RU2207983C2 - Способ получения дезинфицирующих растворов и установка для его осуществления - Google Patents
Способ получения дезинфицирующих растворов и установка для его осуществления Download PDFInfo
- Publication number
- RU2207983C2 RU2207983C2 RU2001118336A RU2001118336A RU2207983C2 RU 2207983 C2 RU2207983 C2 RU 2207983C2 RU 2001118336 A RU2001118336 A RU 2001118336A RU 2001118336 A RU2001118336 A RU 2001118336A RU 2207983 C2 RU2207983 C2 RU 2207983C2
- Authority
- RU
- Russia
- Prior art keywords
- solution
- reactor
- reactors
- chambers
- block
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000000249 desinfective effect Effects 0.000 title claims abstract description 14
- 239000000243 solution Substances 0.000 claims abstract description 205
- 238000005188 flotation Methods 0.000 claims abstract description 37
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims abstract description 19
- 239000007864 aqueous solution Substances 0.000 claims abstract description 8
- 239000010802 sludge Substances 0.000 claims abstract description 6
- 238000009434 installation Methods 0.000 claims description 44
- 239000000645 desinfectant Substances 0.000 claims description 41
- 239000013505 freshwater Substances 0.000 claims description 36
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 18
- 229910001514 alkali metal chloride Inorganic materials 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 9
- 239000011780 sodium chloride Substances 0.000 claims description 8
- 239000003054 catalyst Substances 0.000 claims description 7
- 239000003513 alkali Substances 0.000 claims description 5
- 229910001617 alkaline earth metal chloride Inorganic materials 0.000 claims description 5
- 229910000323 aluminium silicate Inorganic materials 0.000 claims description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 239000010955 niobium Substances 0.000 claims description 2
- 239000002002 slurry Substances 0.000 claims description 2
- 238000007599 discharging Methods 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 150000001805 chlorine compounds Chemical class 0.000 abstract description 2
- 239000003814 drug Substances 0.000 abstract description 2
- 239000003637 basic solution Substances 0.000 abstract 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 abstract 1
- 150000001342 alkaline earth metals Chemical class 0.000 abstract 1
- 229910052751 metal Inorganic materials 0.000 abstract 1
- 239000002184 metal Substances 0.000 abstract 1
- 239000000376 reactant Substances 0.000 abstract 1
- 239000000919 ceramic Substances 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 239000007789 gas Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000005265 energy consumption Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 230000007935 neutral effect Effects 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 229910052500 inorganic mineral Inorganic materials 0.000 description 5
- 239000011707 mineral Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 4
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 4
- 230000002572 peristaltic effect Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 229910001928 zirconium oxide Inorganic materials 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000003115 biocidal effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- -1 hydroxyl ions Chemical class 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- RUDFQVOCFDJEEF-UHFFFAOYSA-N oxygen(2-);yttrium(3+) Chemical class [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 238000005370 electroosmosis Methods 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 150000004692 metal hydroxides Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- YJZATOSJMRIRIW-UHFFFAOYSA-N [Ir]=O Chemical class [Ir]=O YJZATOSJMRIRIW-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010349 cathodic reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000011043 electrofiltration Methods 0.000 description 1
- 239000012527 feed solution Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hcl hcl Chemical compound Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical group Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910000457 iridium oxide Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 238000001728 nano-filtration Methods 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- 238000009938 salting Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical group [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Изобретение относится к области прикладной электрохимии и может быть использовано во всех областях техники, в которых требуется применение дезинфицирующих растворов, в частности в медицине, в пищевой промышленности и других. Способ получения дезинфицирующего раствора включает обработку исходного водного раствора хлорида щелочного или щелочноземельного металла в катодной камере диафрагменного электрохимического реактора, отвод части обработанного в катодной камере раствора и обработку основного потока раствора в анодной камере диафрагменного электрохимического реактора. Обработку ведут в блоке электрохимических реакторов, содержащем от двух до четырех реакторов, и обработку ведут при однократном протоке раствора через катодные камеры реакторов. Отвод части обработанного в катодных камерах раствора ведут путем обработки в герметичном флотационном реакторе с выводом флотошлама и основной поток последовательно обрабатывают в анодных камерах реакторов, причем скорость протока обрабатываемого раствора через анодные камеры реакторов в 2-4 раза превышает скорость протока его через катодные камеры. Технический эффект: снижение расхода электроэнергии на получение дезинфицирующих растворов, уменьшение расхода исходных реагентов (хлоридов), а также расширение функциональных возможностей технического решения за счет обеспечения возможности регулирования свойств получаемых растворов непосредственно во время электрохимической обработки, снижение эксплуатационных затрат. 2 с. и 15 з.п. ф-лы, 8 ил., 1 табл.
Description
Область применения
Изобретение относится к области прикладной электрохимии и может быть использовано во всех областях техники, в которых требуется применение дезинфицирующих растворов, в частности в медицине, в пищевой промышленности и других.
Изобретение относится к области прикладной электрохимии и может быть использовано во всех областях техники, в которых требуется применение дезинфицирующих растворов, в частности в медицине, в пищевой промышленности и других.
Предшествующий уровень техники
В настоящее время в различных областях техники и, в частности, в области водоподготовки широко применяются дезинфицирующие водные растворы, содержащие соединения активного хлора, полученные химическим путем [1].
В настоящее время в различных областях техники и, в частности, в области водоподготовки широко применяются дезинфицирующие водные растворы, содержащие соединения активного хлора, полученные химическим путем [1].
Недостатками известных решений являются недостаточно высокая дезинфицирующая способность, повышенные требования к технике безопасности, применение реагентов, иногда токсичных.
Подобных недостатков лишены электрохимические методы получения таких растворов, позволяющие упростить процесс приготовления, сократить число реагентов.
Наиболее близким по технической сути и достигаемому результату является способ и устройство для получения дезинфицирующего раствора путем электрохимической обработки растворов хлоридов щелочных металлов концентрацией до 5 г/л, полученных смешением пресной питьевой воды с насыщенным раствором хлорида щелочного металла (чаще всего натрия) и протекающих последовательно через катодную и анодную камеры диафрагменного электрохимического реактора [2]. При обработке часть раствора, обработанного в катодной камере, выводится из процесса вместе с выделившимися электролизными газами, а раствор, выводимый из анодной камеры, является дезинфицирующим - нейтральным анолитом АНК.
Устройство для получения этих растворов содержит реактор, выполненный, по крайней мере, из одного электрохимического модульного элемента, представляющего собой компактный диафрагменный электролизер с вертикальными цилиндрическими электродами и цилиндрической керамической диафрагмой, разделяющей межэлектродное пространство на электродные камеры со входом в нижней и выходом в верхней частях реактора. Электроды и диафрагма коаксиально установлены в диэлектрических втулках. В устройстве линия подачи воды снабжена приспособлением для дозирования реагента и соединена через регулятор расхода со входом в катодную камеру. Обработка осуществляется при однократном протоке обрабатываемого раствора снизу верх последовательно через катодную и анодную камеры. Вывод дезинфицирующего раствора - анолита нейтрального АНК осуществляется из анодной камеры.
Применение известного технического решения позволяет получить растворы с высокой дезинфицирующей и стерилизующей способностью.
Недостатком известного решения является сравнительно высокий расход электроэнергии на получение дезинфицирующего раствора и одновременное получение в катодной камере достаточно большого количества растворов, которые сбрасываются в дренаж, что приводит к перерасходу реагентов. Этот недостаток особенно становится заметен при значениях рН исходной воды порядка 8-9. Также недостатком известного решения является сравнительная сложность регулирования характеристик раствора, которые определяются за счет изменения концентрации солевого раствора, подаваемого на обработку, и времени обработки, при этом время обработки определяется не только необходимостью достижения требуемой величины параметров, но и необходимостью устранения из раствора веществ, образовавшихся в катодной камере и являющихся балластными или даже разрушающими полезные компоненты раствора, что снижает функциональность известного решения.
Раскрытие изобретения
Техническим результатом использования настоящего изобретения является снижение расхода электроэнергии на получение дезинфицирующих растворов, уменьшение расхода исходных реагентов (хлоридов), а также расширение функциональных возможностей технического решения за счет обеспечения возможности регулирования свойств получаемых растворов непосредственно во время электрохимической обработки, снижение эксплуатационных затрат.
Техническим результатом использования настоящего изобретения является снижение расхода электроэнергии на получение дезинфицирующих растворов, уменьшение расхода исходных реагентов (хлоридов), а также расширение функциональных возможностей технического решения за счет обеспечения возможности регулирования свойств получаемых растворов непосредственно во время электрохимической обработки, снижение эксплуатационных затрат.
Указанный результат достигается тем, что в способе получения дезинфицирующего раствора, включающем обработку исходного водного раствора хлорида щелочного или щелочноземельного металла в катодной камере диафрагменного электрохимического реактора, отвод части обработанного в катодной камере раствора и обработку в анодной камере диафрагменного электрохимического реактора, обработку ведут в блоке электрохимических реакторов, содержащем 2, 3 или 4 реактора, причем обработку ведут при однократном протоке раствора через катодные камеры реакторов, отвод части обработанного в катодных камерах раствора ведут в процессе обработки его в герметичном флотационном реакторе с выводом флотошлама, а основной поток последовательно обрабатывают в анодных камерах реакторов, причем скорость протока обрабатываемого раствора через анодные камеры реакторов в 2-4 раза превышает скорость протока его через катодные камеры.
Обработка исходного раствора при однократном протоке через катодные камеры и последовательном протоке через более чем одну анодную камеру диафрагменного электрохимического реактора позволяет проводить процесс таким образом, чтобы избежать разрушения образовавшихся биоцидных веществ за счет электромиграции через диафрагму между электродными камерами.
Обработка во флотационном реакторе позволяет регулировать газонаполнение потока за счет удаления части водорода, осуществлять отвод части обработанного раствора в виде газожидкостной смеси, а также регулировать состав раствора за счет удаления нерастворимых примесей, которые образуются при обработке в катодной камере.
После обработки в катодной камере основного реактора раствор последовательно обрабатывается как минимум в двух анодных камерах (в зависимости от конструктивного оформления способа). Обработку в анодной камере реактора ведут при скорости протока обрабатываемой среды в 2-4 раза выше, чем скорость протока в катодной камере.
Такая обработка позволяет снизить расход энергии на обработку, особенно при обработке низкоминерализованных растворов, так как при невысокой скорости протока через катодную камеру в последних происходит накопление ионов гидроксила, обладающих значительной подвижностью и обеспечивающих высокую электропроводность раствора. Увеличение скорости протока в анодных камерах позволяет увеличить выход оксидантов, так как интенсивное перемешивание создает условия для образования пузырьков электролизных газов меньшего размера и способствует интенсификации процесса растворения их в обрабатываемом растворе и как следствие интенсификации окислительно-восстановительных реакций, протекающих в растворе.
В качестве исходного раствора хлорида щелочного металла используют раствор хлорида натрия с концентрацией 0,2-3,0 г/л. При использовании более концентрированного раствора увеличивается солесодержание полученного дезинфицирующего раствора, что ограничивает сферу применения последнего. Кроме того, резко увеличивается коррозионная активность дезинфицирующих растворов, а также возникает необходимость в применении специальных методов очистки отработанных растворов после использования. При использовании менее концентрированных растворов не достигается необходимая степень концентрации оксидантов. Использование исходного раствора с концентрацией 0,2-3,0 г/л позволяет получить дезинфицирующий раствор с оптимальным солесодержанием (в среднем 1,5-2,0 г/л и ниже, что существенно ниже, чем в установке по прототипу - 0,3-5,0 г/л) и расширить сферу применения растворов. Такое солесодержание дезинфицирующего раствора позволяет расширить сферу его применения, избежать возможного засаливания образующихся сточных вод при обеспечении необходимой степени дезинфицирующих свойств раствора.
В процессе также могут быть использованы исходные растворы другой, более высокой концентрации, однако солесодержание полученного дезинфицирующего раствора поддерживают на постоянным уровне.
Так, например, может быть использован исходный раствор хлорида натрия концентрацией 50-100 г/л, и перед обработкой в катодных камерах реакторов исходный раствор смешивают с пресной водой до концентрации 0,2-3,0 г/л.
Или может быть использован исходный раствор с концентрацией 50-250 г/л, и после обработки в катодных камерах реакторов обработанный раствор смешивают с пресной водой до концентрации 0,2-3,0 г/л.
Такой же исходный раствор (концентрацией 50-250 г/л) может быть обработан по следующей схеме: после обработки исходного раствора в катодных камерах реакторов, флотационном реакторе и первой по ходу потока анодной камере перед обработкой в каждой из последующих анодных камер реакторов обработанный раствор смешивают с пресной водой, понижая его концентрацию, причем на входе в последнюю по ходу обрабатываемого раствора анодную камеру концентрация обрабатываемого раствора составляет 0,2-3,0 г/л.
При получении дезинфицирующего раствора обработку ведут при превышении давления в анодных камерах реакторов по сравнению с катодными или при превышении давления в катодных камерах по сравнению с анодными.
Обработка при превышении давления в анодной камере по сравнению с катодной (в этом случае вывод дезинфицирующего раствора - нейтрального анолита АНК из анодной камеры электрохимического реактора или реакторов осуществляют через регулятор давления) или при превышении давления в катодных камерах по сравнению с анодными позволяет направлено воздействовать на процесс электромиграции ионов через диафрагму и, следовательно, изменять свойства получаемого нейтрального анолита.
В среднем разность давления в электродных камерах целесообразно поддерживать на уровне 0,1-0,4 кгс/см2.
После обработки во флотационном реакторе и перед подачей в анодную камеру обрабатываемый раствор пропускают через слой катализатора, например алюмосиликатного, оксидно-циркониевого, оксидно-ниобиевого. Такая обработка позволяет извлечь из раствора мельчайшие частички гидроксидов тяжелых металлов, которые сокращают время жизни оксидантов в анолите АНК. Реактор с подобной загрузкой из гранул минерального катализатора называется электрокинетическим, поскольку его работа основана на использовании электрокинетических явлений, т.е. всего комплекса процессов (электроосмос, электрофорез, электрофильтрация), имеющего место в двойном электрическом слое на границе раздела "твердое тело - жидкость".
Способ получения дезинфицирующего раствора может быть реализован в установке, содержащей электрохимический диафрагменный реактор, трубопровод подачи исходного водного раствора хлорида щелочного или щелочноземельного металла, соединенный с входом катодной камеры реактора, линию перетока обрабатываемого раствора, соединяющую выход катодной камеры со входом анодной камеры реактора, с установленным на линии перетока приспособлением для отвода части обработанного в катодной камере раствора и трубопровод отвода полученного дезинфицирующего раствора, соединенный с выходом анодной камеры реактора, причем установка содержит от двух до четырех диафрагменных электрохимических реакторов, соединенных в блок, и установка содержит один или несколько таких блоков, соединенных параллельно. Все катодные камеры реакторов блока или блоков гидравлически соединены параллельно, входы всех катодных камер реакторов соединены с трубопроводом подачи исходного раствора, а выходы всех катодных камер реакторов объединены с общим коллектором. Анодные камеры реакторов в каждом блоке гидравлически соединены последовательно, приспособление для отвода части обработанного в катодных камерах раствора выполнено в виде герметичного флотационного реактора с патрубками вывода флотошлама и части обработанного раствора, вход флотационного реактора соединен с общим коллектором, жидкостной вывод флотационного реактора соединен со входом анодной камеры первого по ходу обрабатываемого раствора реактора в блоке или в блоках, выход анодной камеры первого по ходу обрабатываемого раствора реактора блока соединен со входом анодной камеры следующего по ходу обрабатываемого раствора реактора блока, а выход анодной камеры последнего по ходу обрабатываемого раствора реактора блока или блоков соединен с трубопроводом отвода полученного дезинфицирующего раствора.
Кроме того, каждый из реакторов может быть выполнен по модульному принципу из одного модульного диафрагменного электрохимического элемента или из нескольких модульных диафрагменных электрохимических элементов, электродные камеры которых соединены в реакторе параллельно. Количество модульных диафрагменных электрохимических элементов определяется требуемой производительностью.
Выполнение установки по модульному принципу из блоков и элементов позволяет легко регулировать требуемую производительность и изменять характеристики получаемых растворов.
Количество использованных в блоке диафрагменных реакторов, катодные камеры которых соединены параллельно и анодные - последовательно, позволяет без применения дополнительных узлов и оборудования регулировать скорости протока раствора через камеры.
Установка также может содержать емкость с катализатором, имеющую ввод в верхней части и вывод в нижней. Емкость установлена на жидкостном выводе флотационного реактора перед подачей в анодную камеру первого реактора блока или блоков.
В зависимости от концентрации используемого исходного раствора установка может содержать линию подачи пресной воды, емкость с концентрированным раствором хлорида и приспособление для приготовления исходного раствора, расположенное на трубопроводе подачи исходного раствора перед вводом в катодные камеры реакторов блока или блоков и выполненное, например, в виде водоструйного насоса, соединенного с емкостью и линией подачи пресной воды.
В случае необходимости проведения непрерывного процесса ввода дезинфицирующего раствора в обрабатываемую среду, например в пресную воду, установка может содержать линию подачи пресной воды, емкость с концентрированным раствором хлорида и смеситель, выполненный, например, в виде водоструйного насоса для создания избыточного давления, причем емкость с концентрированным раствором хлорида соединена с трубопроводом подачи исходного раствора, смеситель установлен на линии, соединяющей выход катодных камер реакторов блока или блоков, и смеситель соединен также с линией подачи пресной воды.
Дополнительного снижения расхода электроэнергии можно добиться, обрабатывая в катодной камере концентрированный раствор хлорида, при этом установка содержит, по крайней мере, один блок, состоящий из двух электрохимических диафрагменных реакторов, емкость с концентрированным раствором хлорида, линию подачи пресной воды, по крайней мере, два смесителя, выполненных, например, в виде водоструйных насосов, и регулятор давления, причем емкость с концентрированным раствором хлорида соединена с трубопроводом подачи исходного раствора, регулятор давления установлен на линии подачи пресной воды, последняя соединена с двумя смесителями, из которых первый установлен на линии, соединяющей выход катодных камер реакторов блока перед герметичным флотационным реактором, второй установлен между выходом из анодной камеры первого по ходу обрабатываемого раствора реактора блока и входом в анодную камеру второго реактора блока.
Один блок установки может быть выполнен, например, из трех электрохимических диафрагменных реакторов, при этом установка содержит, по крайней мере, три насоса, регулятор давления и емкость с концентрированным раствором хлорида, которая соединена с трубопроводом подачи исходного раствора, регулятор давления установлен на линии подачи пресной воды, последняя соединена с тремя водоструйными насосами, из которых первый установлен на линии, соединяющей выход катодных камер реакторов блока перед герметичным флотационным реактором, второй установлен между выходом из анодной камеры первого по ходу обрабатываемого раствора реактора блока и входом в анодную камеру второго реактора блока, а третий установлен между выходом из анодной камеры второго реактора блока и входом в анодную камеру третьего реактора.
В установке может использоваться блок, состоящий из четырех электрохимических диафрагменных реакторов, и установка содержит в этом случае, по крайней мере, четыре смесителя, выполненных, например, в виде водоструйных насосов, и регулятор давления, причем емкость с концентрированным раствором хлорида соединена с трубопроводом подачи исходного раствора, регулятор давления установлен на линии подачи пресной воды, последняя соединена с четырьмя смесителями, из которых первый установлен на линии, соединяющей выход катодных камер реакторов блока перед герметичным флотатором, второй установлен между выходом из анодной камеры первого по ходу обрабатываемого раствора реактора блока и входом в анодную камеру второго реактора блока, третий установлен между выходом из анодной камеры второго реактора блока и входом в анодную камеру третьего реактора, а четвертый установлен между выходом из анодной камеры третьего реактора блока и входом в анодную камеру четвертого реактора.
При осуществлении способа и конструировании установки целесообразно использовать проточные электрохимические реакторы, описанные в патенте РФ 2078737 или патенте США 5635040. Эти реакторы представляют собой компактные диафрагменные электролизеры, выполненные из вертикальных цилиндрического и стержневого электродов, коаксиально установленных в диэлектрических втулках, керамической диафрагмы, также коаксиально установленной во втулках между электродами и разделяющей межэлектродное пространство на электродные камеры, причем камеры имеют вход в нижней и выход в верхней частях ячейки. Реакторы выполнены по модульному принципу, что позволяет реализовать способ с обеспечением заданной производительности. Кроме того, данные реакторы позволяют обеспечить одинаковые электрические и гидравлические характеристики независимо от производительности, то есть от числа ячеек в них. В реакторах не происходит изменение объема и формы электродных камер при значительной разности давлений по обе стороны диафрагмы.
В электрохимических реакторах целесообразно использовать ультрафильтрационную или нанофильтрационную диафрагму из керамики, например из керамики на основе оксида циркония. Диафрагма может быть выполнена из керамики на основе оксида циркония с добавками оксидов алюминия и иттрия.
Керамические диафрагмы не изменяют свои характеристики при перепаде давления и в процессе обработки, что обеспечивает стабильность параметров обработки. Такие диафрагмы выдерживают высокое давление (до трех атмосфер) и сравнительно высокие перепады давления по разные стороны диафрагмы (до 1 атм), и при этом не происходит фильтрационный переток из одной камеры в другую.
Состав керамики выбирают исходя из условий решаемой задачи, но следует отметить, что керамика на основе оксида циркония или керамика на основе оксида циркония с добавками оксидов алюминия и иттрия обладает оптимальным сочетанием характеристик для решения поставленных задач.
Краткое описание чертежей
На фиг.1-8 представлены схемы установок, иллюстрирующие настоящее изобретение.
На фиг.1-8 представлены схемы установок, иллюстрирующие настоящее изобретение.
Установка для получения дезинфицирующего раствора (фиг.1) содержит блок реакторов, в состав которого входят два проточных диафрагменных электрохимических реактора (на чертежах показано выполнение каждого из реакторов из одного проточного электрохимического модульного элемента - далее элементы ПЭМ) 1 и 2, в которых межэлектродное пространство разделено диафрагмами 3 и 4 на катодные 5 и 6 и анодные 7 и 8 камеры, флотационный реактор 9 и регулирующий клапан 10 для дозированного отвода флотошлама из верхней части флотационного реактора 9. Установка также может содержать электрокинетический реактор 11.
Катодные камеры 5 и 6 элементов ПЭМ 1 и 2 соединены гидравлически параллельно, а анодные 7 и 8 - последовательно. При этом линия подачи исходного водного раствора 12 соединена с патрубками 13 и 14 ввода в катодные камеры реакторов 1 и 2 (фиг.2), а патрубки вывода 15 и 16 из катодных камер соединены с флотационным реактором 9 и электрокинетическим реактором 11. Вывод электрокинетического реактора соединен с патрубком 17 ввода в анодную камеру реактора 1. Патрубок выхода 18 анодной камеры реактора 1 соединен с патрубком 19 ввода в анодную камеру реактора 2, а патрубок вывода 20 соединен с линией отвода дезинфицирующего раствора 21.
На фиг. 3 представлена схема установки, содержащей один блок, состоящий из трех диафрагменных электрохимических реакторов 1, 2 и 22. Межэлектродное пространство реактора 22 разделено диафрагмой 23 на катодную 24 и анодную 25 камеры. При этом катодные камеры реакторов 1, 2 и 22 соединены гидравлически параллельно, а анодные камеры - последовательно.
На фиг. 4 представлена схема установки, содержащей два блока, каждый из которых выполнен из двух реакторов 1, 2 и 26, 27 соответственно, при этом катодные камеры всех реакторов гидравлически соединены с линией подачи исходного раствора 12 параллельно, а анодные камеры реакторов 1 и 2 первого блока и анодные камеры реакторов 26 и 27 второго блока соединены внутри каждого блока последовательно, а сами блоки - параллельно, при этом линия вывода дезинфицирующего раствора 21 соединена с выводами анодных камер ректора 2 первого блока и реактора 27 второго блока.
На фиг. 5 представлена схема установки, содержащей три блока, каждый из которых выполнен из трех реакторов 1, 2 и 28 - первый блок, 26, 27 и 29 - второй и 30, 31 и 32 - третий. При этом установка дополнительно содержит линию подачи пресной воды 33, емкость с концентрированным раствором хлорида 34 и насос 35. Катодные камеры всех реакторов гидравлически соединены параллельно, а анодные - последовательно внутри каждого блока, а сами блоки - гидравлически параллельно.
На фиг.6 представлена схема установки согласно одному из аспектов настоящего изобретения, в которой поддерживают избыточное давление в анодных камерах. Установка содержит один блок, выполненный из двух диафрагменных электрохимических реакторов 1 и 2, а также флотационный реактор 9, электрокинетический реактор 11, линию подачи исходного раствора 12, линию подачи пресной воды 33 и водоструйный насос 36. Кроме того, установка содержит вентиль для дозированной подачи солевого раствора.
На фиг.7 представлена схема установки согласно другому аспекту настоящего изобретения, в которой поддерживают избыточное давление в катодных камерах. Установка содержит один блок, выполненный из двух диафрагменных электрохимических реакторов 1 и 2, а также флотационный реактор 9, электрокинетический реактор 11, линию подачи исходного раствора 12, линию подачи пресной воды 33 и смеситель 37.
На фиг.8 представлена схема установки согласно одному из аспектов настоящего изобретения, в которой поддерживают избыточное давление в анодных камерах. Установка содержит один блок, выполненный из трех диафрагменных электрохимических реакторов 1, 2 и 22, а также флотационный реактор 9, электрокинетический реактор 11, линию подачи исходного раствора 12, линию подачи пресной воды 33, водоструйные насосы 38, 39, 40 и регулятор давления 41.
Установка работает следующим образом.
Исходный раствор концентрацией 0,2-3,0 г/л по линии 12 подается на обработку в реакторный блок установки, содержащей два реактора 1 и 2 (фиг.1). Раствор параллельно поступает в катодные камеры 5 и 6 реакторов 1 и 2.
Обработанные в катодных камерах 5 и 6 реакторов 1 и 2 потоки соединяются и поступают в герметичный флотационный реактор 9. Во флотационном реакторе 9 в основном происходит процесс разделения жидкости и газа. Раствор после предшествующей катодной обработки в электрохимическом реакторе насыщен электрически активными микропузырьками водорода. Размеры микропузырьков водорода находятся в пределах 0,2-10 мкм. Электрическая активность пузырьков водорода обусловлена тем, что на границе раздела фаз "газ-жидкость" сосредоточены электрохимически активные неустойчивые продукты катодных реакций, такие как Н2O2 -, НO2 -, O2 -, eaq. На этой же границе концентрируются нерастворимые гидроксиды металлов и другие коллоидные частицы. Удаление всех микропузырьков газа в обычном флотационном реакторе требует большого времени вследствие низкой скорости их всплывания. Поэтому в наиболее совершенных электрофлотационных реакторах удается отделить не более 70% всех флотируемых частиц.
В результате на обработку в анодную камеру подается раствор только с растворенным газом (водородом), но без пузырьков газа, что позволяет изменять химический состав получаемого дезинфицирующего раствора - нейтрального анолита АНК (увеличивать выход озона и пероксидных соединений). Часть верхнего слива из флотационного реактора 9 с помощью вентиля 10 отводится из системы, а оставшаяся часть потока последовательно обрабатывается в анодной камере 7 реактора 1, а после выхода из нее подается в анодную камеру 8 реактора 2 и после обработки в этой камере по линии 21 полученный дезинфицирующий раствор - нейтральный анолит АНК подается потребителю.
В катодных камерах реакторов 1 и 2 преимущественно протекают следующие реакции:
2Н2O+Na++2е --> NaOH+Н2+ОН-
В анодной камере 7 основного реактора 1, в которую поступает раствор, обработанный в катодной камере вместе с растворенным и газообразным водородом, имеют место следующие основные реакции:
2Сl--2е --> Сl2
Сl2+Н2O --> НСlO+HCl
HCl+NaOH --> NaCl+H2O
2H2O-4e --> 4H++O2
H++OH- --> H2O
HCl+ОН- --> Сl-+H2O
Основным биоцидным соединением, образующимся в анодной камере 7 реактора 1 при подаче в него всего потока жидких и газообразных продуктов из катодной камеры в условиях практически одинакового давления в электродных камерах реактора, является гипохлорит - ион.
2Н2O+Na++2е --> NaOH+Н2+ОН-
В анодной камере 7 основного реактора 1, в которую поступает раствор, обработанный в катодной камере вместе с растворенным и газообразным водородом, имеют место следующие основные реакции:
2Сl--2е --> Сl2
Сl2+Н2O --> НСlO+HCl
HCl+NaOH --> NaCl+H2O
2H2O-4e --> 4H++O2
H++OH- --> H2O
HCl+ОН- --> Сl-+H2O
Основным биоцидным соединением, образующимся в анодной камере 7 реактора 1 при подаче в него всего потока жидких и газообразных продуктов из катодной камеры в условиях практически одинакового давления в электродных камерах реактора, является гипохлорит - ион.
Из анодной камеры 7 реактора 1 поток жидкости с растворенными кислородом и водородом, а также вместе с газообразнам водородом и кислородом поступает в анодную камеру 8 реактора 2.
В анодной камере 8 реактора 2 имеют место следующие реакции:
2Сl- -2е --> Сl2
2H2O-4e --> 4H++O2
HCl+OH- --> Сl-+H2O
H++ОН- --> H2O
В процессе обработки исходного раствора после флотационного реактора 9 может быть установлен электрокинетический реактор 11 с входом в верхней и выходом в нижней частях. В электрокинетическом реакторе осуществляется удаление оставшейся части гидроксидов тяжелых металлов, в том числе железа и других коллоидных взвесей. В электрокинетическом реакторе создаются условия для электростатического удерживания коллоидных частиц в зоне диффузионных слоев электрохимически активированных поверхностей минеральных кристаллов (например, крупных кристаллов кварца размером 1,5-2,0 мм),
Работа реактора основана на использовании электрокинетических явлений - электроосмоса, электрофореза, электрофильтрации, известных из коллоидной химии. Благодаря толстым диффузным слоям (ионные слои Гуи-Чэпмена), окружающим минеральные частицы активной массы реактора, вода с низким окислительно-восстановительным потенциалом свободно протекает сквозь его загрузку, оставляя в диффузионных слоях активной массы реактора коллоидные частицы и другие коллоидные взвеси. Регенерация активной массы реактора осуществляется путем снятия зарядов с поверхностей минеральных кристаллов и удаления коллоидных взвесей промывкой водой. Для эффективной работы реактора в электрокинетический реактор подают раствор после катодной обработки с высоким восстановительным потенциалом, который индуцирует возникновение электрически активных ионно-гидратных оболочек вокруг минеральных кристаллических частиц активной массы реактора.
2Сl- -2е --> Сl2
2H2O-4e --> 4H++O2
HCl+OH- --> Сl-+H2O
H++ОН- --> H2O
В процессе обработки исходного раствора после флотационного реактора 9 может быть установлен электрокинетический реактор 11 с входом в верхней и выходом в нижней частях. В электрокинетическом реакторе осуществляется удаление оставшейся части гидроксидов тяжелых металлов, в том числе железа и других коллоидных взвесей. В электрокинетическом реакторе создаются условия для электростатического удерживания коллоидных частиц в зоне диффузионных слоев электрохимически активированных поверхностей минеральных кристаллов (например, крупных кристаллов кварца размером 1,5-2,0 мм),
Работа реактора основана на использовании электрокинетических явлений - электроосмоса, электрофореза, электрофильтрации, известных из коллоидной химии. Благодаря толстым диффузным слоям (ионные слои Гуи-Чэпмена), окружающим минеральные частицы активной массы реактора, вода с низким окислительно-восстановительным потенциалом свободно протекает сквозь его загрузку, оставляя в диффузионных слоях активной массы реактора коллоидные частицы и другие коллоидные взвеси. Регенерация активной массы реактора осуществляется путем снятия зарядов с поверхностей минеральных кристаллов и удаления коллоидных взвесей промывкой водой. Для эффективной работы реактора в электрокинетический реактор подают раствор после катодной обработки с высоким восстановительным потенциалом, который индуцирует возникновение электрически активных ионно-гидратных оболочек вокруг минеральных кристаллических частиц активной массы реактора.
В зависимости от требований к производительности и характеристикам получаемого дезинфицирующего раствора реакторный блок установки может содержать три реактора (фиг. 3) или четыре реактора. Установка также может содержать два блока (фиг.4) или три блока (фиг.5).
При использование исходного раствора концентрацией 50-100 г/л в установке предусмотрена емкость для хранения концентрированного раствора 34 (фиг.5) и линия подачи пресной воды 33. Концентрированный раствор подается на смешение с пресной водой, например, с помощью насоса 35, где потоки смешиваются до концентрации 0,2-3 г/л и поступают на обработку в катодные камеры реакторов блоков.
Согласно изобретению может использоваться исходный раствор концентрацией 50-250 г/л (см. фиг.6, 7 и 8).
В установке, изображенной на фиг.6, концентрированный раствор из емкости для хранения концентрированного раствора (не показана) поступает на обработку в катодные камеры 5 и 6 реакторов 1 и 2. После обработки потоки из камер 5 и 6 соединяются и поступают в перистальтический насос 36, к которому присоединена линия 33 подачи пресной воды. Обработанный в катодной камере раствор разбавляется до концентрации 0,2-3,0 г/л и поступает на дальнейшую обработку. За счет использования насоса давление в анодных камерах 7 и 8 превышает давление в катодных камерах 5 и 6.
Концентрированный раствор после обработки в катодных камерах может поступать в смеситель 37 (фиг.7), к которому присоединена линия подачи пресной воды 33. За счет использования смесителя можно добиться повышения давления в катодных камерах по сравнению с анодными.
Может быть использована схема, при которой исходный раствор концентрацией 50-250 г/л подают параллельными потоками в катодные камеры реакторов 1, 2 и 22 (фиг.8) и после обработки в катодных камерах реакторов 1, 2 и 22 через перистальтический насос 38, создающий избыточное давление в анодных камерах реакторов 1, 2 и 22, флотационном реакторе 9 и емкости с катализатором 11, исходный концентрированный раствор поступает в анодную камеру реактора 1, после чего через перистальтический насос 39 - в анодную камеру реактора 2 и далее через перистальтический насос 40 - в анодную камеру реактора 22. К насосам 39 и 40 через регулятор давления 41 присоединена линия подачи пресной воды 33, и анодными камерами реакторов 2 и 22 происходит частичное разбавление исходного раствора до достижения на выходе из анодной камеры реактора 22 концентрации 0,2-3,0 г/л (фиг.7).
Варианты конкретного осуществления
Изобретение иллюстрируется следующими примерами, которые однако не исчерпывают всех возможных вариантов осуществления способа.
Изобретение иллюстрируется следующими примерами, которые однако не исчерпывают всех возможных вариантов осуществления способа.
Во всех примерах использовались электрохимические реакторы по патенту РФ 2078737 с коаксиально установленными цилиндрическим и стрежневым электродами и коаксиально же установленной между ними керамической ультрафильтрационной диафрагмой из керамики на основе смеси окислов циркония, алюминия и иттрия (соответственно 60, 37 и 3 мас.%) и толщиной 0,7 мм. В качестве электродов использовались титан с покрытием из смеси оксидов рутения и иридия (анод) и титан с пироуглеродным покрытием (катод). Длина ячейки составляла 200 мм, а объемы электродных камер составляют 10 мл - катодной камеры и 7 мл - анодной. Производительность установок по прототипу и по изобретению поддерживалась одинаковой и составляла 30 л/час по дезинфицирующему раствору.
Пример 1. Исходный раствор хлорида натрия с солесодержанием 2,5 г/л обрабатывался в установке, схема которой приведена на фиг.1. Исходный раствор параллельно подавался в катодные камеры 5 и 6 реакторов 1 и 2. После однократного прохождения камер поток объединялся и поступал во флотационный реактор 9, из которого выводили шлам, а также отбирали часть раствора через регулировочный вентиль 10. Основной поток поступал на обработку в электрокинетическую емкость 11, заполненную гранулированным алюмосиликатным катализатором, и, выйдя из емкости, последовательно обрабатывался в анодной камере 7 реактора 1 и анодной камере 8 реактора 2, после чего по линии 21 поступал в сборник готового продукта. Скорость протекания раствора в анодных камерах в 2,3 раза превышала скорость протока в катодных камерах.
Пример 2. Концентрированный раствор хлорида натрия с солесодержанием 200 г/л обрабатывался в установке, схема которой приведена на фиг.6. С помощью дозировочного насоса исходный раствор поступал в катодные камеры 5 и 6 реакторов 1 и 2. Потоки, выходящие из катодных камер, объединялись и поступали в смеситель 36, в который также поступала пресная вода. Раствор, разбавленный до концентрации 1,8 г/л, обрабатывался во флотационном реакторе 9. Из флотатора выводился флотошлам и отбиралась часть раствора, после чего основной поток последовательно обрабатывался в анодных камерах 7 и 8 реакторов 1 и 2. Из анодной камеры 8 поток направлялся в сборник готового продукта. Скорость протекания в анодных камерах в 3 раза превышала скорость протока исходного раствора в катодных камерах.
Пример 3. Концентрированный раствор хлорида натрия с солесодержанием 200 г/л обрабатывался в установке, схема которой приведена на фиг.8. Исходный концентрированный раствор параллельно поступал в катодные камеры реакторов 1, 2 и 22. Потоки, выходящие из катодных камер, объединялись и поступали в насос 38, во флотационный реактор 9. Из флотационного реактора выводился флотошлам и отбиралась часть раствора, после чего основной поток обрабатывался в анодной камере реактора 1. Обработанный в анодной камере реактора 1 поток поступал в смеситель 39, в который подавалась пресная вода, и разбавлялся до концентрации 8 г/л и подавался на обработку в анодную камеру реактора 2, из которой поток поступал на смеситель 40, в котором разбавлялся до концентрации 1,6 г/л и обрабатывался в анодной камере реактора 22, из которой поступал в сборник готового продукта. Скорость протока через катодные камеры была в 2 раза меньше, чем скорость протока через анодную камеру реактора 1, и соответственно в 3 и 4 раза меньше, чем скорость протока в анодных камерах реакторов 2 и 22.
Эффективность получаемого в анодной камере дезинфицирующего раствора оценивается по следующим параметрам:
- водородный показатель (рН),
- окислительно-восстановительный потенциал (ОВП), измеряемый относительно хлорсеребряного электрода сравнения, мВ,
- окислительная способность, эквивалентная содержанию активного хлора (Сох), мг/л,
- общее солесодержание (Со), г/л,
Также замеряется удельный расход электроэнергии на получение дезинфицирующего раствора.
- водородный показатель (рН),
- окислительно-восстановительный потенциал (ОВП), измеряемый относительно хлорсеребряного электрода сравнения, мВ,
- окислительная способность, эквивалентная содержанию активного хлора (Сох), мг/л,
- общее солесодержание (Со), г/л,
Также замеряется удельный расход электроэнергии на получение дезинфицирующего раствора.
Данные приведены в таблице.
Промышленная применимость
По сравнению с известным решением, как следует из представленных данных, использование настоящего изобретения позволяет снизить расход электроэнергии на получение дезинфицирующих растворов, а также расширить функциональные возможности технического решения за счет обеспечения возможности регулирования свойств получаемых растворов непосредственно во время электрохимической обработки, снизить эксплуатационные затраты. Получаемые дезинфицирующие растворы имеют значения рН, которые обеспечивают низкую коррозионную активность при повышении биоцидной активности растворов.
По сравнению с известным решением, как следует из представленных данных, использование настоящего изобретения позволяет снизить расход электроэнергии на получение дезинфицирующих растворов, а также расширить функциональные возможности технического решения за счет обеспечения возможности регулирования свойств получаемых растворов непосредственно во время электрохимической обработки, снизить эксплуатационные затраты. Получаемые дезинфицирующие растворы имеют значения рН, которые обеспечивают низкую коррозионную активность при повышении биоцидной активности растворов.
Источники информации
1. Л. А. Кульский и др. Технология очистки природных вод. Киев: Высшая школа, 1981, стр. 22-25.
1. Л. А. Кульский и др. Технология очистки природных вод. Киев: Высшая школа, 1981, стр. 22-25.
2. Патент России 2088539, С 02 F 1/46, 1997 (прототип).
Claims (17)
1. Способ получения дезинфицирующего раствора, включающий обработку исходного водного раствора хлорида щелочного или щелочноземельного металла в катодной камере диафрагменного электрохимического реактора, отвод части обработанного в катодной камере раствора и обработку основного потока раствора в анодной камере диафрагменного электрохимического реактора, отличающийся тем, что обработку ведут в блоке электрохимических реакторов, содержащем от двух до четырех электрохимических реакторов, обработку ведут при однократном протоке раствора через катодные камеры реакторов, отвод части обработанного в катодных камерах раствора ведут в процессе обработки его в герметичном флотационном реакторе с выводом флотошлама, и основной поток последовательно обрабатывают в анодных камерах реакторов, причем скорость протока обрабатываемого раствора через анодные камеры реакторов в 2-4 раза превышает скорость протока его через катодные камеры.
2. Способ получения дезинфицирующего раствора по п.1, отличающийся тем, что в качестве исходного раствора хлорида щелочного металла используют раствор хлорида натрия с концентрацией 0,2-3,0 г/л.
3. Способ получения дезинфицирующего раствора по п.1, отличающийся тем, что используют исходный раствор хлорида натрия концентрацией 50-100 г/л и перед обработкой в катодных камерах реакторов исходный раствор смешивают с пресной водой до концентрации 0,2-3,0 г/л.
4. Способ получения дезинфицирующего раствора по п.1, отличающийся тем, что используют исходный раствор концентрацией 50-250 г/л, и после обработки в катодных камерах реакторов обработанный раствор смешивают с пресной водой до концентрации 0,2-3,0 г/л.
5. Способ получения дезинфицирующего раствора по п.1, отличающийся тем, что используют исходный раствор концентрацией 50-250 г/л, и после обработки в катодных камерах реакторов, флотационном реакторе и первой по ходу потока анодной камере, перед обработкой в каждой из последующих анодных камер реакторов обработанный раствор смешивают с пресной водой, понижая его концентрацию, причем на входе в последнюю по ходу обрабатываемого раствора анодную камеру концентрация обрабатываемого раствора составляет 0,2-3,0 г/л.
6. Способ получения дезинфицирующего раствора по пп.1-4, или 5, отличающийся тем, что обработку ведут при превышении давления в анодных камерах реакторов, по сравнению с катодными.
7. Способ получения дезинфицирующего раствора по пп.1-4, или 5, отличающийся тем, что обработку ведут при превышении давления в катодных камерах реакторов, по сравнению с анодными.
8. Способ получения дезинфицирующего раствора по п.6 или 7, отличающийся тем, что обработку ведут при перепаде давления в электродных камерах реакторов на уровне 0,1-0,4 кгс/см2.
9. Способ получения дезинфицирующего раствора по любому из пп.1-8, отличающийся тем, что после обработки во флотационном реакторе перед подачей в анодные камеры раствор пропускают через слой катализатора, например алюмосиликатного, оксидно-циркониевого, оксидно-ниобиевого.
10. Установка для получения дезинфицирующего раствора электрохимической обработкой исходного водного раствора хлорида щелочного или щелочноземельного металла, содержащая электрохимический диафрагменный реактор, трубопровод подачи исходного водного раствора хлорида щелочного или щелочноземельного металла, соединенный с входом катодной камеры реактора, линию перетока обрабатываемого раствора, соединяющую выход катодной камеры со входом анодной камеры реактора, с установленным на линии перетока приспособлением для отвода части обработанного в катодной камере раствора, и трубопровод отвода полученного дезинфицирующего раствора, соединенный с выходом анодной камеры реактора, отличающаяся тем, что установка содержит от двух до четырех диафрагменных электрохимических реакторов, соединенных в блок, и установка содержит один или несколько блоков, соединенных параллельно, причем все катодные камеры реакторов блока или блоков гидравлически соединены параллельно, входы всех катодных камер реакторов соединены с трубопроводом подачи исходного раствора, выходы всех катодных камер реакторов объединены с общим коллектором, а анодные камеры реакторов в каждом блоке гидравлически соединены последовательно, приспособление для отвода части обработанного в катодных камерах раствора выполнено в виде герметичного флотатора с патрубками вывода флотошлама и части обработанного раствора, вход флотатора соединен с общим коллектором, жидкостной вывод флотатора соединен со входом анодной камеры первого по ходу обрабатываемого раствора реактора в блоке или в блоках, выход анодной камеры первого по ходу обрабатываемого раствора реактора блока соединен со входом анодной камеры следующего по ходу обрабатываемого раствора реактора блока, а выход анодной камеры последнего по ходу обрабатываемого раствора реактора блока или блоков соединен с трубопроводом отвода полученного дезинфицирующего раствора.
11. Установка для получения дезинфицирующего раствора по п.10, отличающаяся тем, что диафрагменные электрохимические реакторы блоков выполнены каждый из одного модульного диафрагменного электрохимического элемента, или из нескольких модульных диафрагменных электрохимических элементов, электродные камеры которых соединены в реакторе параллельно.
12. Установка для получения дезинфицирующего раствора по пп.10 и 11, отличающаяся тем, что она дополнительно содержит емкость с катализатором, имеющую ввод в верхней части и вывод в нижней, и установленную на жидкостном выводе флотационного реактора перед подачей в анодную камеру первого реактора блока или блоков.
13. Установка для получения дезинфицирующего раствора по пп.10-12, отличающаяся тем, что она содержит линию подачи пресной воды, емкость с концентрированным раствором хлорида и приспособление для приготовления исходного раствора, расположенное на трубопроводе подачи исходного раствора перед вводом в катодные камеры реакторов блока или блоков, выполненное, например, в виде водоструйного насоса, соединенного с емкостью и линией подачи пресной воды.
14. Установка для получения дезинфицирующего раствора по пп.10-12, отличающаяся тем, что она содержит линию подачи пресной воды, емкость с концентрированным раствором хлорида и смеситель, выполненный, например, в виде водоструйного насоса для создания избыточного давления, причем емкость с концентрированным раствором хлорида соединена с трубопроводом подачи исходного раствора, смеситель установлен на линии, соединяющей выход катодных камер реакторов блока или блоков, и смеситель соединен также с линией подачи пресной воды.
15. Установка для получения дезинфицирующего раствора по пп.10-12, отличающаяся тем, что она содержит, по крайней мере, один блок, состоящий из двух электрохимических диафрагменных реакторов, емкость с концентрированным раствором хлорида, линию подачи пресной воды, по крайней мере, два смесителя, выполненные, например, в виде водоструйных насосов, и регулятор давления, причем емкость с концентрированным раствором хлорида соединена с трубопроводом подачи исходного раствора, регулятор давления установлен на линии подачи пресной воды, последняя соединена с двумя смесителями, из которых первый установлен на линии, соединяющей выход катодных камер реакторов блока перед герметичным флотационным реактором, второй установлен между выходом из анодной камеры первого по ходу обрабатываемого раствора реактора блока и входом в анодную камеру второго реактора блока.
16. Установка для получения дезинфицирующего раствора по пп.10-12, отличающаяся тем, что она содержит, по крайней мере, один блок, состоящий из трех электрохимических диафрагменных реакторов, емкость с концентрированным раствором хлорида, линию подачи пресной воды, по крайней мере, три смесителя, выполненные, например, в виде водоструйных насосов, и регулятор давления, причем емкость с концентрированным раствором хлорида соединена с трубопроводом подачи исходного раствора, регулятор давления установлен на линии подачи пресной воды, последняя соединена с тремя смесителями, из которых первый установлен на линии, соединяющей выход катодных камер реакторов блока перед герметичным флотационным реактором, второй установлен между выходом из анодной камеры первого по ходу обрабатываемого раствора реактора блока и входом в анодную камеру второго реактора блока, а третий установлен между выходом из анодной камеры второго реактора блока и входом в анодную камеру третьего реактора.
17. Установка для получения дезинфицирующего раствора по пп.10-12, отличающаяся тем, что она содержит, по крайней мере, один блок, состоящий из четырех электрохимических диафрагменных реакторов, емкость с концентрированным раствором хлорида, линию подачи пресной воды, по крайней мере, четыре смесителя, выполненные, например, в виде водоструйных насосов, и регулятор давления, причем емкость с концентрированным раствором хлорида соединена с трубопроводом подачи исходного раствора, регулятор давления установлен на линии подачи пресной воды, последняя соединена с четырьмя смесителями, из которых первый установлен на линии, соединяющей выход катодных камер реакторов блока перед герметичным флотационным реактором, второй установлен между выходом из анодной камеры первого по ходу обрабатываемого раствора реактора блока и входом в анодную камеру второго реактора блока, третий установлен между выходом из анодной камеры второго реактора блока и входом в анодную камеру третьего реактора, а четвертый установлен между выходом из анодной камеры третьего реактора блока и входом в анодную камеру четвертого реактора.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2001118336A RU2207983C2 (ru) | 2001-07-05 | 2001-07-05 | Способ получения дезинфицирующих растворов и установка для его осуществления |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2001118336A RU2207983C2 (ru) | 2001-07-05 | 2001-07-05 | Способ получения дезинфицирующих растворов и установка для его осуществления |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2001118336A RU2001118336A (ru) | 2003-06-10 |
RU2207983C2 true RU2207983C2 (ru) | 2003-07-10 |
Family
ID=29209925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2001118336A RU2207983C2 (ru) | 2001-07-05 | 2001-07-05 | Способ получения дезинфицирующих растворов и установка для его осуществления |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2207983C2 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2835726C1 (ru) * | 2024-03-25 | 2025-03-03 | Общество с ограниченной ответственностью "Эмеральд экотехнологии" | Способ и установка для получения продуктов электролиза из раствора хлоридов щелочных металлов |
-
2001
- 2001-07-05 RU RU2001118336A patent/RU2207983C2/ru not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2835726C1 (ru) * | 2024-03-25 | 2025-03-03 | Общество с ограниченной ответственностью "Эмеральд экотехнологии" | Способ и установка для получения продуктов электролиза из раствора хлоридов щелочных металлов |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5628888A (en) | Apparatus for electrochemical treatment of water and/or water solutions | |
US5871623A (en) | Apparatus for electrochemical treatment of water and/or water solutions | |
WO1998058880A1 (en) | Method and apparatus for the electrochemical treatment of water and aqueous salt solutions | |
GB2479286A (en) | Electrochemical modular cell for processing electrolyte solutions | |
JP7026985B2 (ja) | 酸化剤水溶液の合成のための電気化学システム | |
RU2204530C2 (ru) | Переносное устройство для электрохимической обработки жидкости | |
WO1998050309A1 (en) | Apparatus for electrochemical treatment of water and/or water solutions | |
RU2176989C1 (ru) | Электрохимическая модульная ячейка для обработки водных растворов, установка для получения продуктов анодного окисления раствора хлоридов щелочных или щелочноземельных металлов | |
JP7054554B2 (ja) | アルカリ金属塩化物溶液から電解生成物を得るためのデバイス | |
RU2088693C1 (ru) | Установка для получения продуктов анодного оксиления раствора хлоридов щелочных или щелочно-земельных металлов | |
RU2329197C1 (ru) | Способ получения электрохимически активированного дезинфицирующего раствора и установка для его осуществления | |
JP2020531686A5 (ru) | ||
RU2207983C2 (ru) | Способ получения дезинфицирующих растворов и установка для его осуществления | |
RU2322397C1 (ru) | Установка для получения водного раствора оксидантов | |
RU2148027C1 (ru) | Способ получения дезинфицирующего раствора - нейтрального анолита анд | |
RU2157793C1 (ru) | Способ получения дезинфицирующего раствора - нейтрального анолита | |
RU2322394C1 (ru) | Установка для обработки питьевой воды | |
RU2088539C1 (ru) | Устройство для получения моющих и дезинфицирующих растворов | |
US20130220943A1 (en) | Method for treating untreated salt water for producing treated water, thus produced treated water and device for carrying out said method | |
JP3973508B2 (ja) | 水処理装置 | |
RU2155719C1 (ru) | Способ получения дезинфицирующего раствора - анолита нейтрального | |
RU2096337C1 (ru) | Установка для электрохимической очистки воды и/или водных растворов | |
RU2100483C1 (ru) | Способ обработки воды гипохлоритом натрия и проточный электролизер для получения гипохлорита натрия | |
JP2001104956A (ja) | 簡易型電解水製造装置 | |
RU2787870C1 (ru) | Способ очистки спиртных напитков от сивушных масел и устройство для его осуществления |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20070706 |