RU2224961C2 - Способ удаления летучих компонентов из природного газа - Google Patents
Способ удаления летучих компонентов из природного газа Download PDFInfo
- Publication number
- RU2224961C2 RU2224961C2 RU2001113730/06A RU2001113730A RU2224961C2 RU 2224961 C2 RU2224961 C2 RU 2224961C2 RU 2001113730/06 A RU2001113730/06 A RU 2001113730/06A RU 2001113730 A RU2001113730 A RU 2001113730A RU 2224961 C2 RU2224961 C2 RU 2224961C2
- Authority
- RU
- Russia
- Prior art keywords
- stream
- natural gas
- liquid
- nitrogen
- vapor
- Prior art date
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 108
- 239000003345 natural gas Substances 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims description 33
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 94
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 50
- 239000003949 liquefied natural gas Substances 0.000 claims abstract description 38
- 239000007788 liquid Substances 0.000 claims abstract description 26
- 238000005194 fractionation Methods 0.000 claims abstract description 24
- 238000001816 cooling Methods 0.000 claims abstract description 11
- 239000007791 liquid phase Substances 0.000 claims abstract description 10
- 239000012263 liquid product Substances 0.000 claims abstract description 8
- 239000012808 vapor phase Substances 0.000 claims abstract description 8
- 239000000047 product Substances 0.000 claims abstract description 5
- 238000009835 boiling Methods 0.000 claims description 16
- 238000001704 evaporation Methods 0.000 claims description 15
- 230000008020 evaporation Effects 0.000 claims description 15
- 239000001307 helium Substances 0.000 claims description 7
- 229910052734 helium Inorganic materials 0.000 claims description 7
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical group [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 7
- 239000012530 fluid Substances 0.000 claims description 5
- 238000010992 reflux Methods 0.000 claims description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 238000005191 phase separation Methods 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 2
- 206010062717 Increased upper airway secretion Diseases 0.000 abstract 1
- 208000026435 phlegm Diseases 0.000 abstract 1
- 239000002994 raw material Substances 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 20
- 238000000926 separation method Methods 0.000 description 18
- 238000004821 distillation Methods 0.000 description 13
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 238000005057 refrigeration Methods 0.000 description 6
- 239000000356 contaminant Substances 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910001868 water Inorganic materials 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 3
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000005662 Paraffin oil Substances 0.000 description 1
- 241000183024 Populus tremula Species 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000010813 municipal solid waste Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000011555 saturated liquid Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
- F25J3/0209—Natural gas or substitute natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0035—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/004—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0203—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
- F25J1/0204—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0211—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
- F25J1/0212—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0244—Operation; Control and regulation; Instrumentation
- F25J1/0254—Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0257—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/028—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases
- F25J3/029—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases of helium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/03—Treating the boil-off
- F17C2265/032—Treating the boil-off by recovery
- F17C2265/033—Treating the boil-off by recovery with cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/03—Treating the boil-off
- F17C2265/032—Treating the boil-off by recovery
- F17C2265/038—Treating the boil-off by recovery with expanding
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/02—Processes or apparatus using separation by rectification in a single pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/74—Refluxing the column with at least a part of the partially condensed overhead gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/04—Recovery of liquid products
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/60—Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/90—Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/60—Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/66—Closed external refrigeration cycle with multi component refrigerant [MCR], e.g. mixture of hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/62—Details of storing a fluid in a tank
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Раскрыт способ удаления, по меньшей мере, одного компонента, обладающего высокой летучестью, такого как азот, из природного газа под давлением для получения сжиженного природного газа под давлением, который имеет низкое содержание азота и температуру свыше приблизительно -112oС (-170oF). Исходный природный газ под давлением, содержащий азот, расширяют и подают во фракционирующую ректификационную колонну. Во фракционирующей ректификационной колонне образуется поток первого пара, который имеет повышенное содержание азота, и поток первой жидкости. Поток пара охлаждают для образования паровой фазы и жидкой фазы. После этого паровую и жидкую фазы подвергают разделению фаз для образования потока второго пара и потока второй жидкости. Поток второй жидкости возвращают во фракционирующую ректификационную колонну в качестве флегмы. Поток второго пара предпочтительно используют для охлаждения поступающего потока исходного сырья. Поток первой жидкости отводят из установки для фракционирования в качестве потока продукта, имеющего низкое содержание азота. Использование изобретения позволит получить жидкий продукт под давлением с низким содержанием азота с помощью только одной ректификационной колонны. 2 с. и 7 з.п. ф-лы, 1 ил., 2 табл.
Description
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Изобретение относится в целом к способу сжижения потока многокомпонентного исходного подаваемого сырья путем использования низкотемпературного фракционирования. Более точно, изобретение относится к способу сжижения потока природного газа, содержащего компонент, более летучий по сравнению с метаном, для получения сжиженного природного газа под давлением (PLNG - pressurized liquefied natural gas) с низким содержанием более летучего компонента.
Изобретение относится в целом к способу сжижения потока многокомпонентного исходного подаваемого сырья путем использования низкотемпературного фракционирования. Более точно, изобретение относится к способу сжижения потока природного газа, содержащего компонент, более летучий по сравнению с метаном, для получения сжиженного природного газа под давлением (PLNG - pressurized liquefied natural gas) с низким содержанием более летучего компонента.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Благодаря своей способности к полному сгоранию и удобству применения природный газ стал широко использоваться в последние годы. Многие источники природного газа расположены на удаленных территориях, на больших расстояниях от любых рынков сбыта газа. Иногда имеется трубопровод для транспортирования поставляемого природного газа на рынок сбыта. В том случае, когда транспортировка по трубопроводам не осуществима, поставляемый природный газ часто перерабатывают в сжиженный природный газ (который называют "LNG" (liquefied natural gas)) для транспортировки на рынок.
Благодаря своей способности к полному сгоранию и удобству применения природный газ стал широко использоваться в последние годы. Многие источники природного газа расположены на удаленных территориях, на больших расстояниях от любых рынков сбыта газа. Иногда имеется трубопровод для транспортирования поставляемого природного газа на рынок сбыта. В том случае, когда транспортировка по трубопроводам не осуществима, поставляемый природный газ часто перерабатывают в сжиженный природный газ (который называют "LNG" (liquefied natural gas)) для транспортировки на рынок.
Природный газ часто содержит разбавляющие газы, такие как азот и гелий. Наличие этих газов приводит к снижению теплотворной способности природного газа. Кроме того, некоторые из этих газов могут иметь независимое промышленное применение, если существует возможность их отделения от природного газа. Следовательно, отделение разбавляющих газов от природного газа может иметь двойной экономический эффект, а именно, увеличение теплотворной способности природного газа и получение годного для реализации газа, такого как гелий. В установках для сжижения природного газа также происходит удаление азота из природного газа, поскольку азот не будет оставаться в жидкой фазе во время транспортировки обычного сжиженного природного газа, который находится под атмосферным давлением или давлением, близким к атмосферному.
Обычно большинство известных способов разделения природного газа включают в себя, по меньшей мере, три отдельные рабочие операции или стадии. К этим операциям относятся: (1) операция предварительной обработки газа для удаления воды и кислотообразующих газов, таких как диоксид углерода и сульфид водорода, (2) операция отделения жидких продуктов в природном газе путем использования низких, но некриогенных температур для отделения и рекуперации этана и более тяжелых углеводородных компонентов и (3) операция отделения или отвода (задерживания) азота, часто выполняемая в установках для отвода азота (NRU - nitrogen rejection units). Отвод азота, как правило, осуществляют путем охлаждения азотсодержащего природного газа и фракционирования его в дистилляционной колонне.
Недавно было предложено производить богатую метаном жидкость, имеющую температуру свыше приблизительно -112oС (-170oF) и давление, достаточное для того, чтобы жидкость находилась при температуре начала ее кипения или температуре ниже точки начала кипения. Этот сжиженный природный газ под давлением иногда называют PLNG, чтобы отличить его от LNG (сжиженного природного газа), который находится под атмосферным или близким к атмосферному давлением. Давление сжиженного природного газа под давлением, как правило, будет иметь значение свыше приблизительно 1380 кПа (200 фунтов на кв. дюйм абсолютного давления). Одно из преимуществ способа производства сжиженного природного газа под давлением заключается в том, что сжиженный природный газ под давлением может содержать до приблизительно 10 мольных процентов азота. Однако азот приводит к снижению теплотворной способности сжиженного природного газа под давлением и к повышению температуры начала кипения полученного сжиженного природного газа под давлением. Следовательно, существует необходимость в усовершенствованном способе удаления азота из потока природного газа под давлением и одновременного получения сжиженного природного газа под давлением.
КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
Изобретение в целом относится к процессу разделения, при котором происходит разделение потока исходного подаваемого сырья под давлением, содержащего метан и, по меньшей мере, один компонент с высокой летучестью, такой как гелий и водород, который имеет относительную летучесть, превышающую летучесть метана. В иллюстративных целях предполагается, что основная сепарация - это отделение N2 от СН4.
Изобретение в целом относится к процессу разделения, при котором происходит разделение потока исходного подаваемого сырья под давлением, содержащего метан и, по меньшей мере, один компонент с высокой летучестью, такой как гелий и водород, который имеет относительную летучесть, превышающую летучесть метана. В иллюстративных целях предполагается, что основная сепарация - это отделение N2 от СН4.
В предпочтительном варианте осуществления данного изобретения описан процесс отделения азота от азотсодержащего природного газа под давлением в целях получения сжиженного природного газа под давлением, который имеет низкое содержание азота и температуру свыше приблизительно -112oС (-170oF). Поток поступающего природного газа под давлением подают во фракционирующую ректификационную колонну под давлением свыше приблизительно 1380 кПа (200 фунтов на кв. дюйм абсолютного давления). Давление исходного природного газа предпочтительно составляет свыше приблизительно 4137 кПа (600 фунтов на кв. дюйм абсолютного давления), и он расширяется с помощью соответствующего средства расширения до более низкого давления перед подачей его во фракционирующую ректификационную колонну. Во фракционирующей ректификационной колонне образуется поток первой жидкости, который имеет низкое содержание азота, и поток первого пара, который имеет повышенное содержание азота. После этого поток пара охлаждается для образования паровой фазы и жидкой фазы. Паровую и жидкую фазы затем подвергают разделению фаз для образования потока второго пара и потока второй жидкости. Поток второй жидкости возвращается во фракционирующую ректификационную колонну в качестве флегмы (обратного стока). Поток второго пара предпочтительно используют для охлаждения поступающего потока исходного подаваемого сырья. Поток первой жидкости отводят из установки для фракционирования как поток продукта, который имеет низкое содержание азота, температуру свыше приблизительно -112oС (-170oF) и давление, достаточное для того, чтобы жидкий продукт находился при его температуре начала кипения или при температуре ниже точки начала кипения.
Возможно, но не обязательно, поток подаваемого исходного сырья разделяют на первый поток подаваемого исходного сырья и второй поток подаваемого исходного сырья. Первый поток подаваемого исходного сырья охлаждают посредством косвенного теплообмена с потоком, образованным в результате процесса во фракционирующей ректификационной колонне и отводимым из нее. Второй поток подаваемого исходного сырья охлаждают путем косвенного теплообмена с жидкостью, образованной в результате процесса во фракционирующей ректификационной колонне и отводимой из колонны. Первый и второй потоки подаваемого исходного сырья затем объединяют и подают во фракционирующую ректификационную колонну.
Одно преимущество настоящего изобретения заключается в том, что может быть получен жидкий продукт под давлением, который имеет низкое содержание азота, с помощью только одной фракционирующей ректификационной колонны, и при этом не возникает необходимости снижения давления во фракционирующей ректификационной колонне до значений, близких к атмосферному давлению, что является обычной практикой при удалении азота из сжиженного природного газа.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖА
Настоящее изобретение и его преимущества будут лучше поняты при изучении нижеприведенного подробного описания и приложенного чертежа, который представляет собой принципиальную схему одного варианта осуществления данного изобретения. Чертеж не предназначен для исключения из объема изобретения других вариантов осуществления, которые являются результатом типовых и ожидаемых модификаций варианта осуществления, показанного на чертеже. Различные необходимые подсистемы, такие как клапаны, смесители для потоков жидкостей и газов, системы управления и датчики были удалены из изображения на чертеже для упрощения и ясности представленного изображения.
Настоящее изобретение и его преимущества будут лучше поняты при изучении нижеприведенного подробного описания и приложенного чертежа, который представляет собой принципиальную схему одного варианта осуществления данного изобретения. Чертеж не предназначен для исключения из объема изобретения других вариантов осуществления, которые являются результатом типовых и ожидаемых модификаций варианта осуществления, показанного на чертеже. Различные необходимые подсистемы, такие как клапаны, смесители для потоков жидкостей и газов, системы управления и датчики были удалены из изображения на чертеже для упрощения и ясности представленного изображения.
ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
Было установлено, что поток природного газа под давлением, содержащий метан и относительно летучий компонент, такой как азот, может быть подвергнут криогенной сепарации, и при этом необходимо только минимальное дополнительное криогенное охлаждение, чтобы получить сжиженный природный газ под давлением, который по существу свободен от азота, без снижения давления до значений, близких к атмосферному давлению.
Было установлено, что поток природного газа под давлением, содержащий метан и относительно летучий компонент, такой как азот, может быть подвергнут криогенной сепарации, и при этом необходимо только минимальное дополнительное криогенное охлаждение, чтобы получить сжиженный природный газ под давлением, который по существу свободен от азота, без снижения давления до значений, близких к атмосферному давлению.
В соответствии с данным открытием согласно настоящему изобретению предлагается способ разделения сжиженного природного газа под давлением, содержащего метан и, по меньшей мере, один компонент с высокой летучестью, такой как гелий и азот. Данный способ разделения позволяет получить сжиженный природный газ под давлением, который по существу свободен от компонента с высокой летучестью и который имеет температуру свыше приблизительно -112oС (-170oF) и давление, достаточное для того, чтобы жидкий продукт находился при температуре, равной температуре начала его кипения или ниже указанной температуры начала кипения. Этот богатый метаном продукт иногда в данном описании называется сжиженным природным газом под давлением ("PLNG").
Термин "точка начала кипения" в используемом в данном описании смысле относится к температуре и давлению, при которых жидкость начинает превращаться в газ. Например, если некоторый объем сжиженного природного газа под давлением удерживается при постоянном давлении, но его температура увеличивается, то температура, при которой пузырьки газа начинают образовываться в сжиженном природном газе под давлением, представляет собой точку начала кипения. Аналогичным образом, если некоторый объем сжиженного природного газа под давлением удерживается при постоянной температуре, но давление снижается, то давление, при котором начинается образование газа, определяет точку начала кипения. В точке начала кипения сжиженный газ представляет собой насыщенную жидкость.
Первое обстоятельство, которое следует учитывать при криогенной обработке природного газа, - это загрязненность. Не подвергнутый обработке, исходный природный газ, представляющий собой сырье, пригодное для способа по настоящему изобретению, может содержать природный газ, полученный из нефтяной скважины (попутный газ), или из газовой скважины (газ, полученный из газовой залежи (непопутный)). Состав природного газа может варьироваться существенным образом. При использовании термина "природный газ" в данном описании речь идет о потоке природного газа, содержащем метан (C1) в качестве основного компонента. Как правило, природный газ также содержит этан (C2), высшие углеводороды (С3+) и незначительные количества загрязняющих примесей, таких как вода, диоксид углерода, сульфид водорода, азот, бутан, углеводороды с шестью или более атомами углерода, сорные примеси, сульфид железа, парафин и сырую нефть. Растворимость этих загрязняющих примесей меняется в зависимости от температуры, давления и состава. При криогенных температурах СО2, вода или другие загрязняющие примеси могут образовывать твердые частицы, которые могут забивать каналы для потока в криогенных теплообменниках. Этих потенциальных затруднений можно избежать за счет удаления таких загрязняющих примесей, если ожидается использование температур, значения которых равны или ниже температуры, соответствующей такому соотношению между температурой и давлением для данной загрязняющей примеси в чистом виде, которое приводит к образованию твердых частиц. В приведенном ниже описании изобретения предполагается, что поток природного газа подвергнут соответствующей обработке для удаления сульфидов и диоксида углерода и обезвоживанию для удаления воды путем использования традиционных и хорошо известных способов с целью получения потока "нейтрального, дезодорированного, обезвоженного" природного газа. Если поток природного газа содержит тяжелые углеводороды, которые могут вымораживаться в процессе сжижения, или если нежелательно присутствие тяжелых углеводородов в сжиженном природном газе под давлением, тяжелые углеводороды могут быть удалены с помощью процесса фракционирования перед получением сжиженного природного газа под давлением. При рабочих давлениях и температурах сжиженного природного газа под давлением умеренные количества азота в природном газе могут быть допустимыми, поскольку азот будет оставаться в жидкой фазе вместе с сжиженным природным газом под давлением. В данном описании предполагается, что природный газ содержит азот в количествах, достаточно больших для того, чтобы иметь основания для удаления азота по способу разделения в соответствии с данным изобретением. В данном описании изобретения предполагается, что содержание азота в потоке подаваемого исходного сырья предпочтительно находится в диапазоне от приблизительно 1 мол.% до приблизительно 15 мол.%.
Как показано на чертеже, поток 10 исходного природного газа поступает в установку для сжижения и предпочтительно разделяется на два потока 11 и 12. Поток 12 охлаждается с помощью теплообменника 30, через который циркулирует холодная жидкость из сепарационной колонны 34.
Поток 11 проходит через теплообменник 32, который находится в состоянии косвенного теплообмена с парами, отводимыми из верхней части установки 37 для разделения фаз. Термин "косвенный теплообмен" в том смысле, в котором он используется в данном описании и формуле изобретения, означает приведение двух потоков текучих сред в состояние теплообмена друг с другом без какого-либо физического контакта или смешивания текучих сред друг с другом. Потоки 11 и 12 соединяются, и объединенный поток (поток 15) пропускается через соответствующее средство 33 расширения, такое как обычный турбодетандер, с целью снижения давления и, тем самым, охлаждения потока пара перед тем, как он поступит в сепарационную колонну 34 на промежуточном уровне.
В варианте осуществления данного изобретения, показанном на чертеже, давление природного газа в потоке 10 подаваемого исходного сырья составляет свыше приблизительно 4137 кПа (600 фунтов на кв. дюйм абсолютного давления) и предпочтительно свыше приблизительно 4827 кПа (700 фунтов на кв. дюйм абсолютного давления), и этот газ предпочтительно находится при температурах ниже 40oС; однако при необходимости можно использовать другие значения давления и температуры, и при этом система может быть соответствующим образом модифицирована. Если поток 10 подаваемого исходного сырья находится под давлением ниже приблизительно 4137 кПа (600 фунтов на кв. дюйм абсолютного давления), давление его может быть повышено с помощью соответствующего средства сжатия (непоказанного), которое может быть выполнено в виде одного или более компрессоров. Однако следует понимать, что детандер 33 не является существенным элементом изобретения. Если давление потока 10 подаваемого исходного сырья меньше 4137 кПа (600 фунтов на кв. дюйм абсолютного давления), и данный поток находится под давлением, равным или близким к давлению, которое необходимо создать для потока 20 продукта, поток 10 подаваемого исходного сырья может быть подан во фракционирующую ректификационную колонну 34 без пропускания его через средство 33 расширения.
Колонна 34 представляет собой типовую дистилляционную колонну, содержащую тарелки и/или насадку, которые обеспечивают необходимый контакт между жидкостями, проходящими вниз, и парами, поднимающимися вверх. Сепарационная колонна предпочтительно работает при давлениях, находящихся в интервале от приблизительно 1380 кПа (200 фунтов на кв. дюйм абсолютного давления) до приблизительно 4137 кПа (600 фунтов на кв. дюйм абсолютного давления). Сепарационная колонна 34 обеспечивает разделение потока 19 пара, обогащенного азотом, и потока 20 жидкости, обогащенного метаном. Поток 20 жидкости выходит из сепарационной колонны при температуре свыше приблизительно -112oС и давлении, достаточном для того, чтобы жидкость находилась при температуре, равной или ниже температуры начала ее кипения. После этого жидкость направляют в подходящий резервуар, такой как неподвижный резервуар для хранения, или в транспортное средство, такое как судно, грузовой автомобиль или железнодорожный вагон для транспортировки сжиженного природного газа под давлением.
Поток 19 пара, выходящий из верхней части установки 34 для фракционирования, предназначенной для отвода азота, содержит метан, азот и другие легкие компоненты, такие как гелий и водород. Поток 19 пара проходит через теплообменник 35, охлаждение которого происходит с помощью холодильной установки 36 с замкнутым циклом. Данное изобретение не ограничено каким-либо типом теплообменника, но по экономическим соображениям предпочтительны ребристые пластинчатые теплообменники, теплообменники со спиральными трубами и регенеративные камерные теплообменники, при этом все теплообменники обеспечивают охлаждение путем косвенного теплообмена. Холодильная установка 36 может представлять собой любую обычную холодильную установку с замкнутым циклом, пригодную для конденсации значительной части потока 19 пара. Холодильная установка может содержать один или более из следующих (холодильных агентов): пропан, пропилен, этан, этилен, диоксид углерода, метан, азот или какой-либо другой пригодный холодильный агент. Холодильная установка 36 предпочтительно представляет собой многокомпонентную холодильную установку с замкнутым циклом, которая хорошо известна обычным специалистам в данной области техники как средство охлаждения путем косвенного теплообмена. Охлажденный поток, выходящий из теплообменника 35, проходит в установку 37 для разделения фаз, в которой образуется поток 23 пара, отводимый из верхней части установки для разделения и обогащенный азотом, и поток 22 жидкости, которая возвращается обратно в качестве флегмы в сепарационную колонну 34. Поток 23 пара пропускается через теплообменник 32 для охлаждения потока 11 подаваемого исходного сырья и для отвода холода из потока 23 пара. После выхода из теплообменника 32 поток пара пригоден для использования в качестве топливного газа для турбин, которые приводят в действие используемые в данном процессе компрессоры и насосы, или поток пара может быть подвергнут дополнительной обработке для рекуперации и улавливания годного для реализации азота и/или гелия.
При хранении, транспортировке и погрузочно-разгрузочных операциях, связанных с сжиженным природным газом, может иметь место значительное "выпаривание". Способ по данному изобретению в возможном варианте, но не обязательно, может обеспечить повторное сжижение таких паров, выделившихся при испарении (кипении) (boil-off vapors), а также удаление азота, содержащегося в парах, выделившихся при испарении. Основной источник азотной примеси в парах, выделившихся при испарении, - это тот азот, который содержится в сжиженном природном газе, представляющем собой источник образования паров, выделившихся при испарении. Азот, более летучий по сравнению с сжиженным природным газом, мгновенно испаряется в первую очередь и концентрируется в парах, выделившихся при испарении. Например, сжиженный природный газ, содержащий 0,3 мольного процента N2, может образовать пар, содержащий приблизительно 3 мольных процента N2. При более высоких температурах и давлении сжиженного природного газа под давлением азот мгновенно испаряется еще более быстро по сравнению с обычным сжиженным природным газом, находящимся под атмосферным или близким к атмосферному давлением.
Как показано на чертеже, пары, выделившиеся при испарении, могут быть введены в процесс по изобретению с помощью потока 17. Несмотря на то, что на чертеже показано введение потока 17 паров, выделившихся при испарении, в обрабатываемый поток в точке между детандером 33 и фракционирующей ректификационной колонной 34, в свете идей данного изобретения для специалиста в данной области техники очевидно, что пары, выделившиеся при испарении, могут быть введены в любом месте в данном процессе до того, как поток подаваемого исходного сырья будет введен в колонну 34, и, кроме того, пары, выделившиеся при испарении, могут быть введены непосредственно в колонну 34. Пары, выделившиеся при испарении и вводимые в процесс разделения по данному изобретению, должны находиться под давлением, равным или близким к давлению потока, в который вводятся пары, выделившиеся при испарении. В зависимости от давления паров, выделившихся при испарении, может потребоваться регулирование давления этих паров с помощью компрессора с целью увеличения их давления или расширение этих паров с целью снижения их давления с тем, чтобы это давление стало равным или близким к давлению потока, в который вводятся пары, выделившиеся при испарении.
Пример.
Было выполнено моделирование баланса массы и энергии с целью иллюстрирования варианта осуществления, показанного на чертеже, и результаты приведены ниже в таблице. Данные, представленные в таблице, приведены для того, чтобы обеспечить лучшее понимание варианта осуществления, показанного на чертеже, но не следует рассматривать изобретение как ограниченное ими без необходимости. Температуры и расходы не следует рассматривать как ограничения изобретения, которое может иметь множество вариантов с точки зрения значений температур и расходов, принимая во внимание изложенные здесь соображения.
Данные были получены путем использования имеющейся на рынке программы моделирования процессов, называемой HYSYSТМ (продается фирмой Hyprotech Ltd. , Калгари, Канада); однако для получения данных могут быть использованы другие имеющиеся на рынке программы моделирования процессов, включая, например, HYSIMТМ, PROIIТМ и ASPEN PLUSТМ, которые известны обычным специалистам в данной области техники.
Данный пример иллюстрирует преимущество настоящего изобретения при получении сжиженного природного газа под давлением с уменьшенным содержанием азота в одной колонне без снижения давления в процессе до значений, близких к атмосферному давлению, что, как правило, практикуется в обычных установках для отвода азота.
Для специалиста в данной области техники, в частности для того, кто ознакомится с идеями данного изобретения, очевидны многие модификации и варианты реализации конкретных процессов, описанных выше. Например, в соответствии с изобретением можно использовать множество значений температур и давлений в зависимости от конструкции установки в целом и состава подаваемого исходного газа. Кроме того, ряд агрегатов для охлаждения подаваемого исходного газа может быть дополнен или реконфигурирован в зависимости от общих требований к конструкции для достижения оптимального и эффективного заданного теплообмена. Как было рассмотрено выше, конкретные раскрытые варианты осуществления и примеры не должны использоваться для ограничения объема изобретения, который следует определять исходя из нижеприведенных пунктов формулы изобретения и их эквивалентов.
Claims (9)
1. Способ получения сжиженного природного газа под давлением, имеющего низкое содержание компонента, более летучего по сравнению с метаном, из потока подаваемого природного газа, представляющего собой исходное сырье и содержащего более летучий компонент, включающий следующие стадии:
(а) подачу потока исходного сырья в установку для фракционирования для образования первой жидкости, имеющей низкое содержание летучего компонента, первого пара с повышенным содержанием летучего компонента;
(b) охлаждение первого пара для образования паровой фазы и жидкой фазы;
(с) разделение паровой фазы и жидкой фазы со стадии (b) с образованием потока второго пара и потока второй жидкости;
(d) возврат потока второй жидкости в установку для фракционирования в качестве флегмы и
(е) отвод из установки для фракционирования первой жидкости в качестве потока жидкого продукта, который имеет низкое содержание летучего компонента, температуру свыше приблизительно -112°С (-170°F) и давление, достаточное для того, чтобы жидкий продукт находился при температуре начала его кипения или при температуре ниже точки начала кипения.
2. Способ по п.1, при котором летучий компонент представляет собой азот.
3. Способ по п.1, при котором летучий компонент представляет собой гелий.
4. Способ по п.1, при котором перед введением потока подаваемого исходного сырья в установку для фракционирования в поток исходного сырья вводят выделившиеся пары, образующиеся в результате испарения сжиженного природного газа.
5. Способ по п.1, при котором перед введением потока подаваемого исходного сырья в установку для фракционирования расширяют поток подаваемого исходного сырья для уменьшения его температуры и давления.
6. Способ по п.5, при котором поток подаваемого исходного сырья имеет давление свыше приблизительно 4137 кПа (600 фунтов на кв. дюйм абсолютного давления).
7. Способ по п.1, при котором способ дополнительно включает в себя стадию использования потока второго пара для охлаждения потока подаваемого исходного сырья перед стадией (а).
8. Способ по п.1, при котором содержание азота в потоке подаваемого исходного сырья находится в диапазоне от приблизительно 1 до приблизительно 15 мол.% азота.
9. Способ получения сжиженного природного газа под давлением, имеющего низкое содержание компонента, более летучего по сравнению с метаном, из потока подаваемого природного газа, представляющего собой исходное сырье и содержащего более летучий компонент, включающий следующие стадии:
(а) охлаждение одной части потока подаваемого природного газа путем косвенного теплообмена с потоком пара, образованного в результате процесса в установке для фракционирования и отводимого из нее;
(b) охлаждение второй части потока подаваемого природного газа путем косвенного теплообмена с потоком жидкости, образованной в результате процесса в установке для фракционирования и отводимой из этой установки;
(с) объединение охлажденных потоков подаваемого исходного сырья по стадиям (а) и (b);
(d) расширение объединенного потока подаваемого исходного сырья для уменьшения его температуры и давления;
(е) подачу расширенного потока исходного сырья в установку для фракционирования с образованием потока первой жидкости, имеющего низкое содержание летучего компонента, и потока первого пара с повышенным содержанием летучего компонента;
(f) охлаждение потока первого пара для образования паровой фазы и жидкой фазы;
(g) разделение паровой фазы и жидкой фазы со стадии (f) с образованием потока второго пара и потока второй жидкости;
(h) возврат потока второй жидкости в установку для фракционирования в качестве флегмы;
(i) использование потока второго пара для охлаждения потока подаваемого исходного сырья на стадии (а) и
(j) отвод из установки для фракционирования первой жидкости в качестве потока продукта, который имеет низкое содержание летучего компонента, температуру свыше приблизительно -112°С (-170°F) и давление, достаточное для того, чтобы жидкий продукт находился при температуре начала его кипения или при температуре ниже точки начала кипения.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10528398P | 1998-10-22 | 1998-10-22 | |
US60/105,283 | 1998-10-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2001113730A RU2001113730A (ru) | 2003-02-20 |
RU2224961C2 true RU2224961C2 (ru) | 2004-02-27 |
Family
ID=22304974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2001113730/06A RU2224961C2 (ru) | 1998-10-22 | 1999-10-22 | Способ удаления летучих компонентов из природного газа |
Country Status (12)
Country | Link |
---|---|
US (1) | US6223557B1 (ru) |
AR (1) | AR020929A1 (ru) |
AU (1) | AU763813B2 (ru) |
CA (1) | CA2347554A1 (ru) |
CO (1) | CO5100987A1 (ru) |
DZ (1) | DZ2920A1 (ru) |
EG (1) | EG22136A (ru) |
MY (1) | MY117066A (ru) |
PE (1) | PE20000820A1 (ru) |
RU (1) | RU2224961C2 (ru) |
TN (1) | TNSN99194A1 (ru) |
WO (1) | WO2000023756A1 (ru) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2449144C1 (ru) * | 2010-09-30 | 2012-04-27 | Виктор Алексеевич Белоусов | Газотурбинная энергетическая установка с рекуперацией тепла |
RU2514804C2 (ru) * | 2008-11-06 | 2014-05-10 | Линде Акциенгезелльшафт | Способ удаления азота |
RU2575337C2 (ru) * | 2010-08-24 | 2016-02-20 | Линде Акциенгезелльшафт | Способ отделения азота из природного газа |
RU2671253C2 (ru) * | 2013-07-11 | 2018-10-30 | Линде Акциенгезелльшафт | Способ удаления кислотных газов из природного газа |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6205813B1 (en) * | 1999-07-01 | 2001-03-27 | Praxair Technology, Inc. | Cryogenic rectification system for producing fuel and high purity methane |
FR2804751B1 (fr) * | 2000-02-09 | 2002-06-14 | Air Liquide | Procede et installation de liquefaction du vaporisat resultant de l'evaporation de gaz naturel liquefie |
TW561230B (en) | 2001-07-20 | 2003-11-11 | Exxonmobil Upstream Res Co | Unloading pressurized liquefied natural gas into standard liquefied natural gas storage facilities |
US7237391B1 (en) | 2003-07-10 | 2007-07-03 | Atp Oil & Gas Corporation | Method for processing and transporting compressed natural gas |
US7240498B1 (en) | 2003-07-10 | 2007-07-10 | Atp Oil & Gas Corporation | Method to provide inventory for expedited loading, transporting, and unloading of compressed natural gas |
US7240499B1 (en) | 2003-07-10 | 2007-07-10 | Atp Oil & Gas Corporation | Method for transporting compressed natural gas to prevent explosions |
US7155918B1 (en) | 2003-07-10 | 2007-01-02 | Atp Oil & Gas Corporation | System for processing and transporting compressed natural gas |
US7234322B2 (en) * | 2004-02-24 | 2007-06-26 | Conocophillips Company | LNG system with warm nitrogen rejection |
DE102005010053A1 (de) * | 2005-03-04 | 2006-09-07 | Linde Ag | Helium-Gewinnung bei LNG-Anlagen |
US20070130991A1 (en) * | 2005-12-14 | 2007-06-14 | Chevron U.S.A. Inc. | Liquefaction of associated gas at moderate conditions |
KR100804965B1 (ko) * | 2007-01-17 | 2008-02-20 | 대우조선해양 주식회사 | Lng 운반선의 추진 장치 및 방법 |
US20100018248A1 (en) * | 2007-01-19 | 2010-01-28 | Eleanor R Fieler | Controlled Freeze Zone Tower |
AU2007345353B2 (en) * | 2007-01-19 | 2013-02-21 | Exxonmobil Upstream Research Company | Integrated controlled freeze zone (CFZ) tower and dividing wall (DWC) for enhanced hydrocarbon recovery |
US7883569B2 (en) * | 2007-02-12 | 2011-02-08 | Donald Leo Stinson | Natural gas processing system |
US20080314079A1 (en) * | 2007-06-19 | 2008-12-25 | Air Products And Chemicals, Inc. | Nitrogen Rejection Column Reboiler Configuration |
US7695701B2 (en) * | 2008-03-07 | 2010-04-13 | Du Pont | Process for treating acid gas in staged furnaces with inter-stage heat recovery |
US20090226364A1 (en) * | 2008-03-07 | 2009-09-10 | E. I. Du Pont De Nemours And Company | Process for treating acid gas in staged furnaces with inter-stage heat recovery and inter-stage sulfur production |
US20110174017A1 (en) * | 2008-10-07 | 2011-07-21 | Donald Victory | Helium Recovery From Natural Gas Integrated With NGL Recovery |
AU2010239718B2 (en) * | 2009-04-20 | 2016-02-04 | Exxonmobil Upstream Research Company | Cryogenic system for removing acid gases from a hyrdrocarbon gas stream, and method of removing acid gases |
KR20120040700A (ko) * | 2009-07-21 | 2012-04-27 | 쉘 인터내셔날 리써취 마트샤피지 비.브이. | 다상 탄화수소 스트림을 처리하는 방법 및 이를 위한 장치 |
BR112012004852A2 (pt) | 2009-09-09 | 2016-04-12 | Exxonmobil Upstream Res Comapny | sistema para remover gases ácidos de uma corrente de gás cru, e, método para remover gases ácidos de uma corrente de gás cru desidratado |
EA026113B1 (ru) | 2010-01-22 | 2017-03-31 | Эксонмобил Апстрим Рисерч Компани | Удаление кислотных газов из газового потока при улавливании и изолировании со |
MX2012008667A (es) | 2010-02-03 | 2012-08-23 | Exxonmobil Upstream Res Co | Sistema y metodos para usar liquido frio para remover componentes gaseosos solidificables de flujos de gas de proceso. |
SG186802A1 (en) | 2010-07-30 | 2013-02-28 | Exxonmobil Upstream Res Co | Cryogenic systems for removing acid gases from a hydrocarbon gas stream using co-current separation devices |
AU2013235610B2 (en) | 2012-03-21 | 2015-11-19 | Exxonmobil Upstream Research Company | Separating carbon dioxide and ethane from a mixed stream |
AU2014357663B2 (en) | 2013-12-06 | 2016-12-22 | Exxonmobil Upstream Research Company | Method and device for separating hydrocarbons and contaminants with a spray assembly |
US9874395B2 (en) | 2013-12-06 | 2018-01-23 | Exxonmobil Upstream Research Company | Method and system for preventing accumulation of solids in a distillation tower |
WO2015084495A2 (en) | 2013-12-06 | 2015-06-11 | Exxonmobil Upstream Research Company | Method and system of maintaining a liquid level in a distillation tower |
WO2015084497A2 (en) | 2013-12-06 | 2015-06-11 | Exxonmobil Upstream Research Company | Method and system of dehydrating a feed stream processed in a distillation tower |
US10139158B2 (en) | 2013-12-06 | 2018-11-27 | Exxonmobil Upstream Research Company | Method and system for separating a feed stream with a feed stream distribution mechanism |
CA2924402C (en) | 2013-12-06 | 2017-11-21 | Exxonmobil Upstream Research Company | Method and device for separating a feed stream using radiation detectors |
AU2014357669B2 (en) | 2013-12-06 | 2017-12-21 | Exxonmobil Upstream Research Company | Method and device for separating hydrocarbons and contaminants with a heating mechanism to destabilize and/or prevent adhesion of solids |
US9823016B2 (en) | 2013-12-06 | 2017-11-21 | Exxonmobil Upstream Research Company | Method and system of modifying a liquid level during start-up operations |
US9562719B2 (en) | 2013-12-06 | 2017-02-07 | Exxonmobil Upstream Research Company | Method of removing solids by modifying a liquid level in a distillation tower |
CA2855383C (en) | 2014-06-27 | 2015-06-23 | Rtj Technologies Inc. | Method and arrangement for producing liquefied methane gas (lmg) from various gas sources |
EP3029017A1 (de) * | 2014-12-05 | 2016-06-08 | Linde Aktiengesellschaft | Verfahren und Anlage zur Herstellung von Kohlenwasserstoffen |
US10495379B2 (en) | 2015-02-27 | 2019-12-03 | Exxonmobil Upstream Research Company | Reducing refrigeration and dehydration load for a feed stream entering a cryogenic distillation process |
CA2903679C (en) | 2015-09-11 | 2016-08-16 | Charles Tremblay | Method and system to control the methane mass flow rate for the production of liquefied methane gas (lmg) |
US10365037B2 (en) | 2015-09-18 | 2019-07-30 | Exxonmobil Upstream Research Company | Heating component to reduce solidification in a cryogenic distillation system |
US11255603B2 (en) | 2015-09-24 | 2022-02-22 | Exxonmobil Upstream Research Company | Treatment plant for hydrocarbon gas having variable contaminant levels |
WO2017172321A1 (en) | 2016-03-30 | 2017-10-05 | Exxonmobil Upstream Research Company | Self-sourced reservoir fluid for enhanced oil recovery |
WO2020005552A1 (en) | 2018-06-29 | 2020-01-02 | Exxonmobil Upstream Research Company | Hybrid tray for introducing a low co2 feed stream into a distillation tower |
WO2020005553A1 (en) | 2018-06-29 | 2020-01-02 | Exxonmobil Upstream Research Company (Emhc-N1.4A.607) | Mixing and heat integration of melt tray liquids in a cryogenic distillation tower |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2916888A (en) | 1955-12-29 | 1959-12-15 | Phillips Petroleum Co | Hydrocarbon purification process |
US3298805A (en) | 1962-07-25 | 1967-01-17 | Vehoc Corp | Natural gas for transport |
GB1208196A (en) | 1967-12-20 | 1970-10-07 | Messer Griesheim Gmbh | Process for the liquifaction of nitrogen-containing natural gas |
DE2022954C3 (de) | 1970-05-12 | 1978-05-18 | Linde Ag, 6200 Wiesbaden | Verfahren zur Zerlegung von stickstoffhaltigem Erdgas |
CH545219A (de) | 1971-11-17 | 1973-12-15 | Sulzer Ag | Verfahren und Anlage zur Deckung von Stickstoffverlusten und zur Wiederverflüssigung von verdampften Erdgasanteilen in Tankschiffen |
US3830180A (en) | 1972-07-03 | 1974-08-20 | Litton Systems Inc | Cryogenic ship containment system having a convection barrier |
US3874184A (en) | 1973-05-24 | 1975-04-01 | Phillips Petroleum Co | Removing nitrogen from and subsequently liquefying natural gas stream |
DE2734080A1 (de) | 1977-07-28 | 1979-02-15 | Linde Ag | Verfahren zum abtrennen von methan aus einem methanhaltigen rohgas |
US4172711A (en) | 1978-05-12 | 1979-10-30 | Phillips Petroleum Company | Liquefaction of gas |
US4230649A (en) * | 1978-06-12 | 1980-10-28 | The Firestone Tire & Rubber Company | Apparatus and method for continuous tread production |
US4225329A (en) | 1979-02-12 | 1980-09-30 | Phillips Petroleum Company | Natural gas liquefaction with nitrogen rejection stabilization |
US4411677A (en) | 1982-05-10 | 1983-10-25 | Air Products And Chemicals, Inc. | Nitrogen rejection from natural gas |
US4451275A (en) | 1982-05-27 | 1984-05-29 | Air Products And Chemicals, Inc. | Nitrogen rejection from natural gas with CO2 and variable N2 content |
US4504295A (en) | 1983-06-01 | 1985-03-12 | Air Products And Chemicals, Inc. | Nitrogen rejection from natural gas integrated with NGL recovery |
US4592767A (en) | 1985-05-29 | 1986-06-03 | Union Carbide Corporation | Process for separating methane and nitrogen |
US4664686A (en) | 1986-02-07 | 1987-05-12 | Union Carbide Corporation | Process to separate nitrogen and methane |
US4675037A (en) | 1986-02-18 | 1987-06-23 | Air Products And Chemicals, Inc. | Apparatus and method for recovering liquefied natural gas vapor boiloff by reliquefying during startup or turndown |
US4662919A (en) | 1986-02-20 | 1987-05-05 | Air Products And Chemicals, Inc. | Nitrogen rejection fractionation system for variable nitrogen content natural gas |
US4732598A (en) | 1986-11-10 | 1988-03-22 | Air Products And Chemicals, Inc. | Dephlegmator process for nitrogen rejection from natural gas |
US4805413A (en) | 1988-03-10 | 1989-02-21 | Kerr-Mcgee Corporation | Process for cryogenically separating natural gas streams |
US4970867A (en) | 1989-08-21 | 1990-11-20 | Air Products And Chemicals, Inc. | Liquefaction of natural gas using process-loaded expanders |
US5036671A (en) | 1990-02-06 | 1991-08-06 | Liquid Air Engineering Company | Method of liquefying natural gas |
US5051120A (en) | 1990-06-12 | 1991-09-24 | Union Carbide Industrial Gases Technology Corporation | Feed processing for nitrogen rejection unit |
US5120338A (en) | 1991-03-14 | 1992-06-09 | Exxon Production Research Company | Method for separating a multi-component feed stream using distillation and controlled freezing zone |
US5257505A (en) | 1991-04-09 | 1993-11-02 | Butts Rayburn C | High efficiency nitrogen rejection unit |
US5375422A (en) | 1991-04-09 | 1994-12-27 | Butts; Rayburn C. | High efficiency nitrogen rejection unit |
FR2682964B1 (fr) | 1991-10-23 | 1994-08-05 | Elf Aquitaine | Procede de deazotation d'un melange liquefie d'hydrocarbures consistant principalement en methane. |
DE4237620A1 (de) | 1992-11-06 | 1994-05-11 | Linde Ag | Verfahren zur Gewinnung von hochreinem flüssigen Methan |
JP2959947B2 (ja) * | 1994-02-28 | 1999-10-06 | 信越石英株式会社 | 原料ガス供給方法及び装置 |
DE4440407C1 (de) | 1994-11-11 | 1996-04-04 | Linde Ag | Verfahren zum Gewinnen einer Ethan-reichen Fraktion zum Wiederauffüllen eines Ethan-enthaltenden Kältekreislaufs eines Verfahrens zum Verflüssigen einer kohlenwasserstoffreichen Fraktion |
NO180469B1 (no) | 1994-12-08 | 1997-05-12 | Statoil Petroleum As | Fremgangsmåte og system for fremstilling av flytendegjort naturgass til havs |
US5505049A (en) | 1995-05-09 | 1996-04-09 | The M. W. Kellogg Company | Process for removing nitrogen from LNG |
US5537827A (en) | 1995-06-07 | 1996-07-23 | Low; William R. | Method for liquefaction of natural gas |
MY117899A (en) | 1995-06-23 | 2004-08-30 | Shell Int Research | Method of liquefying and treating a natural gas. |
US5524456A (en) * | 1995-10-20 | 1996-06-11 | Public Service Marine Inc. | Pressure tank recycle system |
US5611216A (en) | 1995-12-20 | 1997-03-18 | Low; William R. | Method of load distribution in a cascaded refrigeration process |
FR2752050B1 (fr) * | 1996-08-05 | 1998-09-11 | Air Liquide | Procede et installation de reliquefaction d'helium gazeux |
DZ2533A1 (fr) | 1997-06-20 | 2003-03-08 | Exxon Production Research Co | Procédé perfectionné de réfrigération à constituants pour la liquéfaction de gaz naturel. |
TW366409B (en) | 1997-07-01 | 1999-08-11 | Exxon Production Research Co | Process for liquefying a natural gas stream containing at least one freezable component |
US5802871A (en) | 1997-10-16 | 1998-09-08 | Air Products And Chemicals, Inc. | Dephlegmator process for nitrogen removal from natural gas |
-
1999
- 1999-10-09 MY MYPI99004373A patent/MY117066A/en unknown
- 1999-10-18 TN TNTNSN99194A patent/TNSN99194A1/fr unknown
- 1999-10-19 CO CO99065982A patent/CO5100987A1/es unknown
- 1999-10-20 EG EG130399A patent/EG22136A/xx active
- 1999-10-20 DZ DZ990220A patent/DZ2920A1/xx active
- 1999-10-20 PE PE1999001057A patent/PE20000820A1/es not_active Application Discontinuation
- 1999-10-21 US US09/422,668 patent/US6223557B1/en not_active Expired - Fee Related
- 1999-10-21 AR ARP990105324A patent/AR020929A1/es active IP Right Grant
- 1999-10-22 CA CA002347554A patent/CA2347554A1/en not_active Abandoned
- 1999-10-22 WO PCT/US1999/024044 patent/WO2000023756A1/en active IP Right Grant
- 1999-10-22 AU AU13145/00A patent/AU763813B2/en not_active Ceased
- 1999-10-22 RU RU2001113730/06A patent/RU2224961C2/ru not_active IP Right Cessation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2514804C2 (ru) * | 2008-11-06 | 2014-05-10 | Линде Акциенгезелльшафт | Способ удаления азота |
RU2575337C2 (ru) * | 2010-08-24 | 2016-02-20 | Линде Акциенгезелльшафт | Способ отделения азота из природного газа |
RU2449144C1 (ru) * | 2010-09-30 | 2012-04-27 | Виктор Алексеевич Белоусов | Газотурбинная энергетическая установка с рекуперацией тепла |
RU2671253C2 (ru) * | 2013-07-11 | 2018-10-30 | Линде Акциенгезелльшафт | Способ удаления кислотных газов из природного газа |
Also Published As
Publication number | Publication date |
---|---|
AR020929A1 (es) | 2002-06-05 |
PE20000820A1 (es) | 2000-10-04 |
EG22136A (en) | 2002-08-30 |
AU763813B2 (en) | 2003-07-31 |
DZ2920A1 (fr) | 2004-03-01 |
US6223557B1 (en) | 2001-05-01 |
CO5100987A1 (es) | 2001-11-27 |
AU1314500A (en) | 2000-05-08 |
MY117066A (en) | 2004-04-30 |
TNSN99194A1 (fr) | 2001-12-31 |
WO2000023756A1 (en) | 2000-04-27 |
CA2347554A1 (en) | 2000-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2224961C2 (ru) | Способ удаления летучих компонентов из природного газа | |
RU2215952C2 (ru) | Способ разделения потока многокомпонентного исходного материала под давлением путем использования дистилляции | |
KR100338879B1 (ko) | 개선된 천연 가스 액화 방법 | |
RU2204094C2 (ru) | Усовершенствованный способ каскадного охлаждения для сжижения природного газа | |
RU2194930C2 (ru) | Способ сжижения потока природного газа, содержащего по меньшей мере один замораживаемый компонент | |
US3205669A (en) | Recovery of natural gas liquids, helium concentrate, and pure nitrogen | |
RU2195611C2 (ru) | Способ охлаждения многокомпонентным хладагентом для сжижения природного газа | |
US5139547A (en) | Production of liquid nitrogen using liquefied natural gas as sole refrigerant | |
US9644889B2 (en) | System for incondensable component separation in a liquefied natural gas facility | |
RU2491487C2 (ru) | Способ сжижения природного газа с улучшенным извлечением пропана | |
US3721099A (en) | Fractional condensation of natural gas | |
KR20100039353A (ko) | Lng를 생산하는 방법 및 시스템 | |
RU2423653C2 (ru) | Способ для сжижения потока углеводородов и установка для его осуществления | |
GB2146751A (en) | Separation of hydrocarbon mixtures | |
MXPA99011351A (en) | Process for liquefying a natural gas stream containing at least one freezable component | |
MXPA99011347A (es) | Proceso de refrigeracion en cascada mejorado paralicuefaccion de gas natural | |
MXPA99011424A (en) | Improved multi-component refrigeration process for liquefaction of natural gas | |
MXPA99011348A (es) | Proceso mejorado para licuefaccion de gas natural |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20061023 |