RU2222845C1 - Полевой транзистор - Google Patents
Полевой транзистор Download PDFInfo
- Publication number
- RU2222845C1 RU2222845C1 RU2003109501/28A RU2003109501A RU2222845C1 RU 2222845 C1 RU2222845 C1 RU 2222845C1 RU 2003109501/28 A RU2003109501/28 A RU 2003109501/28A RU 2003109501 A RU2003109501 A RU 2003109501A RU 2222845 C1 RU2222845 C1 RU 2222845C1
- Authority
- RU
- Russia
- Prior art keywords
- layer
- channel
- boundary
- barrier
- effect transistor
- Prior art date
Links
- 230000005669 field effect Effects 0.000 title claims abstract description 19
- 230000004888 barrier function Effects 0.000 claims abstract description 25
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 150000004767 nitrides Chemical class 0.000 claims abstract description 9
- 229910002704 AlGaN Inorganic materials 0.000 claims abstract description 8
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 6
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 6
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 6
- 239000010703 silicon Substances 0.000 claims abstract description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 5
- 239000001301 oxygen Substances 0.000 claims abstract description 5
- 239000010410 layer Substances 0.000 claims description 79
- 239000011241 protective layer Substances 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 4
- 230000007423 decrease Effects 0.000 claims description 3
- 230000015556 catabolic process Effects 0.000 abstract description 12
- 238000006731 degradation reaction Methods 0.000 abstract description 12
- 230000000694 effects Effects 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 2
- 229910016920 AlzGa1−z Inorganic materials 0.000 abstract 1
- 230000008859 change Effects 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000005275 alloying Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000005533 two-dimensional electron gas Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- -1 aluminum nitrides Chemical class 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000003679 aging effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/473—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having confinement of carriers by multiple heterojunctions, e.g. quantum well HEMT
- H10D30/4732—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having confinement of carriers by multiple heterojunctions, e.g. quantum well HEMT using Group III-V semiconductor material
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/473—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having confinement of carriers by multiple heterojunctions, e.g. quantum well HEMT
- H10D30/4732—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having confinement of carriers by multiple heterojunctions, e.g. quantum well HEMT using Group III-V semiconductor material
- H10D30/4738—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having confinement of carriers by multiple heterojunctions, e.g. quantum well HEMT using Group III-V semiconductor material having multiple donor layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/852—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs being Group III-V materials comprising three or more elements, e.g. AlGaN or InAsSbP
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/8503—Nitride Group III-V materials, e.g. AlN or GaN
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
Использование: в радиотехнических, СВЧ-устройствах и т.д. Структура полевого транзистора на основе нитридов Ga и Аl последовательно включает подложку, изолирующий слой, выполненный из AlyGa1-yN, канальный слой и барьерный слой, выполненный из AlzGa1-zN. Канальный слой выполнен из AlxGa1-xN, где 0,12>х>0,03, при этом на границе канального и изолирующего слоев 1≥y≥x+0,1, на границе канального и барьерного слоев 1≥z≥x+0,1, а толщина канального слоя находится в пределах от 3 до 20 нм, причем х, у, z - молярные доли Аl в составе соединения AlGaN. Изолирующий слой может быть выполнен из двух подслоев, при этом нижний, смежный с подложкой подслой имеет на границе с ней значение у в пределах от 0,5 до 0,7, на границе с верхним подслоем имеет значение у от 0,7 до 1, верхний подслой имеет на границе с нижним значение у от 0,7 до 1, которое монотонно уменьшается к границе с канальным слоем до значения у≤0,4. В барьерном и/или изолирующем слоях может быть выполнен легирующий δ-слой кремния или кислорода. Структура полевого транзистора может дополнительно содержать защитный слой, расположенный поверх барьерного слоя, выполненный из AlGaON. Техническим результатом изобретения является увеличение деградационной стойкости прибора. 3 з. п.ф-лы, 4 ил.
Description
Изобретение относится к полупроводниковым приборам и может быть использовано в радиотехнических, СВЧ-устройствах и т.д.
Создание оптоэлектронных и микроэлектронных приборов на основе полупроводниковых соединений группы А3 с азотом (нитриды А3) весьма актуально ввиду значительного расширения функциональных возможностей этих приборов. В частности, возникла возможность изготовления СВЧ-полевых транзисторов, мощность которых в несколько раз больше, чем мощность таких транзисторов, выполненных на основе традиционных материалов (арсениды А3). Одновременно транзисторы на основе нитридов обладают уникальной термической стойкостью и могут работать в непрерывном режиме при температуре 300-500oС, что было абсолютно недоступно на традиционных приборах.
Однако существенной трудностью при промышленной реализации такого технического решения является склонность нитридных транзисторов к деградации, т. е. к быстрому изменению (ухудшению) характеристик прибора со временем. Эта деградация наблюдается во время работы прибора и, более того, зафиксировано ухудшение характеристик транзисторных полупроводниковых структур в отсутствие электрического тока. Показано, что подвижность и концентрация электронов в нитридной гетероструктуре произвольно меняются со временем, причем за несколько месяцев эти изменения достигают десятков процентов (S. Elhamri et al. Study of deleterious aging effects in GaN/AlGaN heterostructures. Journal of Applied Physics, vol. 93, 2, pp.1079-1082, 15 January 2003).
В условиях, соответствующих рабочим, т. е. с протеканием тока под действием приложенного напряжения, нитридные транзисторы изменяют свои характеристики за несколько часов, что недопустимо для реального применения.
Известен полевой транзистор на основе нитридов галлия и алюминия, структура которого последовательно включает: подложку, слой GaN, барьерный слой, выполненный из двух подслоев: Al0,2Ga0,8N, на нем GaN; второй вариант барьерного слоя - А10,3Gа0,7N, легированный Si, на нем нелегированный А10,3Gа0,7N. На структуре выполнены контакты: сток, исток и затвор с соответствующими промежутками между ними; далее было выполнено диэлектрическое покрытие MgO, Sc2O3 или SiNx. Между контактами диэлектрическое покрытие находится на барьерном слое и служит для защиты открытых поверхностей барьерного слоя от внешних воздействий, см. B. Luo et al. The role of cleaning conditions and epitaxial layer structure on reliability of Sc2O3 and MgO passivation on AlGaN/GaN HEMTS, Solid-State Electronics, 46, pp.2185-2190, 2002.
Транзисторы, содержащие слои MgO и Sc2O3, проявляют значительно меньшую деградацию, чем аналогичные приборы без защитных слоев.
Недостатком такого технического решения является то, что полученный благодаря защитным слоям уровень деградации остается достаточно высоким. Под нагрузкой (напряжение исток - сток 8 В, напряжение на затворе 1 В) через 13 часов ток сток - исток составил 90% от первоначального при защите структуры слоем MgO и 80% от первоначального при защите Sс2O3.
Для реальных применений характеристики транзистора должны меняться не более чем на 10% за тысячи часов работы или, для некоторых применений, за сотни часов, поэтому изменение тока сток - исток на 10% за 13 часов не обеспечивает возможности практического использования транзистора.
Известен также полевой транзистор на основе нитридов галлия и алюминия, структура которого последовательно включает: подложку, выполненную из SiC, изолирующий слой переменного состава толщиной 1 мкм, легирующий слой Al0,09Ga0,91N толщиной , легированный Si, канальный слой GaN толщиной , барьерный слой из трех подслоев: нелегированного Al0,3Ga0,7N толщиной , легированного Si Al0,3Ga0,7N толщиной , нелегированного Al0,3Ga0,7N толщиной , см. Narihiko Maeda et al. AlGaN/GaN Heterostructure Field - Effect Tronsistors with Back - Doping Design for High-Power Applicatios: High Current Density with High Transconductance Characteristics, Mat. Res. Soc. Symp. Proc. Vol. 743, 1931-1936, 2003.
В отличие от технического решения, описанного в статье B. Luo, данная конструкция транзистора сложнее (содержит большее число слоев) и имеет лучшие характеристики. В частности, транзистор имеет весьма высокие значения усиления и плотности электрического тока. Указанное устройство принято за прототип настоящего изобретения. Однако ему свойственны серьезные недостатки, которые обусловлены следующими обстоятельствами. Проводящий слой двумерного электронного газа образован в данной конструкции за счет эффекта, связанного с существованием поляризационных зарядов на границе AlGaN/GaN. Данный эффект наблюдается в нитридах А3 и не характерен для полупроводников А3В5. Поскольку поляризационные заряды не устойчивы во времени, особенно в рабочем режиме прибора, характеристики двумерного электронного газа меняются со временем вместе с перезарядкой встроенных заряженных поверхностей. Это приводит к быстрой деградации полевого транзистора.
В основу настоящего изобретения положено решение задачи увеличения деградационной стойкости прибора.
Согласно изобретению эта задача решается за счет того, что в полевом транзисторе на основе нитридов Ga и Аl, структура которого последовательно включает подложку, изолирующий слой, выполненный из AlyGa1-yN, канальный слой и барьерный слой, выполненный из AlzGa1-zN, канальный слой выполнен из AlxGa1-xN, где 0,12>х>0,03, при этом на границе канального и изолирующего слоев 1≥y≥x+0,1, на границе канального и барьерного слоев 1≥z≥x+0,1, а толщина канального слоя находится в пределах от 3 до 20 нм, причем х, у, z - молярные доли Аl в составе соединения AlGaN; изолирующий слой может быть выполнен из двух подслоев, при этом нижний, смежный с подложкой подслой имеет на границе с ней значение у в пределах от 0,5 до 0,7, на границе с верхним подслоем имеет значение y от 0,7 до 1, верхний подслой имеет на границе с нижним значение y от 0,7 до 1, которое монотонно уменьшается к границе с канальным слоем до значения у≤0,4; в барьерном и/или изолирующем слоях выполнен легирующий δ-слой кремния или кислорода; структура полевого транзистора дополнительно содержит защитный слой, расположенный поверх барьерного слоя, выполненный из AlGaON.
Заявителем не выявлены источники, содержащие информацию о технических решениях, идентичных настоящему изобретению, что позволяет сделать вывод о его соответствии критерию "новизна".
В отличие от известной конструкции, где двумерный электронный газ образуется за счет встроенных поверхностных зарядов, заявленное техническое решение обеспечивает устойчивость проводящего двумерного канала к возникающим по мере работы прибора изменениям встроенных зарядов. Данные изменения могут возникать как за счет внешних химических воздействий окружающей атмосферы, так и за счет флуктуационного дефектообразования со временем, причем оба эти процесса существенно активируются в режиме работы прибора; проводящий слой двумерного электронного газа образуется за счет примененного в конструкции слоя AlxGa1-xN, причем величина запрещенной зоны в прилегающих с двух сторон слоях превышает ширину зоны в данном слое; толщина этого слоя обеспечивает размерное квантование электронных состояний. Существенно, что материал этого слоя должен содержать не менее 0,03 молярной доли Аl, что обеспечивает особо высокую деградационную стойкость прибора.
Следует также отметить, что реализация дополнительных признаков (п.п.2-4 формулы изобретения) обеспечивает большее увеличение деградационной стойкости прибора в режиме непрерывного действия; ввиду увеличения электрического сопротивления нижней части гетероструктуры между подложкой и канальным слоем существует возможность использования не только изолирующих, но и проводящих подложек из карбида кремния, стоимость которых в несколько раз ниже, чем изолирующих, что может заметно понизить стоимость приборов.
Заявителем не выявлены какие-либо источники информации о влиянии указанных выше отличительных признаков изобретения на достигаемый технический результат. Это позволяет сделать вывод о соответствии заявленного технического решения критерию "изобретательский уровень".
Сущность изобретения поясняется чертежом, где изображены:
на фиг. 1 - схема эпитаксиальной полупроводниковой структуры полевого транзистора по п.1 формулы изобретения;
на фиг.2 - то же, по п.2 формулы изобретения;
на фиг.3 - то же, по п.3 формулы изобретения;
на фиг.4 - то же, по п.4 формулы изобретения.
на фиг. 1 - схема эпитаксиальной полупроводниковой структуры полевого транзистора по п.1 формулы изобретения;
на фиг.2 - то же, по п.2 формулы изобретения;
на фиг.3 - то же, по п.3 формулы изобретения;
на фиг.4 - то же, по п.4 формулы изобретения.
Полевой транзистор на основе Ga и А1 в конкретном исполнении, соответствующем п.1 формулы изобретения, имеет структуру, которая включает последовательно: подложку 1, выполненную в конкретном примере из сапфира; изолирующий слой 2 из AlyGa1-yN, в конкретном примере y=0,5, толщина слоя 1 мкм; канальный слой 3, выполненный из AlxGa1-xN, где 0,12>х>0,03, толщина канального слоя от 3 до 20 нм, в конкретном примере х=0,04, толщина слоя 14 нм; барьерный слой 4 из AlzGa1-zN, в конкретном примере z=0,3, толщина слоя 20 нм; х, y, z - молярные доли Аl в составе соединения AlGaN; на границе канального и изолирующего слоев 1≥y≥х+0,1; на границе канального и барьерного слоев 1≥z≥x+0,1.
Согласно варианту по п.2 формулы изобретения изолирующий слой выполнен из двух подслоев: нижний, смежный с подложкой подслой 5 может иметь на границе с ней значение y в пределах от 0,5 до 0,7, а на границе с верхним подслоем 6 имеет значение y от 0,7 до 1; верхний подслой имеет на границе с нижним подслоем значение y от 0,7 до 1, которое монотонно уменьшается к границе с канальным слоем до значения y≤0,4.
Согласно варианту по п.3 формулы изобретения в барьерном и/или изолирующем слоях может быть выполнен легирующий δ-слой кремния или кислорода. В конкретном примере один легирующий δ-слой 7 выполнен в верхнем изолирующем подслое изолирующего слоя, а другой легирующий δ-слой 8 выполнен в барьерном слое.
Согласно варианту по п.4 формулы изобретения структура полевого транзистора дополнительно содержит защитный слой, расположенный поверх барьерного слоя, выполненный из AlGaON.
При выполнении полевого транзистора с использованием всех признаков, приведенных во всех пунктах формулы изобретения, он имеет в конкретном примере структуру, включающую подложку 1, выполненную из сапфира; нижний подслой 5 изолирующего слоя на границе с подложкой имеет значение y=0,5, на границе с верхним подслоем 6 имеет значение y=0,7; толщина нижнего подслоя составляет 0,7 мкм; верхний подслой на границе с нижним подслоем имеет значение y= 0,7, а на границе с канальным слоем значение y=0,3; толщина верхнего подслоя равна 0,4 мкм; в верхнем подслое выполнен легирующий δ-слой 7 кремния со слоевой концентрацией 1•1013 см-2; δ-слой 7 расположен на глубине 5 нм под границей изолирующего слоя с канальным; канальный слой 3 выполнен с х=0,04, толщина слоя составляет 14 нм; в барьерном слое 4 z=0,3, толщина слоя составляет 20 нм; в барьерном слое выполнен легирующий δ-слой 8 кремния со слоевой концентрацией 1•1013 см-2; δ-слой 8 расположен на глубине 10 нм под верхней границей барьерного слоя; защитный слой 9 AlGaON имеет толщину 8 нм, в этом слое отношение мольных концентраций Аl и Ga составляет 1:1, а отношение мольных долей кислорода и азота составляет 1:4.
Реализация признаков зависимых пунктов (2, 3, 4) обеспечивает дополнительное повышение деградационной стойкости транзистора.
Были изготовлены и испытаны два варианта полевого транзистора. В первом варианте были изготовлены 4 транзистора в соответствии с п.1 формулы изобретения, которые прошли деградационный тест в режиме постоянного электрического тока сток - исток при напряжениях исток - сток 7 В, смещение затвора 0,5 В, в течение 48 часов. Все транзисторы продемонстрировали уменьшение тока менее чем на 10%. Во втором варианте были изготовлены 14 транзисторов в соответствии со всеми пунктами формулы изобретения, транзисторы были подвергнуты деградационному тесту в режиме постоянного электрического тока, при этом напряжение исток - сток 9 В, смещение на затворе 1 В, в течение 240 часов. 8 транзисторов продемонстрировали изменение величины электрического тока менее чем на 7%, а 6 транзисторов - менее чем на 10%.
Вся структура, включая защитный слой, была в обоих вариантах выращена в едином процессе молекулярно-лучевой эпитаксии; контакт к базе выполнен поверх защитного слоя, а контакты сток и исток выполнены на предварительно протравленные области поверхности, глубина травления 10±2 нм.
Приведенные выше примеры подтверждают весьма малую скорость деградации транзисторов. Благодаря этому существенно увеличивается срок службы приборов.
Изобретение может быть реализовано как в заводских, так и в лабораторных условиях с использованием известных материалов и оборудования, обычно применяемого при изготовлении полупроводниковых приборов. Это подтверждает соответствие заявленного изобретения критерию "промышленная применимость".
Claims (4)
1. Полевой транзистор на основе нитридов Ga и Al, структура которого последовательно включает подложку, изолирующий слой, выполненный из AlyGa1-yN, канальный слой и барьерный слой, выполненный из AlzGa1-zN, отличающийся тем, что канальный слой выполнен из AlxGa1-хN, где 0,12>x>0,03, при этом на границе канального и изолирующего слоев 1≥y≥x+0,1, на границе канального и барьерного слоев 1≥z≥x+0,1, а толщина канального слоя находится в пределах от 3 до 20 нм, причем х, у, z – молярные доли Al в составе соединения AlGaN.
2. Полевой транзистор по п.1, отличающийся тем, что изолирующий слой выполнен из двух подслоев, при этом нижний, смежный с подложкой подслой имеет на границе с ней значение у в пределах от 0,5 до 0,7, на границе с верхним подслоем имеет значение у от 0,7 до 1, верхний подслой имеет на границе с нижним значение у от 0,7 до 1, которое монотонно уменьшается к границе с канальным слоем до значения у≥0,4.
3. Полевой транзистор по п.1 или 2, отличающийся тем, что в барьерном и/или изолирующем слоях выполнен легирующий δ-слой кремния или кислорода.
4. Полевой транзистор по любому из пп.1-3, отличающийся тем, что его структура дополнительно содержит защитный слой, расположенный поверх барьерного слоя, выполненный из AlGaON.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2003109501/28A RU2222845C1 (ru) | 2003-04-01 | 2003-04-01 | Полевой транзистор |
AU2003271248A AU2003271248A1 (en) | 2003-04-01 | 2003-08-15 | Field transistor |
DE10394190T DE10394190B4 (de) | 2003-04-01 | 2003-08-15 | Feldeffekt-Transistor |
PCT/RU2003/000383 WO2004088756A1 (en) | 2003-04-01 | 2003-08-15 | Field transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2003109501/28A RU2222845C1 (ru) | 2003-04-01 | 2003-04-01 | Полевой транзистор |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2222845C1 true RU2222845C1 (ru) | 2004-01-27 |
Family
ID=32091949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2003109501/28A RU2222845C1 (ru) | 2003-04-01 | 2003-04-01 | Полевой транзистор |
Country Status (4)
Country | Link |
---|---|
AU (1) | AU2003271248A1 (ru) |
DE (1) | DE10394190B4 (ru) |
RU (1) | RU2222845C1 (ru) |
WO (1) | WO2004088756A1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008060184A1 (en) * | 2006-11-14 | 2008-05-22 | 'svetlana-Rost' Limited | Semiconductor heterostructure for a field-effect transistor |
RU2534002C1 (ru) * | 2013-06-18 | 2014-11-27 | федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) | Высоковольтный нитрид-галлиевый транзистор с высокой подвижностью электронов |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10335637A (ja) * | 1997-05-30 | 1998-12-18 | Sony Corp | ヘテロ接合電界効果トランジスタ |
RU2186447C2 (ru) * | 1997-11-28 | 2002-07-27 | Котелянский Иосиф Моисеевич | Полупроводниковый прибор |
US6316793B1 (en) * | 1998-06-12 | 2001-11-13 | Cree, Inc. | Nitride based transistors on semi-insulating silicon carbide substrates |
US6849882B2 (en) * | 2001-05-11 | 2005-02-01 | Cree Inc. | Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer |
-
2003
- 2003-04-01 RU RU2003109501/28A patent/RU2222845C1/ru active
- 2003-08-15 DE DE10394190T patent/DE10394190B4/de not_active Expired - Fee Related
- 2003-08-15 WO PCT/RU2003/000383 patent/WO2004088756A1/ru not_active Application Discontinuation
- 2003-08-15 AU AU2003271248A patent/AU2003271248A1/en not_active Abandoned
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008060184A1 (en) * | 2006-11-14 | 2008-05-22 | 'svetlana-Rost' Limited | Semiconductor heterostructure for a field-effect transistor |
DE112007002782T5 (de) | 2006-11-14 | 2009-09-10 | "Svetlana-Rost" Limited | Halbleiterheterostruktur für einen Feldeffekttransistor |
RU2534002C1 (ru) * | 2013-06-18 | 2014-11-27 | федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) | Высоковольтный нитрид-галлиевый транзистор с высокой подвижностью электронов |
Also Published As
Publication number | Publication date |
---|---|
DE10394190B4 (de) | 2010-02-11 |
DE10394190T5 (de) | 2006-04-27 |
WO2004088756A1 (en) | 2004-10-14 |
AU2003271248A1 (en) | 2004-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Green et al. | RF power performance of Sc (al, Ga) N/GaN HEMTs at Ka-band | |
Kumar et al. | AlGaN/GaN HEMTs on SiC with f T of over 120 GHz | |
Palacios et al. | High-performance e-mode algan/gan hemts | |
Chowdhury et al. | Enhancement and depletion mode AlGaN/GaN CAVET with Mg-ion-implanted GaN as current blocking layer | |
Simin et al. | SiO/sub 2//AlGaN/InGaN/GaN MOSDHFETs | |
US6878593B2 (en) | Metal oxide semiconductor heterostructure field effect transistor | |
US12107156B2 (en) | Semiconductor structure, HEMT structure and method of forming the same | |
US20130181224A1 (en) | Semiconductor structure | |
US20050133816A1 (en) | III-nitride quantum-well field effect transistors | |
US6841809B2 (en) | Heterostructure semiconductor device | |
JP2009507396A (ja) | フッ素処理を用いたロバストトランジスタ | |
CN104094417A (zh) | 利用注入制造氮化镓p-i-n二极管的方法 | |
US7973338B2 (en) | Hetero junction field effect transistor and method of fabricating the same | |
US20130113028A2 (en) | Semiconductor device and field effect transistor | |
Zheng et al. | Suppression of current leakage along mesa surfaces in GaN-based pin diodes | |
Maeda et al. | Enhanced effect of polarization on electron transport properties in AlGaN/GaN double-heterostructure field-effect transistors | |
US9029210B2 (en) | GaN vertical superjunction device structures and fabrication methods | |
Beckmann et al. | Depletion-and enhancement-mode p-channel MISHFET based on GaN/AlGaN single heterostructures on sapphire substrates | |
KR101103774B1 (ko) | 리세스 게이트 에지 구조의 질화물계 반도체 소자 및 그 제조 방법 | |
RU2222845C1 (ru) | Полевой транзистор | |
Levinshtein et al. | Mobility enhancement in AlGaN/GaN metal-oxide-semiconductor heterostructure field effect transistors | |
CN111316446A (zh) | 凹入式固态设备 | |
KR102521973B1 (ko) | 반도체 구조 및 이의 제조 방법 | |
Marcon et al. | High temperature on-and off-state stress of GaN-on-Si HEMTs with in-situ Si 3 N 4 cap layer | |
RU2823223C1 (ru) | Силовой транзистор на основе AlN/GaN гетероструктуры с 2D электронным газом |