermal batteries | |
JP2020161330A (ja) | セパレータ、セパレータの製造方法及びリチウムイオン電池 | |
RU2231868C1 (ru) | Композиционный материал для сепаратора щелочных аккумуляторных батарей | |
US3192071A (en) | Dry cell electrodes containing fibrous graphite and process of making same | |
RU2249884C2 (ru) | Сепаратор-стекломат для герметичных свинцовых аккумуляторов с абсорбированным электролитом | |
Nahvi Bayani et al. | Aluminum hydroxide-based flame-retardant composite separator for lithium-ion batteries | |
US6033803A (en) | Hydrophilic electrode for an alkaline electrochemical cell, and method of manufacture | |
JP2023527688A (ja) | 特定の多孔質固体電解質発泡体を備える電池セル | |
Mathers et al. | Evaluation of Porous Paper and Felt Ceramics for Electrode Separators in High Temperature Li‐Al/LiCl‐KCl/FeSx Cells | |
JP2021084830A (ja) | カーボンシート | |
Ginting et al. | Enhanced Performance of Solid Polymer Electrolyte Separator Lithium Battery with Cellulose Acetate From Empty Palm Fruit Bunch Coated Al2O3-Polyacrylic Acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20131119 |