RU2207188C2 - Каталитическая композиция, пригодная для способа фишера-тропша - Google Patents
Каталитическая композиция, пригодная для способа фишера-тропша Download PDFInfo
- Publication number
- RU2207188C2 RU2207188C2 RU99107565/04A RU99107565A RU2207188C2 RU 2207188 C2 RU2207188 C2 RU 2207188C2 RU 99107565/04 A RU99107565/04 A RU 99107565/04A RU 99107565 A RU99107565 A RU 99107565A RU 2207188 C2 RU2207188 C2 RU 2207188C2
- Authority
- RU
- Russia
- Prior art keywords
- inert carrier
- cobalt
- catalyst
- tantalum
- catalytic composition
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 43
- 230000003197 catalytic effect Effects 0.000 title claims abstract description 30
- 239000003054 catalyst Substances 0.000 claims abstract description 70
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 27
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 25
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 23
- 239000010941 cobalt Substances 0.000 claims abstract description 23
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 22
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052751 metal Inorganic materials 0.000 claims abstract description 7
- 239000002184 metal Substances 0.000 claims abstract description 7
- 229930195734 saturated hydrocarbon Natural products 0.000 claims abstract description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 31
- 238000006243 chemical reaction Methods 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 26
- 239000007789 gas Substances 0.000 claims description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 20
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 15
- 239000000377 silicon dioxide Substances 0.000 claims description 13
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 12
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- 238000005470 impregnation Methods 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- 238000001354 calcination Methods 0.000 claims description 8
- 238000002161 passivation Methods 0.000 claims description 8
- 239000010936 titanium Substances 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 239000011777 magnesium Substances 0.000 claims description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 239000002243 precursor Substances 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 150000001868 cobalt Chemical class 0.000 claims description 4
- 238000001556 precipitation Methods 0.000 claims description 4
- 230000009467 reduction Effects 0.000 claims description 4
- 239000004408 titanium dioxide Substances 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims 2
- 150000003482 tantalum compounds Chemical class 0.000 claims 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims 1
- 230000001376 precipitating effect Effects 0.000 claims 1
- 230000002194 synthesizing effect Effects 0.000 claims 1
- 229930195733 hydrocarbon Natural products 0.000 abstract description 28
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 28
- 230000000694 effects Effects 0.000 abstract description 5
- 150000002739 metals Chemical class 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 32
- 229910004298 SiO 2 Inorganic materials 0.000 description 15
- 239000012071 phase Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 13
- 239000011148 porous material Substances 0.000 description 11
- 241000282326 Felis catus Species 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 229910010413 TiO 2 Inorganic materials 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 229910052707 ruthenium Inorganic materials 0.000 description 7
- 239000004215 Carbon black (E152) Substances 0.000 description 6
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000005484 gravity Effects 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000006722 reduction reaction Methods 0.000 description 4
- 229910052706 scandium Inorganic materials 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 150000003481 tantalum Chemical class 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- -1 olefin compounds Chemical class 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- NGCRLFIYVFOUMZ-UHFFFAOYSA-N 2,3-dichloroquinoxaline-6-carbonyl chloride Chemical compound N1=C(Cl)C(Cl)=NC2=CC(C(=O)Cl)=CC=C21 NGCRLFIYVFOUMZ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 229910008332 Si-Ti Inorganic materials 0.000 description 1
- 229910006749 Si—Ti Inorganic materials 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 125000005595 acetylacetonate group Chemical group 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- HHFAWKCIHAUFRX-UHFFFAOYSA-N ethoxide Chemical compound CC[O-] HHFAWKCIHAUFRX-UHFFFAOYSA-N 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000003893 lactate salts Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- NBTOZLQBSIZIKS-UHFFFAOYSA-N methoxide Chemical compound [O-]C NBTOZLQBSIZIKS-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- IKNCGYCHMGNBCP-UHFFFAOYSA-N propan-1-olate Chemical compound CCC[O-] IKNCGYCHMGNBCP-UHFFFAOYSA-N 0.000 description 1
- OGHBATFHNDZKSO-UHFFFAOYSA-N propan-2-olate Chemical compound CC(C)[O-] OGHBATFHNDZKSO-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 150000003892 tartrate salts Chemical class 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/02—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
- C07C1/04—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
- C07C1/0425—Catalysts; their physical properties
- C07C1/043—Catalysts; their physical properties characterised by the composition
- C07C1/0435—Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/847—Vanadium, niobium or tantalum or polonium
- B01J23/8476—Tantalum
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- C07C2523/20—Vanadium, niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/74—Iron group metals
- C07C2523/75—Cobalt
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
- C07C2523/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- C07C2523/847—Vanadium, niobium or tantalum
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Изобретение относится к области производства каталитических композиций для синтеза Фишера-Тропша. Предложены каталитическая композиция для синтеза по существу линейных насыщенных углеводородов из синтез-газа, содержащая кобальт в количестве 1-50 мас.% и тантал в количестве 0,05-5 мас.% на инертном носителе, причем кобальт и тантал присутствуют в форме металла или в форме оксида, и способ ее получения. Предложен способ синтеза по существу линейных насыщенных углеводородов из синтез-газа с использованием этой композиции. Технический результат: полученная каталитическая композиция имеет высокую селективность по С2+-углеводородам. 3 с. и 10 з.п., 6 табл.
Description
Изобретение относится к каталитической композиции, пригодной для реакции получения углеводородов посредством так называемого синтеза Фишера-Тропша; изобретение также относится к каталитическому способу получения углеводородов, для которого она используется.
Более конкретно, данное изобретение относится к новой каталитической композиции для получения углеводородов посредством синтеза Фишера-Тропша, содержащей кобальт , промотированный танталом, причем данную композицию получают взаимодействием производных вышеуказанных элементов в присутствии подходящего носителя, как описано более детально ниже.
Выбор кобальта в качестве основной составляющей активной фазы обусловлен тем фактом, что он способствует образованию насыщенных линейных углеводородов с высокой молекулярной массой, минимизируя образование окисленных и олефиновых соединений, в противоположность хорошо известным каталитическим системам на основе железа.
Известная литература цитирует многочисленные примеры катализаторов на основе кобальта, применяемых для синтеза парафиновых продуктов с различными распределениями.
С первых работ Фишера в 1932 году (Н.Н.Storch, N.Golumbic, R.B.Anderson, "The Fischer-Tropsch and Related Synthesis", John Wiley and son. Inc., New York, 1951) - которые описали разработку системы Co/ThО2/MgO, нанесенной на кизельгур, - до настоящего времени патентованными системами на основе кобальта являются по существу следующие: Cо/Mg/ThО2 на кизельгуре в качестве носителя (1954, Reinpruessen A.G.), Co/MgO на бентоните в качестве носителя (1958, M.W.Kellog), Co/Th/Mg (1959, Rurchemie), Co/Th на силикагеле в качестве носителя (1960, Esso Res. and Eng.), Co/Mg/Zr/кизельгур (1968, SU-A-660324, Zeliinskii INST. ), Co/Ru/кизельгур (1976, US-A-4 008 671 GULF), Co/Zr/SiO2 (1980, GB-A-2 073 237, Shell), Co/Ru на титане в качестве носителя (1988, US-A-4 738 948 Exxon), Co/Re/REO,K на оксиде алюминия в качестве носителя (1988, ЕР-А-313 375, Statoil), Co/Mo,W/K,Na/SiO2 (1991, GB-A-2 258 414, IFP), Co/Ru/Cu/K,Sr/SiO2 (1993, ЕР-А-581619, IFP).
Действие промоторов на систему на основе кобальта из того, что описано в литературе, является многочисленным; однако, оно может быть подразделено на различные группы относительно функции промотора (В.Jager, R.Espinoza in Catalysis Today 23, 1995, 21-22).
Например, промоторы, такие как К, Na, Mg, Sr, Сu, Мо, W и металлы группы VIII, по существу увеличивают активность. Ru, Zr, оксиды редкоземельных элементов (REO), Ti увеличивают селективность по углеводородам с высокой молекулярной массой. Ru, REO, Re, Hf, Се, U, Th способствуют регенерируемости катализатора.
Среди различных промоторов рутений, один или вместе с другими элементами, определенно является наиболее широко применяемым.
Недавнее развитие каталитических систем для синтеза углеводородов привело к идентификации различных промоторов, пригодных для связывания с кобальтом для увеличения как активности этих систем с точки зрения превращения реагентов, так также и селективности по линейным углеводородам с высокой молекулярной массой. Это развитие имело место в основном в последние двадцать лет. Увеличение цен на сырую нефть в 70-х годах дало стимул для исследования других путей получения жидкого топлива и химикалиев, среди которых находится возможность превращения синтез-газов в углеводородные продукты с высокой молекулярной массой посредством синтеза Фишера-Тропша.
Что касается синтеза Фишера-Тропша, он может относиться к способу гидрирования оксида углерода с образованием высших углеводородов и окисленных молекул с преимущественно линейной цепью. Реакция протекает в присутствии смеси водорода и оксида углерода с диоксидом углерода или без него (так называемый синтез-газ) при температурах ниже 350oС и при давлениях между 1 и 100 атм.
Широкий диапазон катализаторов и их модификаций, описанных в уровне техники, и широкий диапазон рабочих условий для реакции восстановления оксида углерода водородом позволяет значительную гибкость в селективности продуктов, в диапазоне от метана до тяжелых восков со спиртами и олефинами в качестве побочных продуктов. Распределение продуктов может быть объяснено известным механизмом роста, полученным кинетикой полимеризации и обработанным Anderson, Shuetz и Flory (P.Biloen, W.M.H.Sachtler, Advance in Catalysis, v. 30, pages 169-171, Academic Press, New York, 1981; R.B. Anderson, Catalysis, v. IV, P.H. Emmett ed., Reinhold, New York, 1956). В соответствии с этой моделью попытка ограничить диапазон продуктов для максимизирования, например С5-С11-фракции (бензиновый интервал), приводит к селективностям по метану и С2-С4-фракции более чем 40%. Кроме того, полученные продукты являются по существу парафинами с линейной цепью и олефинами с низким октановым числом. Единственной возможностью отклонения от природы, налагаемой кинетикой полимеризации Фишера-Тропша, является обнаружение каталитических систем, которые не придерживаются этого механизма кинетики. Типичными примерами являются системы, разработанные Mobil, которые по существу соединяют свойства катализаторов Фишера-Тропша с селективностью формы цеолитов (US-A-4157338).
Возможность максимизации селективности по тяжелым жидкостям и воскам (по существу парафиновых и без серы) предоставляет, с другой стороны, многочисленные преимущества. В частности, возможно минимизировать селективность по метану и газовой фракции. Последующая обработка (например, гидрокрекинг, гидроизомеризация) этой жидко-твердой фракции парафиновой природы дает высококачественные средние дистилляты, если сравнивать со средними дистиллятами, полученными из нефти (Ball J., Gas. Matters, April 27 1989, pages 1-8). В этом контексте типичное свойство катализаторов на основе кобальта, чтобы быть высокоселективными в производстве высших парафинов, является определенно выгодным. Кроме того, применение катализаторов с пониженной активностью конверсии водяного газа, таких как катализаторы на основе кобальта, подразумевает низкую селективность по СO2, в противоположность применению традиционного катализатора на основе железа.
Что касается производительности катализаторов на основе кобальта, определяемой как вес С2+-углеводородов/вес катализатора/время, из того, что описано в литературе, она, по-видимому, очень сильно меняется и зависит непосредственно от рабочей температуры. Однако увеличение рабочей температуры не является обоснованным путем увеличения производительности для жидких и твердых углеводородов высокого качества, так как это может вызывать последовательное увеличение селективности по метану и легким газам. С экономической точки зрения очень важно, напротив, максимизировать эту производительность и в то же самое время минимизировать селективность по метану. Другими словами, важно максимизировать получение жидких и твердых углеводородов высокого качества (С9+, С22+).
В соответствии с этой важной целью необходимо, чтобы катализатор был способен объединять высокую производительность (Prod.C2+) с низкой селективностью по метану (Sеl. СН4).
В настоящее время найдена каталитическая композиция, которая, примененная в способе Фишера-Тропша, делает возможными высокую селективность по С2+-углеводородам и в то же самое время низкую селективность по метану.
В соответствии с этим настоящее изобретение относится к каталитической композиции на основе кобальта, которая позволяет конверсии смеси СО и Н2, известной как синтез-газ, с N2 и/или СO2 и/или легкими газами (C1-C4) или без них, в насыщенные линейные углеводороды, содержащие от 77 до 88 мас.% C5+ и от 24 до 31 мас.% С9+ и с производительностями в С2+ между 180 и 330 г С2+/кгкат/ч, поддерживая низкую селективность по метану.
Каталитическая композиция данного изобретения по существу состоит из инертного носителя, кобальта в количестве от 1 до 50 мас.%, предпочтительно от 5 до 35 мас.%, и тантала в количестве от 0,05 до 5 мас.%, предпочтительно от 0,1 до 3 мас.%, с дополнением до 100, состоящим из инертного носителя, причем кобальт и тантал присутствуют в форме металла или в форме производного.
Проценты кобальта и тантала выражены в виде процентов металлов.
Кобальт и тантал могут присутствовать в виде металла или в виде производных, причем в последнем случае предпочтительна форма оксида.
Что касается инертного носителя, его предпочтительно выбирают из, по меньшей мере, одного из оксидов, по меньшей мере, одного из следующих элементов: кремния, алюминия, цинка, магния, титана, циркония, иттрия, олова и соответствующих смесей.
Инертный носитель, который может быть использован, не зависит от кристаллографической структуры вышеуказанных оксидов. Например, оксиды алюминия могут быть использованы любого фазового состава, такие как η, γ, δ, θ, α и соответствующие смеси.
Таким же образом, когда инертный носитель по существу состоит из TiO2, он может находиться в форме рутила и/или анатаза.
В предпочтительном варианте воплощения инертный носитель выбирают из диоксида кремния, γ-оксида алюминия, δ-оксида алюминия, диоксида титана и соответствующих смесей, даже более предпочтительно из диоксида кремния, γ-оксида алюминия и соответствующих смесей.
Следующей целью данного изобретения является способ получения каталитической композиции данного изобретения, включающий в себя:
а) первое осаждение на инертный носитель, предпочтительно выбранный из диоксида кремния и оксида алюминия, предпочтительно посредством сухой пропитки, соли кобальта; последующее кальцинирование с получением каталитического предшественника; последующее необязательное восстановление и пассивацию кальцинированного продукта;
b) осаждение на каталитический предшественник, полученный таким образом, производного тантала, предпочтительно посредством влажной пропитки; последующее кальцинирование, необязательно с последующими восстановлением и пассивацией.
а) первое осаждение на инертный носитель, предпочтительно выбранный из диоксида кремния и оксида алюминия, предпочтительно посредством сухой пропитки, соли кобальта; последующее кальцинирование с получением каталитического предшественника; последующее необязательное восстановление и пассивацию кальцинированного продукта;
b) осаждение на каталитический предшественник, полученный таким образом, производного тантала, предпочтительно посредством влажной пропитки; последующее кальцинирование, необязательно с последующими восстановлением и пассивацией.
Кобальт и тантал могут быть осаждены в соответствии с различными способами, хорошо известными специалистам в этой области, такими как, например, ионный обмен, сухая пропитка, влажная пропитка; осаждение и соосаждение; гелеобразование и механическое смешивание.
Однако в случае кобальта предпочтителен способ сухой пропитки. Согласно этому способу пропитываемый материал помещают в контакт с объемом раствора, более или менее равным объему пор. На стадии (а) предпочтительно использование водных растворов солей кобальта, таких как галогениды, нитрат, оксалат, комплекс, образованный с молочной кислотой и лактатами, комплекс, образованный с винной кислотой и тартратами, комплекс, образованный с ацетилацетонатами. В наиболее предпочтительном варианте воплощения используют нитрат кобальта.
В случае тантала, с другой стороны, его предпочтительно осаждают посредством любого способа пропитки, предпочтительно влажной пропиткой. Согласно этому способу инертный носитель, на который был предварительно осажден кобальт, полностью покрывают раствором производного тантала, особенно алкоголятов тантала, таких как этоксид, пропоксид, изопропоксид, метоксид. В наиболее предпочтительном варианте используют этоксид тантала, растворенный в C1-C5-спиртах.
Инертный носитель может быть использован частично или полностью в первой фазе. В последнем случае весь инертный носитель используют при получении каталитического предшественника на первой стадии. В первом случае инертный носитель используют частично на первой стадии и частично на второй стадии.
В предпочтительном варианте способ настоящего изобретения включает вышеуказанные стадии а) и b) без фаз восстановления и пассивации.
Что касается кальцинирования, оно представляет собой стадию нагревания при температуре между 400 и 750oС для удаления летучих веществ и разложения производных кобальта и тантала до оксидов. Кальцинирование проводят в присутствии кислорода, воздуха или других газов, содержащих кислород.
Перед этой стадией материал может быть подвергнут высушиванию обычно при пониженном давлении при температуре между 80 и 120oC с инертным газом или без него. Целью этой операции является удаление (или сильное уменьшение) возможных растворителей или воды, которыми материал был пропитан, и обеспечивает гомогенность дисперсии для активной фазы.
Что касается восстановления, оно представляет собой стадию, на которой материал обрабатывают восстанавливающим агентом, предпочтительно водородом или газом, содержащим водород. Восстановление проводят при температуре между примерно 250oС и примерно 500oС, предпочтительно от 300 до 450oС, в течение времени между 0,5 и 24 часов, при давлениях между атмосферным давлением и 40 бар.
Что касается пассивации, ее проводят обработкой материала кислородом, разбавленным инертным газом, обычно азотом. Температура обычно составляет 10-80oС. Например, с использованием азота, содержащего 1-2% кислорода с потоком 2 л/ч/гкат, стадия пассивации может иметь продолжительность от 1 до 5 часов при 25oС.
Некоторые из рабочих деталей, относящихся к получению вышеописанных каталитических композиций, будут более очевидными при получении экспериментальных примеров, приведенных ниже, которые, однако, не ограничивают каталитические композиции настоящего изобретения.
Далее, данное изобретение относится к способу получения по существу линейных, насыщенных углеводородов, исходя из синтез-газа (способ Фишера-Тропша) в присутствии вышеописанной каталитической композиции.
Конверсия синтез-газа в углеводороды происходит при давлении обычно между 1 и 100 бар, предпочтительно от 10 до 75 бар, при температуре обычно в диапазоне 150С-350oС, предпочтительно 170-300oС, даже более предпочтительно 200-240oС. Среднечасовая объемная скорость потока обычно составляет 100-20000, предпочтительно 400-5000, объемов синтез-газа на объем катализатора в час. Отношение H2/CO в синтез-газе, как правило, составляет от 1:2 до 5:1, предпочтительно от 1,2:1 до 2,5:1. Могут также присутствовать другие газы, особенно CO2.
Как известно специалистам в данной области, получение смеси СО и H2 может проводиться, исходя из природного газа, преимущественно состоящего из метана. Окислительным агентом (окислителем) может быть кислород или воздух. В последнем случае очевидно, что смесь синтез-газа будет также содержать значительное количество азота, который может быть или не быть удален из СО/Н2 перед реакцией Фишера-Трспша. Преимущество проведения реакции Фишера-Тропша на смесях, в которых все еще присутствует азот, является очевидным.
Катализатор может использоваться в форме мелкого порошка (примерно 10-700 мкм) или в форме частиц, имеющих эквивалентный диаметр от 0,7 до 10 мм соответственно, в присутствии жидкой фазы (при рабочих условиях) и газообразной фазы или газовой фазы. Жидкая фаза может состоять из, по меньшей мере, одного углеводорода, имеющего, по меньшей мере, 5, предпочтительно, по меньшей мере, 15, атомов углерода на молекулу. В предпочтительном варианте жидкая фаза по существу состоит из того же самого продукта реакции.
В качестве только примера катализаторы данного изобретения могут использоваться в реакторе с неподвижным слоем, в который подают непрерывно смесь СО и Н2 и который работает при следующих условиях:
температура реакции 200-240oС;
давление реакции 20 бар;
объемная скорость (GHSV) 500-1500 ч-1;
смесь Н2/СО 2/1.
температура реакции 200-240oС;
давление реакции 20 бар;
объемная скорость (GHSV) 500-1500 ч-1;
смесь Н2/СО 2/1.
Температуру реакции регулируют для получения конверсии выше чем, по меньшей мере, 45% объема подаваемого оксида углерода (конверс. СО%).
Следуя этим условиям, катализаторы, полученные, как описано в примерах 1-11, оценивают с использованием различных носителей. Композиции суммированы в табл. 1.
Результаты тестов реакционной способности показаны в табл. 2-4.
Катализаторы, нанесенные на SiO2
Сравнительный пример 1.
Сравнительный пример 1.
Сравнительный катализатор А (Co/Ru/SiO2; 14% Со, 0,2% Ru).
Носитель - диоксид кремния (имеющий площадь поверхности 520 м2/г, удельный объем пор 0,8 м3/г, средний диаметр частиц 0,5 мм, удельный вес 0,42 г/мл) пропитывают сухой пропиткой азотным раствором Со(NO3)2•6Н20 при рН 2,5 в таких количествах, чтобы получить процент Со, равный 14 мас.% от общего количества. Диоксид кремния, пропитанный таким образом, сушат при 120oС в течение 16 часов, кальцинируют при 400oС на воздухе в течение 4 часов, затем обрабатывают в потоке H2 при объемной скорости (GHSV) 1000 ч-1 в трубчатом реакторе при 400oС в течение 16 часов. Образец, восстановленный таким образом, пассивируют в смеси (1%) О2/(99%)N2 с GHSV 1000 ч-1 в течение 2 часов при комнатной температуре.
7,5•10-3 М раствор добавляют к монометаллическому образцу Ru(NO3)3•xH2O, полученному согласно следующей процедуре: осаждение в форме гидроксида при рН7,2 RuCl3•xH2O, последующее удаление хлоридов, повторная солюбилизация в концентрированной НNО3 и разбавление в СН3СОСН3 в соотношении 1:250 об/об.
Раствор рутения в ацетоне добавляют к образцу в таком количестве, чтобы получить 0,2 мас. % Ru от общего количества. Суспензию оставляют при перемешивании в течение 2 часов и затем сушат в вакууме менее 10 мм рт. ст. при 50oС. Фазу кальцинирования на воздухе проводят при 350oС в течение 4 часов и затем проводят восстановление и пассивацию аналогично тому, как описано выше.
Сравнительный пример 2.
Сравнительный катализатор В (Co/Sc/SiО2; 14% Со, 0,2% Sc).
Для получения катализатора В 10-3 М раствор Sс(NO3)2 в ацетоне добавляют к 50 г монометаллического катализатора Co/SiО2, полученного, как описано в примере 1, в таком объеме, чтобы получить конечный массовый процент Sc, равный 0,2%.
Полученную таким образом суспензию оставляют перемешиваться в течение двух часов и затем сушат в вакууме при 50oС. Образец кальцинируют при 350oС в течение 4 часов на воздухе, восстанавливают при 400oС в H2 в течение 16 часов с GHSV 1000 ч-1 и пассивируют в (1%) О2/(99%) N2 с GHSV 1000 ч-1 в течение 2 часов при комнатной температуре.
Пример 3. Катализатор С1
(Co/Ta/SiO2; 14% Со, 0,5% Та).
(Co/Ta/SiO2; 14% Со, 0,5% Та).
0,01 М раствор Ta(EtO)5 в этаноле добавляют к 50 г монометаллического катализатора Со/SiO2, полученного, как описано в примере 1, в таком объеме, чтобы получить конечный мас.% тантала, равный 0,5%.
Суспензию, полученную таким образом, оставляют перемешиваться в течение двух часов и затем сушат а вакууме при 50oС.
Образец кальцинируют при 350oС в течение 4 часов на воздухе, восстанавливают при 400oС в Н2 в течение 16 часов с GHSV 1000 ч-1 и пассивируют в (1%) О2/(59%) N2 с GHSV 1000 ч-1 в течение 2 часов при комнатной температуре.
Пример 3b. Катализатор С2 (Co/Ta/SiO2; 14% Со, 0,2% Та).
Катализатор С2 получают аналогично описанному в примере 3.
Пример 4. Катализатор D (Co/Ta/SiO2; 14% Co, 0,5% Та).
Носитель - диоксид кремния (имеющий площадь поверхности 520 м2/г, удельный объем пор 0,8 м3/г, средний диаметр частиц 0,5 мм, удельный вес 0,42 г/мл) пропитывают сухой пропиткой азотным раствором Со(NО3)2•6Н20 при рН 2,5 в таких количествах, чтобы получить процент Со, равный 14 мас.% от общего количества. Диоксид кремния, пропитанный таким образом, сушат при 120oС в течение 16 часов и кальцинируют при 400oС на воздухе в течение 4 часов. 0,01 М раствор Ta(EtO)5 в этаноле добавляют к монометаллическому образцу Co/SiO2 в таком объеме, чтобы получить конечный мас.% тантала, равный 0,5%.
Суспензию, полученную таким образом, оставляют перемешиваться в течение 2 часов и затем сушат в вакууме при 50oС.
Фазу кальцинирования на воздухе проводят при 350oС в течение 4 часов.
Катализатор, нанесенный на TiO2
Сравнительный пример 5.
Сравнительный пример 5.
Сравнительный катализатор Е (Co/Ru/TiO2; 12% Со, 0,2% Ru).
Следуя процедуре, описанной в примере 1, сравнительный катализатор Е получают так же, как катализатор А, но с носителем из TiO2 вместо SiО2. В этом случае TiO2 имеет площадь поверхности 25 м2/г, удельный объем пор 0,31 см3/г и содержание рутила 81%.
Сравнительный пример 6.
Сравнительный катализатор F
(Co/Sc/TiO2; 12% Со, 0,2% Sc).
(Co/Sc/TiO2; 12% Со, 0,2% Sc).
Катализатор F получают аналогично описанному для получения катализатора В.
Пример 7. Катализатор G (Co/Ta/TiO2; 12% Co, 0,5% Та).
Следуя процедуре, описанной в примере 4, получают катализатор G, состоящий из носителя на основе диоксида титана. В этом случае TiO2 имеет площадь поверхности 25 м2/г, удельный объем пор 0,31 см3/г и содержание рутила 81%.
Катализаторы на носителе SiO2-TiO2
Пример 8. Катализатор Н (Со/Та/[Si-Ti]; 15% Со, 0,5% Та).
Пример 8. Катализатор Н (Со/Та/[Si-Ti]; 15% Со, 0,5% Та).
Носитель - диоксид кремния (имеющий площадь поверхности 480 м2/г, удельный объем пор 0,8 м3/г, диаметр частиц между 75 и 150 мкм, удельный вес 0,55 г/мл, средний радиус пор 35 ангстрем), предварительно высушенный при 150oС в течение 8 часов, суспендируют в атмосфере азота в обезвоженном н-гексане, 6 мл/г SiО2. К этой суспензии добавляют 0,2 М раствор Ti(i-Pro)4 в таком количестве, чтобы получить примерно 7,0% Ti; смесь оставляют при перемешивании в течение 16 часов и затем сушат в вакууме при давлении менее 10 мм рт. ст. и при температуре 50oС. Образец, полученный таким образом, кальцинируют в атмосфере азота при 400oС в течение 4 часов и затем кальцинируют на воздухе при 600oС в течение дополнительных 4 часов.
Катализатор Н получают со смешанным носителем, полученным таким образом, причем катализатор состоит из 7,1% титана, приблизительно 25% которого находится в кристаллической форме (50% рутил, 50% анатаз), и его площадь поверхности равна 440 м2/г, аналогично описанному в примере 4.
Катализаторы на носителе Al2O3
Пример 9. Катализатор I (Со/Та/А1203; 14% Со, 0,5% Та).
Пример 9. Катализатор I (Со/Та/А1203; 14% Со, 0,5% Та).
Катализатор I получают аналогично описанному в примере 4 с носителем - оксидом алюминия (кристаллическая фаза 100% гамма, площадь поверхности 175 м2/г, удельный объем пор 0,5 м3/г, средний радиус пор размер частиц между 20-150 мкм, удельный вес 0,86 г/мл).
Пример 10. Катализатор L (Со/Та/Аl2О3; 12% Со, 0,5% Та).
Катализатор L получают аналогично описанному в примере 4 с носителем - оксидом алюминия (кристаллическая фаза 50% γ и 50% δ, площадь поверхности 137 м2/г, удельный объем пор 0,46 м2/г, средний радиус пор размер частиц между 20-120 мкм, удельный вес 0,69 г/мл).
КАТАЛИТИЧЕСКИЕ ТЕСТЫ
Пример 11. Оценка каталитической активности катализаторов, нанесенных на диоксиды кремния.
Пример 11. Оценка каталитической активности катализаторов, нанесенных на диоксиды кремния.
Катализатор (А, В, С, D в соответствии с примерами 1-4) получают в частицах, имеющих диаметр между 0,35 и 0,85 мкм и затем разбавляют инертным носителем, карбидом кремния, имеющим тот же самый размер частиц, что и катализатор, и в объемном соотношении катализатор/инертный носитель, равном 1: 2. Затем разбавленный таким образом катализатор загружают в трубчатый реактор и подвергают процедуре активации в потоке водорода (2000 Nл/ч•лкат) и азота (1000 Nл/ч•лкат) при температуре между 350-400oС и давлении 1 бар в течение 16 часов. Затем температуру понижают до 180oС, объемную скорость потока водорода и азота модифицируют (333-1000 Nл/ч•лкат) и (5000-15000 Nл/ч•лкат), соответственно, систему доводят до давления 20 бар и затем вводят оксид углерода (116,5-500 Nл/ч•лкат) с получением объемного отношения Н2/СО, равного 2.
Скорость потока азота в начальной фазе реакции постепенно снижают до полного удаления согласно следующей последовательности (более низкие объемные скорости потока относятся к тестам с GHSV = 500 ч-1, более высокие объемные скорости потока относятся к GHSV = 1500 ч-1) (см. табл.А).
В конце начальной фазы температуру реакции регулируют таким образом, чтобы получить конверсию оксида углерода относительно поданного объема (конверс. СО%) менее чем 20%, в течение, по меньшей мере, 48 часов, затем в последующие 48 часов температуру постепенно увеличивают до достижения минимальной величины конверсии СО 45%, но без превышения температуры реакции 240oС, для минимизации образования метана, а также легких газообразных фракций (С3-С4).
Как показано в табл. 2 для сравнительного катализатора А, для достижения конверсии СО, превышающей предел 45%, необходимо увеличить температуру реакции (с 200 до 240oС) с увеличением объемных скоростей потока смеси Н2-СО (GHSV от 500 до 1500 ч-1). В результате селективность по метану повышается (с 7,8 до 29,7%), выраженная в виде процента, относящегося к общему углероду, присутствующему в продуктах (С%), и наблюдается общее понижение селективности по высшим углеводородам (сел. C22+ с 15,4 до 3,2%, сел. С9+ с 66,9 до 48,8%), выраженной в виде процента от общего веса всей полученной углеводородной фракции (мас.%).
Что касается сравнительного катализатора В, промотированного скандием, с использованием общей объемной скорости потока 1500 ч-1 и температуры реакции 218oС получают среднечасовую весовую производительность по углеводородам с более чем 2 атомами углерода (С2+), равную 273 г/кг/ч, и селективность по С22+ 14,2%. В общем, каталитические характеристики катализатора В можно рассматривать как более высокие, чем каталитические характеристики катализатора А.
Катализаторы Cl, C2 и D данного изобретения, содержащие тантал, подвергают аналогичному каталитическому тесту. Как показано в табл. 2, при общей объемной скорости потока (GHSV) 1500 ч-1 и температуре реакции 220oС для катализаторов С1 и С2, полученных согласно той же самой процедуре, что и катализаторы А и В, получают конверсии СО 60,3 и 69,3% соответственно, производительности в отношении С2+ более чем 315 г С2+/кгкат/ч, селективности по метану менее чем 10%, селективности по высшим С22+-углеводородам примерно 24%, селективности по С9+-углеводородам между 65,6 и 71,3% и, наконец, селективности по C5+ более чем 81%.
Эти характеристики лучше, чем характеристики, полученные со сравнительными катализаторами А и В, особенно для более высоких производительностей, селективностей по высшим углеводородам и более низких селективностей по метану и легким газообразным фракциям (С2-С4).
Что касается катализатора D, синтезированного согласно процедуре, описанной в примере 4, каталитические характеристики системы Со/Та дополнительно улучшены в сравнении со сравнительными катализаторами: конверсии СО 71,0%, производительности в отношении C2+ 330 г С2+/кгкат/ч, селективности по метану 8,4%, селективности по высшим С22+-углеводородам 29,1%, селективности по С9+-углеводородам 78,4% и, наконец, селективности по C5+ 83,5%.
Пример 12. Оценка каталитической активности катализаторов, нанесенных на титан.
Как показано в табл. 3, и в этом случае также сравнение между ссылочными катализаторами, промотированными рутением (кат. Е) или скандием (кат. F), и катализатором, промотированным без промежуточной фазы восстановления и фазы пассивации (пример 3), показывает увеличение конверсии СО, общей производительности углеводородов и селективности по высшим углеводородам с сохранением низкой селективности по метану (конверс. СО 70,0%, производительность С2+ 172 г/кгкат/ч, C22+ 32, 9%, СН4 7,6%).
Пример 13. Оценка каталитической активности катализаторов, нанесенных на диоксид кремния/диоксид титана и оксид алюминия.
Каталитическая композиция Со/Та, нанесенная на другие материалы, такие как смешанный носитель диоксид кремния-диоксид титана и оксид алюминия, с различным фазовым составом показала интересные каталитические характеристики при температурах реакции между 209 и 218oС и общих объемных скоростях потока 1500 ч-1.
Как показано в табл. 4, полученные конверсии составляют более чем 57% (конверс. СО 65,8-57,1%), производительности в отношении C2+ более чем 180 г/кг/ч (производительности C2+: 183,1-260,1 г/кг/ч), селективности по С22+-углеводородам выше чем 23% (сел. С22+ 23,2-28,3%).
Данные табл. 5 показывают возможность использования синтез-газа, разбавленного азотом.
Claims (12)
1. Каталитическая композиция для синтеза по существу линейных насыщенных углеводородов из синтез-газа, содержащая кобальт и другой компонент на инертном носителе, причем кобальт и другой компонент присутствуют в форме металла или в форме оксида, отличающаяся тем, что в качестве другого компонента каталитическая композиция содержит тантал при следующем содержании компонентов, мас.%:
Кобальт - 1-50
Тантал - 0,05-5
Инертный носитель - Остальное
2. Каталитическая композиция по п.1, отличающаяся тем, что кобальт присутствует в количестве от 5 до 35 мас.% и тантал - в количестве от 0,1 до 3 мас.%.
Кобальт - 1-50
Тантал - 0,05-5
Инертный носитель - Остальное
2. Каталитическая композиция по п.1, отличающаяся тем, что кобальт присутствует в количестве от 5 до 35 мас.% и тантал - в количестве от 0,1 до 3 мас.%.
3. Каталитическая композиция по п.1, отличающаяся тем, что инертный носитель выбирают из, по меньшей мере, одного из оксидов, по меньшей мере, одного из следующих элементов: кремния, алюминия, цинка, магния, титана, циркония, иттрия, олова и соответствующих смесей.
4. Каталитическая композиция по п.1, отличающаяся тем, что инертный носитель выбирают из диоксида кремния, γ-оксида алюминия, δ-оксида алюминия, диоксида титана и соответствующих смесей.
5. Каталитическая композиция по п.4, отличающаяся тем, что инертный носитель выбирают из диоксида кремния, γ-оксида алюминия и соответствующих смесей.
6. Способ получения каталитической композиции по п.1, который включает: а) первое осаждение на инертный носитель соли кобальта, кальцинирование с получением каталитического предшественника и, последующие необязательные, восстановление и пассивацию кальцинированного продукта; б) осаждение на каталитический предшественник соединения другого компонента, кальцинирование и, последующие необязательные, восстановление и пассивацию; отличающийся тем, что в качестве соединения другого компонента используют соединение тантала.
7. Способ по п.6, отличающийся тем, что инертный носитель выбирают из диоксида кремния и оксида алюминия.
8. Способ по п. 6, отличающийся тем, что соли кобальта осаждают на инертный носитель способом сухой пропитки.
9. Способ по п. 6, отличающийся тем, что соединение тантала осаждают посредством влажной пропитки.
10. Способ синтеза по существу линейных насыщенных углеводородов из синтез-газа, состоящего из СО и Н2, который включает реакцию этой смеси в присутствии каталитической композиции при 150-350oС, давлении 1-100 бар, мольном соотношении Н2/СО в синтез-газе от 1:2 до 5:1, отличающийся тем, что реакцию проводят в присутствии каталитической композиции по п.1.
11. Способ по п.10, отличающийся тем, что синтез-газ, состоящий из СО и Н2, разбавляют азотом.
12. Способ по п. 10, отличающийся тем, что процесс проводят при 170-300oС, давлении от 10 до 75 бар, мольном соотношении Н2/СО в синтез-газе от 1,2:1 до 2,5:1.
13. Способ по п. 10, отличающийся тем, что процесс проводят при 200-240oС.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ITMI97A001574 | 1997-07-03 | ||
IT97MI001574A IT1292462B1 (it) | 1997-07-03 | 1997-07-03 | Composizione catalitica utile nel processo di fischer-tropsch |
Publications (2)
Publication Number | Publication Date |
---|---|
RU99107565A RU99107565A (ru) | 2001-01-27 |
RU2207188C2 true RU2207188C2 (ru) | 2003-06-27 |
Family
ID=11377490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU99107565/04A RU2207188C2 (ru) | 1997-07-03 | 1998-06-26 | Каталитическая композиция, пригодная для способа фишера-тропша |
Country Status (14)
Country | Link |
---|---|
US (1) | US6075062A (ru) |
EP (1) | EP0935497B1 (ru) |
JP (1) | JP4225584B2 (ru) |
CN (1) | CN1107535C (ru) |
CA (1) | CA2264534C (ru) |
DE (1) | DE69802497T2 (ru) |
ES (1) | ES2164451T3 (ru) |
ID (1) | ID29207A (ru) |
IT (1) | IT1292462B1 (ru) |
MY (1) | MY118556A (ru) |
NO (1) | NO316728B1 (ru) |
RU (1) | RU2207188C2 (ru) |
SA (1) | SA98190948B1 (ru) |
WO (1) | WO1999001218A1 (ru) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008079052A1 (fr) * | 2006-12-27 | 2008-07-03 | Limited Liability Company 'syntop' | Catalyseur de synthèse fischer-tropsch et procédé de production associé |
WO2008079051A1 (fr) * | 2006-12-27 | 2008-07-03 | Limited Liability Company 'syntop' | Catalyseur de synthèse fischer-tropsch et procédé de production associé |
RU2514191C2 (ru) * | 2009-06-22 | 2014-04-27 | Джонсон Мэтти Плс | Сформированные катализаторные блоки |
RU2792847C2 (ru) * | 2018-01-22 | 2023-03-27 | Сасол Джёмани Гмбх | Подложка катализатора, содержащая равномерно распределенный диоксид титана, и способ ее изготовления |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6262132B1 (en) * | 1999-05-21 | 2001-07-17 | Energy International Corporation | Reducing fischer-tropsch catalyst attrition losses in high agitation reaction systems |
US6451864B1 (en) * | 1999-08-17 | 2002-09-17 | Battelle Memorial Institute | Catalyst structure and method of Fischer-Tropsch synthesis |
GB0003961D0 (en) * | 2000-02-21 | 2000-04-12 | Ici Plc | Catalysts |
IT1317868B1 (it) | 2000-03-02 | 2003-07-15 | Eni Spa | Catalizzatore a base di cobalto supportato, particolarmente utilenella reazione di fischer-tropsch. |
US6858127B2 (en) | 2001-03-05 | 2005-02-22 | Shell Oil Company | Process for the preparation of middle distillates |
US7452844B2 (en) * | 2001-05-08 | 2008-11-18 | Süd-Chemie Inc | High surface area, small crystallite size catalyst for Fischer-Tropsch synthesis |
US6822008B2 (en) * | 2002-09-06 | 2004-11-23 | Conocophillips Company | Fischer-Tropsch catalysts using multiple precursors |
GB0226514D0 (en) * | 2002-11-13 | 2002-12-18 | Statoil Asa | Fischer-tropsch catalysts |
FR2864532B1 (fr) | 2003-12-31 | 2007-04-13 | Total France | Procede de transformation d'un gaz de synthese en hydrocarbures en presence de sic beta et effluent de ce procede |
GB2410449B (en) * | 2004-01-28 | 2008-05-21 | Statoil Asa | Fischer-Tropsch catalysts |
US9023900B2 (en) | 2004-01-28 | 2015-05-05 | Velocys, Inc. | Fischer-Tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor |
US7084180B2 (en) | 2004-01-28 | 2006-08-01 | Velocys, Inc. | Fischer-tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor |
US7365040B2 (en) * | 2004-04-26 | 2008-04-29 | Sasoltechnology (Proprietary) Limited | Catalysts |
GB2416715A (en) * | 2004-07-30 | 2006-02-08 | Statoil Asa | Fischer-Tropsch catalyst |
US20070004810A1 (en) * | 2005-06-30 | 2007-01-04 | Yong Wang | Novel catalyst and fischer-tropsch synthesis process using same |
EP1852182A1 (en) * | 2006-05-01 | 2007-11-07 | Engelhard Corporation | Fischer-Tropsch Catalyst comprising cobalt and zinc oxide |
WO2007131082A2 (en) * | 2006-05-03 | 2007-11-15 | Syntroleum Corporation | Optimized hydrocarbon synthesis process |
JP2007307436A (ja) * | 2006-05-16 | 2007-11-29 | Ihi Corp | フィッシャー・トロプシュ合成触媒とその製造方法 |
EP2447339A1 (en) | 2007-01-19 | 2012-05-02 | Velocys Inc. | Process and apparatus for converting natural gas to higher molecular weight hydrocarbons using microchannel process technology |
GB2446127A (en) * | 2007-01-30 | 2008-08-06 | Gtl F1 Ag | Preparation of Fischer-Tropsch Catalysts |
JP2010210118A (ja) * | 2009-03-09 | 2010-09-24 | Jamco Corp | 漏水防止用安全弁を備えた旅客機搭載用スチームオーブン |
GB2473071B (en) * | 2009-09-01 | 2013-09-11 | Gtl F1 Ag | Fischer-tropsch catalysts |
GB2475492B (en) | 2009-11-18 | 2014-12-31 | Gtl F1 Ag | Fischer-Tropsch synthesis |
CN103249481B (zh) | 2010-08-09 | 2015-11-25 | Gtl.F1公司 | 费托催化剂 |
RU2445161C1 (ru) * | 2010-08-19 | 2012-03-20 | Общество с ограниченной ответственностью "СинТоп" | Способ активации кобальтового катализатора синтеза фишера-тропша |
US8168686B2 (en) * | 2010-12-22 | 2012-05-01 | Rentech, Inc. | Integrated biorefinery for production of liquid fuels |
US8093306B2 (en) * | 2010-12-22 | 2012-01-10 | Rentech, Inc. | Integrated biorefinery for production of liquid fuels |
US8367741B2 (en) | 2011-05-19 | 2013-02-05 | Rentech, Inc. | Biomass high efficiency hydrothermal reformer |
US9127220B2 (en) | 2011-05-19 | 2015-09-08 | Res Usa, Llc | Biomass high efficiency hydrothermal reformer |
GB201214122D0 (en) | 2012-08-07 | 2012-09-19 | Oxford Catalysts Ltd | Treating of catalyst support |
CN103071481B (zh) * | 2012-12-29 | 2014-05-21 | 万华化学集团股份有限公司 | 一种费托合成钴基催化剂及其制备方法 |
CN105582957B (zh) * | 2014-10-22 | 2020-07-07 | 中国科学院上海高等研究院 | 球形载体负载的钴基费托合成催化剂及其制备方法 |
GB2554618B (en) | 2015-06-12 | 2021-11-10 | Velocys Inc | Synthesis gas conversion process |
RU2610526C2 (ru) * | 2015-06-18 | 2017-02-13 | Открытое акционерное общество "Нефтяная компания "Роснефть" | Катализатор для осуществления процесса Фишера-Тропша в компактном варианте и способ его получения (варианты) |
FR3044565B1 (fr) * | 2015-12-08 | 2017-12-01 | Ifp Energies Now | Chargement d'un catalyseur dans une colonne a bulles pour la synthese fischer-tropsch |
BR102016022962B1 (pt) * | 2016-10-03 | 2021-10-26 | Petróleo Brasileiro S.A. - Petrobras | Processo de preparação de um catalisador de ferro-cromo promovido com platina, e, catalisador composto de ferro-cromo promovido com platina |
US10543470B2 (en) | 2017-04-28 | 2020-01-28 | Intramicron, Inc. | Reactors and methods for processes involving partial oxidation reactions |
US10544371B2 (en) | 2018-05-11 | 2020-01-28 | Intramicron, Inc. | Channel reactors |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4088671A (en) * | 1976-03-19 | 1978-05-09 | Gulf Research & Development Company | Conversion of synthesis gas using a cobalt-ruthenium catalyst |
US4280899A (en) * | 1978-05-15 | 1981-07-28 | Uop Inc. | Hydrocarbon dehydrocyclization with an acidic multimetallic catalytic composite |
US4206135A (en) * | 1979-03-12 | 1980-06-03 | Exxon Research & Engineering Co. | Catalyst comprising nickel supported on tantalum oxide or niobium oxide and their use as hydrocarbon synthesis catalysts in CO/H2 reactions |
US4328158A (en) * | 1981-03-19 | 1982-05-04 | Gulf Research & Development Company | Production of maleic anhydride |
US4738948A (en) * | 1986-07-02 | 1988-04-19 | Exxon Research And Engineering Company | Cobalt-ruthenium catalysts for Fischer-Tropsch synthesis and process for their preparation |
US4801573A (en) * | 1987-10-23 | 1989-01-31 | 501 Den Norske Stats Oljeslenskap A.S. | Catalyst for production of hydrocarbons |
US5397806A (en) * | 1991-11-14 | 1995-03-14 | Exxon Research & Engineering Co. | Method for stabilizing titania supported cobalt catalyst (C-2715) |
DE4221011A1 (de) * | 1992-06-26 | 1994-01-05 | Basf Ag | Schalenkatalysatoren |
-
1997
- 1997-07-03 IT IT97MI001574A patent/IT1292462B1/it active IP Right Grant
-
1998
- 1998-06-26 WO PCT/EP1998/004035 patent/WO1999001218A1/en active IP Right Grant
- 1998-06-26 DE DE69802497T patent/DE69802497T2/de not_active Expired - Lifetime
- 1998-06-26 CA CA002264534A patent/CA2264534C/en not_active Expired - Fee Related
- 1998-06-26 CN CN98800932A patent/CN1107535C/zh not_active Expired - Fee Related
- 1998-06-26 ID IDW990049D patent/ID29207A/id unknown
- 1998-06-26 RU RU99107565/04A patent/RU2207188C2/ru not_active IP Right Cessation
- 1998-06-26 US US09/147,762 patent/US6075062A/en not_active Expired - Lifetime
- 1998-06-26 JP JP50632499A patent/JP4225584B2/ja not_active Expired - Fee Related
- 1998-06-26 EP EP98939583A patent/EP0935497B1/en not_active Expired - Lifetime
- 1998-06-26 ES ES98939583T patent/ES2164451T3/es not_active Expired - Lifetime
- 1998-07-02 MY MYPI98003018A patent/MY118556A/en unknown
- 1998-12-28 SA SA98190948A patent/SA98190948B1/ar unknown
-
1999
- 1999-03-01 NO NO19990985A patent/NO316728B1/no not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
US 4738948 A1, от 19.04.1988. RU 2017517 C1, oт l5.08.1994. US 4206135 С1, от 03.06.1980. * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008079052A1 (fr) * | 2006-12-27 | 2008-07-03 | Limited Liability Company 'syntop' | Catalyseur de synthèse fischer-tropsch et procédé de production associé |
WO2008079051A1 (fr) * | 2006-12-27 | 2008-07-03 | Limited Liability Company 'syntop' | Catalyseur de synthèse fischer-tropsch et procédé de production associé |
RU2514191C2 (ru) * | 2009-06-22 | 2014-04-27 | Джонсон Мэтти Плс | Сформированные катализаторные блоки |
RU2792847C2 (ru) * | 2018-01-22 | 2023-03-27 | Сасол Джёмани Гмбх | Подложка катализатора, содержащая равномерно распределенный диоксид титана, и способ ее изготовления |
Also Published As
Publication number | Publication date |
---|---|
NO990985D0 (no) | 1999-03-01 |
NO990985L (no) | 1999-04-26 |
EP0935497A1 (en) | 1999-08-18 |
ES2164451T3 (es) | 2002-02-16 |
JP2001500430A (ja) | 2001-01-16 |
CN1230902A (zh) | 1999-10-06 |
JP4225584B2 (ja) | 2009-02-18 |
ID29207A (id) | 2001-08-09 |
CA2264534C (en) | 2006-09-19 |
MY118556A (en) | 2004-12-31 |
ITMI971574A0 (ru) | 1997-07-03 |
US6075062A (en) | 2000-06-13 |
IT1292462B1 (it) | 1999-02-08 |
EP0935497B1 (en) | 2001-11-14 |
DE69802497T2 (de) | 2002-05-16 |
DE69802497D1 (de) | 2001-12-20 |
NO316728B1 (no) | 2004-04-19 |
CN1107535C (zh) | 2003-05-07 |
SA98190948B1 (ar) | 2006-09-25 |
WO1999001218A1 (en) | 1999-01-14 |
CA2264534A1 (en) | 1999-01-14 |
ITMI971574A1 (it) | 1999-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2207188C2 (ru) | Каталитическая композиция, пригодная для способа фишера-тропша | |
JP4210338B2 (ja) | 高活性触媒の調製方法ならびに該触媒およびその使用 | |
US5302622A (en) | Cobalt-based catalyst and process for converting synthesis gas into hydrocarbons | |
CA1329190C (en) | Catalyst and process for production of hydrocarbon | |
CA2274688C (en) | Process for the preparation of hydrocarbons | |
EP0110449B1 (en) | Process for the preparation of a fischer-tropsch catalyst, a catalyst so prepared and use of this catalyst in the preparation of hydrocarbons | |
EP0585065B1 (en) | Isomerization catalyst of group 8 metal/ZrO2/SiO2/WO2, and isomerization process using it | |
CA2181273C (en) | Process for the preparation of a catalyst useful for the conversion of synthesis gas | |
US5783607A (en) | Process for converting synthesis gas in the presence of a catalyst based on cobalt and titanium | |
JP2002512556A (ja) | 高活性触媒の調製方法ならびに該触媒およびその使用 | |
JP4140075B2 (ja) | 触媒組成物 | |
CA2061359C (en) | Washing treatment for catalysts and/or catalyst precursors | |
US5902767A (en) | Catalyst having an acidic solid oxide component and a group IB metal or metal oxide component | |
RU2201801C2 (ru) | Способ получения катализатора на основе кобальта и скандия | |
JPWO2004085055A1 (ja) | フィッシャー・トロプシュ合成用触媒および炭化水素の製造法 | |
US7241815B2 (en) | Process for synthesising hydrocarbons in a three-phase reactor in the presence of a catalyst comprising a group VIII metal supported on zirconia or on a zirconia-alumina mixed oxide | |
EP0171296A2 (en) | Dual colloid catalyst compositions and a method for preparing them | |
ZA200402139B (en) | Method for hydrocarbon synthesis in a three-phase reactor in the presence of a catalyst comprising a group viii metal supported on zirconia or mixed zirconia-alumina oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20170627 |